用户名: 密码: 验证码:
地下金属矿山六边形进路充填开采围岩稳定性机理及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国金属矿山资源日渐枯竭,加快复杂地质环境下矿山资源的勘探和开发已成为必然趋势,复杂地质环境条件下的开采将面临前所未有的矿山地质灾害,因此,研究复杂地质条件下的新型采矿方法等成为重要的研究课题。本文以解决复杂大水矿床的铁矿石地下开采为研究背景,运用理论分析、室内及现场试验、数值模拟及现场监测相结合的综合研究方法,对《工程岩体分级标准》的不合理性进行分析并提出修改建议,并结合大量的室内、现场测试及实验分析,研究确定了谷家台铁矿的围岩级别和相关物理力学参数;并引入安全系数作为稳定性评价指标对新型六边形下向进路胶结充填采矿法对控制顶板变形、改善围岩受力、减少对注浆帷幕的扰动机理及规律、参数优化等进行了系统研究,得出了合理的开采参数;探讨了渗流条件下的围岩破坏机理,并据此确定了多水平、多矿块的合理开采方案。通过现场注浆帷幕的变形及受力监测分析,初步验证了理论分析的合理性及可行性。论文主要研究内容及成果如下:
     (1)对国标《工程岩体分级标准》中存在的各种问题进行了初步探讨,提出了相应的修改建议,并应用于莱芜谷家台铁矿。针对定性判断和定量指标之间不一致的问题,对岩体基本质量指标BQ值评分标准进行了修正;针对初始地应力影响判断公式物理意义并不明确的情况,建议将初始地应力分为自重应力和地质构造应力两部分分开考虑,地质构造应力的部分适用于原有判断公式,自重应力的影响通过不同埋深情况下的安全系数指标来体现,进而对岩体基本质量指标BQ值进行了修正;增加了具有严格力学意义的安全系数作为稳定性评价的定量指标,使围岩分级的表述更具科学性;建立岩体基本质量指标BQ值和岩体分级指数RMR值之间的数学关系,根据RMR值与岩体力学参数之间的经验公式,得到了基于BQ值的岩块到岩体的物理力学参数折减方法。
     (2)结合《工程岩体分级标准》的修改建议,通过现场点荷载试验、钻孔波速测试、节理裂隙统计,室内三轴试验等手段,对谷家台铁矿不同区段的围岩状况进行了综合评价,确定了不同区段围岩的围岩级别和相应的物理力学参数,并试验确定了不同配比充填体的物理力学参数。
     (3)通过对注浆帷幕体试样进行瞬态渗透试验研究,揭示了其全应力-应变过程中的渗透特性。整个破坏过程分为三个阶段,平静期,试样内部微裂隙萌生;发展期,试样内微裂隙快速发育、延伸和贯通;完全渗透阶段,试样受压破坏,大量裂隙形成贯通,出现断裂面。应变-渗透系数曲线的峰值滞后于应力-应变曲线的峰值,说明岩石破裂是透水的直接原因,且先于透水而发生。
     (4)采用解析法对六边形进路回采围岩应力进行求解,利用单位圆外域到一般形状洞孔外域的映射函数,近似求得六边形洞孔外域的映射函数,考虑垂直方向受均布荷载γ H,水平方向受均布荷载λγ H、地面荷载为0时六边形洞周围岩应力分布,发现原岩应力场(λ的大小)对洞周围岩应力分布有很大影响,λ值小于0.2时,洞顶出现拉应力,随着λ值增大,拉应力逐渐消失,开始出现压应力并逐渐增大。利用有限元软件ANSYS模拟了不同侧压力系数λ的情况,模拟结果与解析解基本吻合。
     (5)结合传统数值分析中围岩应变、变形及塑性区变化,引入安全系数作为稳定性评价指标,系统研究了埋深、围岩参数、宽高比和横截面积等条件对六边形矿房围岩稳定性的影响,并与同等条件下矩形矿房的模拟结果进行了比较,分析了六边形矿房在限制注浆帷幕顶板位移和控制洞周应力转移方面的优越性,并优化确定了合理的开挖矿房间距至少为矿房宽度的2倍,确定了不同矿石参数条件下合理的矿石间柱和矿块尺寸,通过对整个矿块开挖过程的围岩稳定性进行分析,认为在间柱位置最容易发生失稳。
     (6)对多水平、多矿块开采方案的合理性进行了研究。无渗流条件下,确定单一水平同时开采矿块间距至少为一个矿块+两个间柱的宽度;两水平、多矿块同时开采的间距须大于两个矿块+三个间柱的宽度,且第二水平矿块的顶板须为充填体才可保证安全开采;因为矿体倾角仅为30°左右,第一和第三水平的矿块已不在一个断面内,三水平、多矿块的开采方案可参考两水平的方案进行设计。
     (7)对无渗流条件下确定的开采方案进行了渗流条件下的围岩稳定性验证,确定渗流条件下单一水平多矿块开采间距至少要两个矿块+三个间柱宽度,两水平多矿块开采至少间隔三个矿块+四个间柱宽度,且第二水平开挖矿块的直接顶板须为充填体。统计各开采方案采场围岩渗流场和应力场可能发生突变点的区域,为后续远程监测系统的安装提供技术支持。
     (8)基于上述研究确定了注浆顶板围岩渗流场和应力场可能发生突变点的区域,现场实施了顶板注浆围岩应力、变形及空隙水压力监测,初步监测表明,注浆顶板围岩处于安全稳定状态。
The resourse of metal mine in our country becomes exhausted day by day, it isbecoming inevitable trend to speed up prospection and exploitation of complexwater-rich mine. The influence of ground water on mining safety, new mining methodbecome important research subjects. The actual project was taken as researchbackground, comprehensive research method of theoretical analysis, indoor and field,numerical simulation and field monitoring were used to revise the unreasonable partsof national standard ‘Standard for Engineering Classification of Rock Mass’. Theresearch findings were applied to Gujiatai iron mine. Roof deformation-controlling,improving surrounding rock stress, decreasing the perturbed mechanism and rule ongrouting curtain, parameter optimization and so on of new hexagon access miningmethod with cemented filling were studied systematically. Safety factor was leadingin as evaluating index of stability. The stability of surrounding rock under seepagecondition was studied to confirm reasonable scheme about multi-level andmulti-block. Based on the deformation and stress monitors of grouting curtain, therationality and feasibility of theory analysis were forecasted and testified to furtherimprove mining technology and provide technical support for mining safety. The maincontents and results are as follows:
     (1) The various problems of national standard ‘Standard for EngineeringClassification of Rock Mass’ were studied for corresponding methods, and theresearch results had been applied in Gujiatai iron mine. Based on inconsistentproblem of qualitative judgment and quantitative index, the basic quality index ofrock mass BQ was revised. The physical meaning of initial crustal stress formula isindeterminated, initial crustal stress should be divided into gravity stress and tectonicstress. The influence of gravity stress would be reflected by different safety factors indifferent depths to revise basic quality index of rock mass BQ. The safety factorwhich has strict mechanics content was used as quantitative criteria about stabilityestimation in grading standards, which made the surrounding rock classification morescientific. The mathematical relation between basic quality index of rock mass BQ and rock mass classification index RMR were built, the reducing method aboutphysical mechanical parameters based on BQ value was obtained based on theexperience formula between RMR value and rock mechanics parameters.
     (2) Combined with suggests of ‘Standard for engineering classification of rockmass’, the surrounding rock of different sections in Gujiatai iron mine had been madea comprehensive evaluation by means of field point loading test, wave velocity test,field jointing statistics, three triaxial test. The grades and physical mechanicsparameters of surrounding rock at different sections had been determined. Thephysical mechanics parameters of filling with different ratio were also determined.
     (3) The permeate characteristics of full stress-strain process had been revealedthrough transient permeability test on samples of grouting curtain. There were threestages in whole destroying process: quiet period, the internal fracture appear.Development period, microcracks grow, extend and link up quickly. Completepermeate stage, samples have compression damage, fracture link up and fractureplane appears. The peak value of strain-permeability coefficient curve lags behind thepeak value of stress-strain curve, which means that the rock failure is the direct causeof gushing water.
     (4) The analytical method was used to solve surrounding rock stress ofhexagonal tunnel. The mapping function from exterior domain of the unit circle togeneral shape hole was used to obtain mapping function of hexagonal hole. Incondition of uniform load γ Hin vertical direction、 λγ Hin horizontal direction andground load is zero, the in situ stress field (λ value) had great influence on stressdistribution around the hole. When λ is less than0.2, tensile stress appeared in theroof and gradually disappeared with λ value increasing. The finite element softwareANSYS was used to simulate conditions of different lateral pressure coefficient, thenumerical simulation results was consist with analytical solution, which proved thatthe analytic solution could been used in design calculation of mining parameters.
     (5) Combined with variety of strain, deformation and plastic zone of surroundingrock in traditional numerical analysis, safety factor was leading-in as stability estimating index. The effects of buried depth, surrounding rock parameters, aspectratio and the cross-sectional area had been systematically studied and compared withthe result of rectangular stope room with same conditions. The superiority ofhexagonal stope was summarized in limiting roof displacement and controlling holestress transfer. The reasonable stope spacing should be more than2times of stopewidth, the reasonable size of rib pillar and block under different mineral parameterswere determined. The stability of surrounding rock in whole block excavation hadbeen analyzed. The rib pillar positions were more easy to unstable.
     (6) The rationality of scheme about multi-level and multi-block had beenresearched. Without seepage conditions, the spacing of mining blocks at the sametime was at least one block plus two rib pillars at single level. When miningmulti-blocks at two levels, the spacing was greater than two blocks plus three ribpillars and the roof of block at second level should be fillings. The dip angle oforebody was only about30degrees, blocks at first and third levels were not in onesection, the mining scheme of three levels and multi-block could refer to the schemeof multi-blocks at two levels.
     (7) The stability of surrounding rock under seepage condition had been testified,the spacing of mining blocks at the same time was at least two blocks plus two ribpillars at single level. When mining multi-blocks at two levels, the spacing wasgreater than three blocks plus four rib pillars, and the roof of block at second levelshould be fillings. The dangerous locations where seepage field and stress field maychange suddenly have been counted to provide technical support for the follow-upremote monitoring system.
     (8) Based on above researches, the mutational area of seepage field and stressfield in grouting roof were confirmed, the field monitoring of stress, deformation andpore water pressure put into effect. The initial monitoring results indicated that thegrouting roof was in stable state.
引文
[1] Tunneling and Underground Space Technology[M].1996, Vol.11:1-9.
    [2]郭金峰.我国复杂难采矿床开采的问题与对策[J].金属矿山,2005,12:10-13.
    [3]肖旭光,孙召波,李健.业庄铁矿采矿方法的现状及其问题与对策[J].矿业研究与开发,2004,24(3):19-21.
    [4]王兆远,孙波.张马屯铁矿构造突水封堵治理实践[J].采矿技术,2003,3(2):82-83.
    [5]严体.龙首矿下向进路式充填法采场结构参数研究[D].昆明理工大学硕士学位论文,2006:8-14.
    [6]孙辉.谷家台铁矿采场结构优化的三维正交有限元数值模拟[D].青岛理工大学硕士学位论文,2009:2-8.
    [7] C.G.White. A Rock Drillability Index. Quarterly of the Colorado School of Mines[M].1969.
    [8] Bond,F.C. Three Principles of Comminution[M]. Mining Congress J.Aug,1960.
    [9] Caotes,D.F. Handbook on Mechanical Properties of Rocks[M]. Publication Trans. Tech.1978.
    [10] Deere,D.U.etal. Design of Surface and Near-Surface Constructions in Rock[J]. Failure andBreakage of Rock,AIMMPE,1967.
    [11] Wichham. Handbook on Mechanical Properties of Rocks[M]. Publication Trans Tech.1978.
    [12] Bieniawski. Z.T.Estimating the Strength of Rock Materials[J]. J.S. Afr. Inst. Min. Metall.Vol.74.p.312-320.
    [13] Barton, N. etal. Recent Experiences With the Q-System of Tunnel Support Design[J],proc. Symp. On Exploration for Rock Eng. Johannesburg Vol.1, AA.Balkema p:107-117.
    [14] Hoek E.Kaiser P.K.Bawden W.F.1995. Support of Underground Excavations in Hard Rock[M]. Balkema.Rotterdam.21pp.
    [15] Palmstrom A.2000. Recent developments in rock support estimates by the RMI[J]. J.RockMech.Tunn.Tehnol.6(1):1-19.
    [16]刘大刚.公路隧道施工阶段岩体围岩亚级分级研究[D].西南交通大学博士论文,2007.
    [17]王明年.公路隧道围岩亚级物理力学参数研究[J].岩石力学与工程学报,2008,27(11):2252-2260.
    [18]王明年.公路隧道岩质和土质围岩统一亚级分级标准研究[J].岩土力学,2010,31(2):547-553.
    [19]杨臻,郑颖人.岩质隧洞围岩稳定性分析与强度参数的探讨[J].地下空间与工程学报,2009,5(2):283-293.
    [20]杨臻,郑颖人.岩质隧洞支护结构设计计算方法探索[J].岩土力学(增刊),2009,30:148-155.
    [21]宫凤强,李夕兵.地下工程围岩稳定性分类的突变级数法研究[J].中南大学学报,2008,39(5):1081-1088.
    [22]李华.基于模糊AHP的隧道围岩分级方法研究[D].中南大学硕士学位论文,2006,16-41.
    [23]苏有财,谷婷等.模糊理论在隧道施工阶段围岩等级划分中的应用[C].第三届全国岩土与工程学术大会论文集,2008:503-507.
    [24]李小虎.围岩稳定性分级的改进可拓法应用研究[D].同济大学硕士学位论文,2005:41-62.
    [25]段林娣.应用BP神经网络进行隧道围岩快速分级[J].中国安全科学学报,2010,20(2):41-46.
    [26]任洋.高地应力公路隧道施工阶段围岩分级方法研究及应用[D].成都理工大学硕士学位论文,2009:53-70.
    [27]颜小虎,叶红.公路隧道高水压围岩级别修正探索[J].交通科技,2009,2:27-29.
    [28]任洋.基于可拓理论的高地应力隧道围岩分级法及应用[J].工程地质学报,2012,20(1):66-73.
    [29]干昆蓉.某铁路隧道高地应力、高水压围岩级别修正探索[J].铁道工程学报,2008,3:64-67.
    [30] Kahraman S. Correlation of TBM and drilling machine performances with rock brittleness[J].Engineering Geology,2002,65(4):269-283.
    [31] Blindheim O T. TBM performance prediction models[J]. Tunnels and Tunneling,2004,36(2):23-27.
    [32] Barton N. TBM tunneling in jointed and faulted rock[M]. Rotterdam: A. A. Balkema,2000:39-99.
    [33] Barton N. Comments on a critique of QTBM[J]. Tunnels and Tunneling,2005,37(9):16-19.
    [34]何发亮,谷明成. TBM施工隧道围岩分级方法研究[J].岩石力学与工程学报,2002,21(9):1530-1534.
    [35]李苍松. TBM施工隧洞围岩级别划分探讨[J].工程地质学报,2010,18(5):730-736.
    [36]曾杰,靳晓光.公路隧道围岩动态分级方法研究[J].重庆建筑大学学报,2007,29(6):76-79.
    [37]李潮雄,程康.大别山隧道新奥法施工的围岩分级和监控量测研究[D].武汉理工大学硕士学位论文,2005:10-33.
    [38]张凯.岩溶隧道围岩动态分级方法研究[J].中国地质灾害与防治预报,2012,23(1):67-71.
    [39]邬爱清,柳赋铮.国标《工程岩体分级标准》的应用与进展[J].岩石力学与工程学报,2012,31(8):1513-1523.
    [40] Wu A Q, Yang Q G, Ding X L, et al. Key rock mechanical problems of undergroundpowerhouse in shuibuya hydropower station[J]. Journal of Rock Mechanics and GeotechnicalEngineering,2011,3(1):64-72.
    [41]长江水利委员会长江科学院.工程岩体分级标准(征求意见稿)[S].2012.
    [42] Zienkiewicz. The Element Method[M]. Megraw-Hill Book company(UK) Limited,1977.
    [43] R.E.Goodman etl. A Model for the Mechaines of Jointed Rock Journal of the SoilMechanics&Foundations Dvi[M]. ASCE,1968.
    [44] Tatsuo. A numerical modeling technique for analyzing the behavior of discontinuous rockmasses[J]. Proceeding of the international Symposium on weak Rock, Tokyo,21-34september,1981.
    [45] Cundall P.a. A computer for Simulating Progressive Large Scale Movements in BlockySystems[J]. Proc.Of the Symp.Of the Int.Society of rock Mech Nancy, FRANCE,1981,(2):11-13.
    [46] Kumar P. Infinite Elements for Numerical Analysis of Underground Exeavations[J].Tunneling and Underground Space Technology,1990,5(1):111-117.
    [47]曹树刚.倾斜矿层采场底板岩层控制的研究[C].第六次全国岩石力学与工程学术大会论文集,2000:738-741.
    [48]王力庆.柿竹园矿采空区冒落破坏规律研究[D].武汉理工大学硕士学位论文,2010:38-56.
    [49] H.AD.Kirsten T.R.Stacey.充填在低下沉量采场中的支护机理[R].国外金属矿山充填采矿技术的研究与应用.中国矿业协会采矿专业委员会等,1997.
    [50]罗周全,杨彪.基于CMS实测及Midas-FLAC3D耦合的复杂空区群稳定性分析[J].矿冶工程,2010,30(6):1-6.
    [51]黄醒春.复杂断层扰动下的原岩应力场的数值分析与评价[J].岩土工程学报,2000,22(3):327-332.
    [52]朱术云.采场底板岩层应力的解析法计算及应用[J].采矿与安全工程学报,2007,24(2):191-195.
    [53]罗飞.复杂地质条件下矿山地压分布规律及控制研究[D].武汉科技大学硕士学位论文,2010:13-24.
    [54]董世华,周树光.地应力场对深井巷道围岩稳定的影响[J].矿业快报,2007,8:42-45.
    [55]姚高辉.金属矿山深部开采岩爆预测及工程应用研究[D].武汉科技大学硕士学位论文,2008:24-50.
    [56]邹勇.金川二矿区深部采矿回采进路布置与回采顺序优化研究[D].中南大学硕士学位论文,2007:47-77.
    [57] Bye A R, Bell F G. Stability assessment and slope design at sand sloot open pit, SouthAfrica[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):449-466.
    [58] Rose N D, Hungr O. Forecasting potential rock slope failure in open pit mines using theinverse-velocity method. International Journal of Rock Mechanics and Mining Sciences,2007,44(2):308-320.
    [59]许宏亮,杨天鸿.司家营铁矿III采场露天转地下境界顶柱合理厚度研究[J].中国矿业,2007,16(4):74-78.
    [60]马天辉,唐春安.露天转地下开采中顶柱稳定性分析[J].东北大学学报(自然科学版),2006,27(4):450-453.
    [61]韩现民,李占金.露天转地下矿山边坡稳定性的数值模拟与敏感度分析[J].金属矿山,2007,6:8-12.
    [62]任凤玉,李楠.眼前山铁矿主采区露天转地下诱导冒落法开采方案研究[J].金属矿山,2010,2:42-45.
    [63]崔茂金.上向分层胶结充填采场顶板稳定性分析[J].有色金属,2009,61(6):51-56.
    [64]刘新强.莱新铁矿六边形采场结构的可行性分析[J].辽宁工程技术大学学报(自然科学版),2010,29(1):28-32.
    [65]姚维信.龙首矿下向六边形高进路胶结充填采矿法的应用与发展[J].有色金属:矿山部分,2001:5-9.
    [66]张晓峰.石膏矿采空区处理方法研究[D].武汉理工大学硕士学位论文,2007:15-63.
    [67]彭康,李夕兵.基于响应面法的海下框架式采场结构优化选择[J].中南大学学报(自然科学版),2011,42(8):2417-2422.
    [68]切尔内绍夫.水在裂隙网络中的流动[M].北京:地质出版社,1987.
    [69] Barenblat G I. Basic concepts in the theory of seepage of homogeneous liquids in fissuredrock[J]. Journal of Applied Mathematical Mechanics.1960,24(5):1286-1303.
    [70]武强,朱斌.断裂带煤矿井巷滞后突水机理数值模拟[J].中国矿业大学学报,2008,37(6):780-787.
    [71]孙明贵,李天珍.基于层状岩体渗流失稳条件的煤矿突水机理[J].中国矿业大学学报,2005,34(3):284-291.
    [72]谢兴华,速宝玉.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-995.
    [73]孙玉杰.裂隙岩体渗流应力耦合机制研究及突水数值模拟[D].长江科学院硕士学位论文,2009:56-94.
    [74]王明斌.有压隧洞结构稳定性力学模型研究[D].山东大学博士学位论文,2009:88-120.
    [75]蔡美峰,何满潮.岩石力学与工程[M].北京:科学出版社,2002.
    [76] Wang Shui-lin, Wu Zhen-jun, Guo Ming-wei, Ge Xiu-rui. Theoretical solutions of a circulartunnel with the influence of axial in situ stress in elastic-brittle-plastic rock[J]. Tunnelling andUnderground Space Technology,2012,30:155-168.
    [77] Li Shu-cai, Wang Ming-bin. Elastic analysis of stress-displacement field for a lined circulartunnel at great depth due to ground loads and internal pressure[J]. Tunnelling andUnderground Space Technology,2008,23(6):609-617.
    [78] Gao G Y, Chen Q S, Zhang Q S, Chen G Q. Analysis elasto-plastic solution for stress andplastic zone of surrounding rock in cold region tunnels[J]. Cold Regions Science andTechnology,2012,72:50-57.
    [79] Kirsch G.Die Theorie der Elatizitat und die Bedurfnisse der Festigkeislehre[J]. ZeitchriftVerein Deutsch Ing1898,42:797-807.
    [80] Yu YY, Mo SL. Gravitational stress on deep tunnels[J]. Journal of Applied Mechanics1952,19:537-542.
    [81] Poulos HG, Davis EH. Elastic solutions for soil and rock mechanics[M]. John Wiley&Sons,Inc, New York,1974.
    [82] Pender MJ. Elastic solutions for a deep circular tunnel[J]. Geotechnique1980,30:216-222.
    [83] Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique1987,37:301-320.
    [84] Gercek H. An elastic solution for stresses around tunnels with conventional shapes[J].International Journal Rock Mechanics Mining Sciences1997,34(3-4):096.
    [85] Exadaktylos GE, Stavropoulou MC. A closed-form elastic solution for stresses anddisplacement around tunnels[J]. International Journal of Rock Mechanics&Mining Sciences2002,39:905-916.
    [86] Exadaktylos GE, Liolios PA, Stavropolou MC. A semi-analytical elastic stress-displacementsolution for notched circular openings in rocks[J]. International Journal of Solids andStructures2003,40:1165-1187.
    [87] Huo H,Bobet A, Fernandez G,et al. Analytical solution for deep rectangular structuressubjected to far-field shear stresses[J]. Tunnelling and Underground space Technology2006,21:613-625.
    [88]高永涛,吴庆良,吕爱钟.一类非均布荷载作用下双层厚壁圆筒光滑接触时的应力解析解[J].工程力学,2013,30(10):93-99.
    [89]祝江鹏.隧洞围岩应力复变函数分析法中的解析函数求解[J].应用数学和力学,2013,34(4):345-354.
    [90]曾开华,黎剑华等.考虑衬砌屈服的深埋水工隧洞应力解析解[J].中南大学学报(自然科学版),2012,43(3):1131-1137.
    [91] Corner B. Seismic research associated with deep level mining:rock burst prediction andvibration damage to building in South Africa[J]. Geophysics,1985(50):2914-2915.
    [92] Alcott J M, Kaiser P K, Simser B P. Use of microseismic source parameters for rockbursthazard assessment[J]. Pure and Applied Geophysics,1998(153):41-65.
    [93] Senfaute G, Chambon C, Bigarre P, et al. Spatial distribution of mining tremors and therelationship to rockburst hazard. Pure and Applied Geophysics[J].1997,150:451-459.
    [94]何春林,崔栋梁.多通道声发射监测系统在井下采空区稳定性监测中的应用[J].有色金属,2008,60(1):34-37.
    [95]杨承祥,罗周全.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007,26(4):818-824.
    [96]李庶林,尹贤刚.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
    [97]伍佑伦,路军.远程地压监控技术在地下矿山中的应用研究[J].岩石力学与工程学报,2007,26(增1):2815-2819.
    [98]王少林.铜坑矿复杂充填体下采场地压监测分析[J].采矿技术,2010,10(5):34-36.
    [99]马玉涛,解联库.某铝土矿液压支柱支护采场的远程自动化地压监测[J].现代矿业,2011,10:103-105.
    [100]杨素俊,赵兴东.沂南金矿地压规律监测技术研究[J].采矿技术,2011,11(1):23-25.
    [101]孙辉,郑颖人.埋深在围岩分级修正中的应用探讨[J].地下空间与工程学报,2012,8(1):94-98.
    [102]中华人民共和国水利部. GB50218-94工程岩体分级国家标准[S].1994.
    [103]赵尚毅.有限元强度折减法及其在土坡与岩坡中的应用[D].后勤工程学院硕士学位论文,2005:23-43.
    [104]陈育民. FLAC&FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009:260-270.
    [105]唐红宁. RMR围岩分级方法在隧道施工现场的应用[J].隧道建设,2008,28(6):665-667.
    [106]曾伟雄,林国赞.岩石单轴饱和抗压强度的点荷载试验方法设计与探讨[J].岩石力学与工程学报,2003,22(4):566-568.
    [107]罗周全,杨月平,程爱宝.深部岩体裂隙声波探测技术应用研究[J].有色金属(矿山部分),2005,57(3):29-32.
    [108]孙辉,王在泉.灰岩注浆帷幕体渗透特性的试验研究[J].地下空间与工程学报,2009,5(5):956-959.
    [109]卜万奎.采场底板断层活化及突水力学机理研究[D].中国矿业大学博士论文,2009:21-42.
    [110]杜春志.煤层水压致裂理论及应用研究[D].中国矿业大学博士论文,2008:30-39.
    [111]朱杰兵.高应力下岩石卸荷及其流变特性研究[D].中国科学院博士论文,2009:32-36.
    [112]匡顺勇.地下铁矿床灰岩顶板突水机理及注浆堵水效果试验与模拟研究[D].青岛理工大学硕士论文,2010:26-30.
    [113]于学馥.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983:99-119.
    [114] M. A.拉甫伦捷夫,B. A.沙巴特.复变函数方法[M].北京:人民教育出版社,1962.
    [115]王桂芳.无衬砌隧道围岩应力的计算[J].土木工程学报,1965,2.
    [116]王式安.数理统计[M].北京:北京理工大学出版社,1995:147-178.
    [117]王在泉,卢则阳,张黎明.深厚表土层井壁竖向附加力反演及稳定预测[J].山东大学学报(工学版),2009,39(4):97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700