用户名: 密码: 验证码:
高热/粒子流作用下钨材料的损伤行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨材料作为聚变堆装置中面对等离子体材料(PFMs)的重要候选材料,其在高热/粒子流作用下的损伤行为,不仅关系到材料的使用寿命,还会影响等离子的稳定性及装置的安全性,因此研究钨材料在高热/粒子流作用下的损伤行为,具有重要的科学价值及工程意义。本文利用高热负荷设备GLADIS及高能电子束设备JUDITH1,模拟聚变堆中典型的高热负荷及粒子辐照条件,对钨材料的损伤行为规律及机理进行了研究。
     通过对钨在垂直位移模式(VDE)高热负荷作用下的再结晶及晶粒长大行为的研究表明,高热负荷作用下钨的再结晶温度显著升高、再结晶过程明显加快、再结晶晶粒尺寸明显细化。随着最高表面温度升高,钨的再结晶晶粒尺寸增大,抗拉强度降低,抗热冲击性能下降,在边界局域模(ELM)循环热冲击作用下易发生表面开裂损伤。去除表面应力或提高基底温度至韧脆转变温度以上,可以有效改善再结晶钨的抗热冲击性能,避免/缓解表面开裂损伤。当基底温度较高时,粗大的再结晶晶粒在ELM循环热冲击作用下发生塑性变形的同时还伴有动态再结晶,最终形成粗糙的表面形态及细小的动态再结晶组织,使得表面硬度有所升高,性能得到了一定的恢复。
     通过对钨在VDE高热负荷作用下熔化刻蚀行为的研究表明,熔体运动及再分布造成了材料的严重损伤,熔体中气泡的沸腾引起了熔滴的溅射,并导致熔体冷却后形成了疏松多孔的凝固组织。通过对氧化镧掺杂钨(W-1wt%La_2O_3)熔化行为的研究表明,La_2O_3的加入改变了熔体的运动规律,抑制了熔体中的气泡沸腾。通过检测蒸气的化学成分,分析凝固组织的显微结构特征,揭示了钨熔体中气泡沸腾的机理,并深入分析了第二相La_2O_3对气泡沸腾的抑制机理。针对钨的熔化再凝固组织,对其在高热流He粒子辐照过程中的表面损伤行为进行了研究,实验结果表明,随着最高表面温度及粒子注量的增大,表面损伤深度不断增加,但小于未熔化表面的损伤深度;表面损伤形态由气泡状结构不断演变为孔洞或绒毛状结构,且损伤形态与晶粒的晶体取向有着密切的关系。
Tungsten (W) materials are considered as most promising candidates forplasma-facing materials (PFMs) in future nuclear fusion devices. The damage behaviorsof tungsten materials under high heat/particle fluxes are of serious concerns not only tothe lifetime of PFMs, but also to the plasma operations and device safety. Therefore, thestudy of damage and erosion of tungsten materials under high heat/particle loads hasimportant scientific value and engineering significance. In this research, high heat flux(HHF) facility GLADIS and electron beam facility JUDITH1are used to investigatethe damage behaviors and underlying mechanisms of tungsten materials under fusionrelevant high heat flux and irradiation conditions.
     The recrystallization and grain growth behavior of rolled W under verticaldisplacement events (VDEs) heat loads has been studied. We observe that HHF cansignificantly increase the recrystallization temperature, reduce the time required forrecrystallization and refine the recrystallized grains. With increasing peak temperatures,the recrystallized grains grow bigger and the corresponding tensile strengths decrease.Furthermore, cyclic edge localized modes (ELMs) thermal shock tests have beenperformed on the recrystallized W. It turns out that the recrystallized W has bad thermalshock resistance. Electro-polishing and elevated base temperature (above theductile-brittle transition temperature) are found to be effective in promoting the thermalshock resistance and hence suppressing/retarding the surface cracking. Besides, theplastic deformation of recrystallized grains occurs under the cyclic thermal shocks.When the base temperature is elevated, the dynamic recrystallization (DRX) is observed,resulting in rough surface and refined DRX grains which lead to increased surfaceroughness and hardness.
     In addition, the melting behavior of W under VDE-like heat loads has beeninvestigated. Melt layer motion and redistribution results in severe erosion of thematerials. Bubble boiling in the melt layer induces melt layer ejection and result inporous re-solidified structure. For comparison, the melting tests of W-1wt%La_2O_3havebeen also carried out. The addition of La_2O_3particles notably affects the melt layermotion and suppress the bubble boiling. Detailed characteristics of melt layer structure are analyzed. Evaporation/boiling sources are indirectly studied with aid of vapordeposition/collection. Based on the experimental results, the possible underlyingmechanisms of bubble formation in W and bubble suppression in W-1wt%La_2O_3arediscussed and basic melting and boiling process under high heat loads of the twotungsten grades are tentatively drawn. Thereafter, the molten and re-solidified W isexposed to high heat flux helium neutral beams. With increasing peak temperature andhelium fluence, the damage depth of the molten surface increases, but is still lower thanthe non-molten surface. Blisters are observed on the molten surface, and evolve intoporous or coral-like structure with worsening irradiation conditions. The surfacemorphologies exhibit strong dependence on the re-solidified grain orientations.
引文
[1] Ongena J, Oost G V. Energy for future centuries-Prospects for fusion power as afuture energy source. Fusion Sci Technol,2008,53:3-15.
    [2]邱励俭,聚变能及应用.北京:科学出版社,2008.
    [3] Glasstone S, Loveberg R H. Controlled thermonuclear reactions: an introduction totheory and experiment. Huntington, New York: Krieger R E,1975.
    [4] Niu K. Nuclear fusion. Cambridge: Cambridge university press,1989.
    [5] Gross R A. Fusion energy. New York: John Wiley&sons,1984.
    [6]丁厚昌,黄锦华,盛光昭,等.聚变能:21世纪的新能源.北京:原子能出版社,1998.
    [7] Chen F F. Introduction to plasma physics and controlled fusion. New York: PlenumPress,1984.
    [8]潘传红.磁约束核聚变能源开发的进展和展望.核科学工程,2000,20:244-247.
    [9] EAST大科学工程, http://east.ipp.ac.cn.
    [10] Jacquinot J, Keilhacker M, Rebut P H. Mission and highlights of the JET JointUndertaking:1978-1999. Fusion Sci Technol.2008,53:866-890.
    [11] Luxon J L, Simonen T C, Stambaugh R D, et al. Overview of the DⅢ-D fusionscience program. Fusion Sci Technol.2005,48:807-827.
    [12] ITER physics basics editors, et al. Chapter1: Overview and summary, Nucl Fusion,1999,39:2137-2174.
    [13] ITER Organization (2009), http://www.iter.org.
    [14] Aymar R. ITER R&D: Executive summary: Design overview. Fusion Eng Des,2001,55:107-11
    [15] Holtkamp N. The status of the ITER design. Fusion Eng Des.2009,84:98-105.
    [16] Barabash V, Federici G, Matera R, et al. Armour materials for the ITER plasma facingcomponents. Phys Scr,1999, T81:74-83.
    [17] Linke J, Lorenzetto P, Majerus P, et al. Eu development of high heat flux compnonets.Fusion Sci Technol,2005,47:678-685.
    [18] Pamela J, Matthews G, V. Philipps, et al. An ITER-like wall for JET. J Nucl Mater,2007,363-365:1-11.
    [19] Hill D. A review of ELMs in divertor tokamaks. J Nucl Mater,1997,241-243:182-198.
    [20] Gruber O, Lackner K, Pautasso G, et al. Vertical displacement events and Halocurrents. Plasma Phys Controls.1993,35: B191-B204.
    [21] Hassanein A, Sizyuk T, Ulrickson M. Vertical displacement events: A serious concernin future ITER operation. Fusion Eng Des,2008,83:1020-1024.
    [22] Merola M, Vieider G, Bet M, et al. European achievements for ITER high heat fluxcomponents. Fusion Eng Des,2001,56-57:173-178.
    [23] Matera R, Federici B. Design requirements for plasma-facing materials in ITER, JNucl Mater,1996,237:17-25.
    [24] Singheiser L, Hirai T, Linke J, et al. Plasma-facing materials for thermo-nuclearfusion devices. Trans IIM,2009,62:123-128.
    [25] Bolt H, Barabash V, Federici G, et al. Plasma facing and high heat flux materials-needs for ITER and beyond. J Nucl Mater,2002,307-311:43-52.
    [26] Linke J, Akiba M, Bolt H, et al. Performance of beryllium, carbon, and tungsten underintense thermal fluxes. J Nucl Mater,1997,241-243:1210-1216.
    [27] Barabash V, Akiba M, Bonal J P, et al. Carbon fiber composites application in ITERplasma facing components. J Nucl Mater,1998,258-263:149-159.
    [28] Scaffidi-Argentina F, Longhurst G R, Shestakov V, et al. Beryllium R&D for fusionapplications. Fusion Eng Des,2000,51-52:23-41.
    [29] Philipps V. Tungsten as material for plasma-facing components in fusion devices. JNucl Mater,2011,415: S2-S9.
    [30] Barabash V, Akiba M, Mazul I, et al. Selection, development and characterisation ofplasma facing materials for ITER. J Nucl Mater,1996,233-237:718-723.
    [31] L sser R, Baluc N, Boutard J L, et al. Structural materials for DEMO: The EUdevelopment, strategy, testing and modeling. Fusion Eng Des,2007,82:511-520.
    [32] Andreani R, Diegele E, Laesser R, et al. The European integrated materials andtechnology program in fusion. J Nucl Mater,2004,329-333:20-30.
    [33] Maisonnier D, Cook I, Pierre S, et al. The European power plant conceptual study.Fusion Eng Des,2005,75-79:1173-1179.
    [34] Maisonnier D, Cook I, Pierre S, et al. DEMO and fusion power plant conceptualstudies in Europe. Fusion Eng Des,2006,81:1123-1130.
    [35] Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactionsissues for ITER. J Nucl Mater,2009,390-391:1-9.
    [36] Kallenbach A, Neu R, Dux R, et al. Tokamak operation with high-Z plasma facingcomponents. Plasma Phys Control Fusion,2005,47: B207-B222.
    [37] Noda N, Philipps V, Neu R, et al. A review of recent experiments on W and high Zmaterials as plasma-facing components in magnetic fusion devices. J Nucl Mater,1997,241-243:227-243.
    [38] Neu R, ASDEX Upgrade Team, EU PWI Taskforce, et al. Preparing the scientificbasis for an all metal ITER. Plasma Phys Control Fusion,2011,53:124040.
    [39]郝嘉琨.聚变堆材料.北京:化学工业出版社,2006.
    [40] Klopp W D, Raffo P L. Effects of purity and structure on recrystallization, graingrowth, ductility, tensile and creep properties of arc-melted tungsten. NASA TechNote,1964, D-2503.
    [41] Farrell K, Schaffhauser A C, Stiegler J O, et al. Recrystallization, grain growth andthe ductile-brittle transition in tungsten sheet. J Less-Common Met,1967,13:141-155.
    [42] Joshi A and STEIN D F. Intergranular brittleness studies in tungsten using Augerspectroscopy. Metallurgical Transactions,1970.
    [43] Babak A V. effect of recrystallization on the fracture toughness of tungsten. PowderMetall Met Ceram,1983,22:316-318
    [44] Seigle L L, Dickenson C D. Refractory metals and alloys II. New York: Interscience,1963.
    [45] Uytdenhouwen I, Decreton M, Hirai T, et al. Influence of recrystallization on thermalshock resistance of various tungsten grades. J Nucl Mater,2007:1099-1103
    [46] Linke J, Loewenhoff T, Massaut V, et al. Performance of different tungsten gradesunder transient thermal loads. Nucl Fusion,2011,51:073017.
    [47] Liu X, Tamura S, Tokunaga K, et al. High heat flux properties of pure tungsten andplasma sprayed tungsten coatings. J Nucl Mater,2004,329-333:687-691
    [48] Pintsuk G, Uytdenhouwen I. Thermo-mechanical and thermal shock characterizationof potassium doped tungsten. Int J Refract Met Hard Mater,2010,28:661-668.
    [49] Hirai T, Pintsuk G, Linke J. Cracking failure study of ITER-reference tungsten gradeunder single pulse thermal shock loads at elevated temperatures. J Nucl Mater,2009,390-391:751-754.
    [50] Makhlay V A, Bandura A N, Byrka O V, et al. Effect of preheating on the damage totungsten targets after repetitive ITER ELM-like heat loads. Phys Scr,2007, T128:239-241.
    [51] Garkusha I E, Bandura A N, Byrka O N. Damage to preheated tungsten targets aftermultiple plasma impacts simulating ITER ELMs. J Nucl Mater,2009,386-388:127-131.
    [52] Federici G, Loarte A, Strohmayer G. Assessment of erosion of the ITER divertortargets during type I ELMs. Plasma Phys Control Fusion,2003,45:1523-1547.
    [53] Linke J, Escourbiac F, Mazul I V. High heat flux testing of plasma facing materialsand components-Status and perspectives for ITER related activities. J Nucl Mater,2007,367-370:1422-1431.
    [54] Federici G, Skinner C H, Brooks J N, et al. Plasma-material interactions in currenttokamaks and their implications for next step fusion reactors. Nucl Fusion,2001,41:1967-2137.
    [55] Pintsuk G, Kuhnlein W, Linke J, et al. Investigation of tungsten and berylliumbehavior under short transient events. Fusion Eng Des,2007,82:1720-1729.
    [56] Smid I, Akiba G, Vieider M, et al. Development of tungsten armor and bonding tocopper for plasma-interactive components. J Nucl Mater,1998,258-263:160-172.
    [57] Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme ontungsten materials technology and science. J Nucl Mater,2011,417:463-467.
    [58] Hirai T, Ezato K, Majerus P, et al. ITER relevant high heat flux testing on plasmafacing surfaces. Mater Trans,2005,46:412-424.
    [59] Hassanein A, Konkashbaev I. Theory and models of material erosion and lifetimeduring plasma instabilities in a tokamak environment. Fusion Eng Des,2000,51-52:681-694.
    [60] Hassanein A. Stability and erosion of melt layers formed during plasma disruption.Fusion Technol,1989,15:513-521.
    [61] Sergienko G, Bazylev B, Huber A, et al. Erosion of a tungsten limiter under high heatflux in TEXTOR. J Nucl Mater,2007,363-365:96-100.
    [62] Garkusha I E, Makhlaj V A, Chebotarev V V, et al. Experimental study of plasmaenergy transfer and material erosion under ELM-like heat loads. J Nucl Mater,2009,390-391:814-817.
    [63] Bazylev B, Janeschitz G, Landman I, et al. Experimental and theoretical investigationof droplet emission from tungsten melt layer. Fusion Eng Des,2009,84:441-445.
    [64] Bazylev B, Wuerz H. Melt layer erosion of metallic armour targets during off-normalevents in tokamaks. J Nucl Mater,2002,307-311:69-73.
    [65] Tereshin V I., Garkusha I E, Bandura A N, et al. Influence of plasma pressure gradienton melt layer macroscopic erosion of metal targets in disruption simulationexperiments. J Nucl Mater,2003,313-316:685-689.
    [66] Garkusha I E, Bandura A N, Byrka O V, et al. Tungsten erosion under plasma heatloads typical for ITER type I ELMs and disruptions. J Nucl Mater,2005,337-339:707-711.
    [67] Klimov N, Podkovyrov V, Zhitlukhin A, et al. Experimental study of PFCs erosionunder ITER-like transient loads at plasma gun facility QSPA. J Nucl Mater,2009,390-391:721-726.
    [68] Coenen J W, Bazylev B, Brezinsek S, et al. Tungsten melt layer motion and splashingon castellated tungsten surfaces at the tokamak TEXTOR. J Nucl Mater,2011,415:S78-S82.
    [69] Sergienko G, Bazylev B, Hirai T, et al. Experience with bulk tungsten test-limitersunder high heat loads: melting and melt layer propagation. Phys Scr,2007:T128:81-86.
    [70] Richardson O W. The Emission of Electricity from Hot Bodies. London: Longmans,Green and Company,1916.
    [71] Litunovsky V N, Kuznetsov V E, Lyublin B V, et al. Material response due tosimulated plasma disruption loads. Fusion Eng Des,2000,49-50:249-53.
    [72] Federici G, Zhitlukhin A, Arkhipov N, et al. Effects of ELMs and disruptions on ITERdivertor armour materials. J Nucl Mater,2005,337-339:684-690.
    [73] Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armourmaterials. J Nucl Mater,2007,363-365:301-307.
    [74] Coenen J W, Philipps V, Brezinsenk, et al. Analysis of tungsten melt-layer motion andsplashing under tokamak conditions at TEXTOR. Nucl Fusion,2011,51:083008.
    [75] Krieger K, Lunt T, Dux R, et al. Controlled tungsten melting and droplet ejectionstudies in ASDEX Upgrade. Phys Scr,2011, T145:014067.
    [76] Tokar M Z, Coenen J W, Philipps V, et al. Tokamak plasma response to dropletspraying from melted plasma-facing components. Nucl Fusion,2012,51:013013.
    [77] Hoshino K, Toma M, Shimizu K, et al. Inward pinch of high-Z impurity in a rotatingtokamak plasma: effects of atomic processes, radial electric field and Coulombcollisions. Nucl Fusion,2011,51:083027.
    [78] Hassanein A, Belan V, Konkashbaev I, et al. Modeling and simulation of melt-layererosion during a plasma disruption. J Nucl Mater,1997,241-243:288-293.
    [79] Hassanein A, Konkashbaev A, Konkashbaev I. Erosion of melt layers developedduring a plasma disruption. Presented at the18th European Symposium on FusionTechnology, Karlsruhe, Germany, Aug22-26,1994.
    [80] Shi Y, Miloshevsky G, Hassanein A. Boiling induced macroscopic erosion of plasmafacing components in fusion devices. Fusion Eng Des,2011,86:155-162.
    [81] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. London: OxfordUniversity Press,1961.
    [82] Miloshevsky G V, Hassanein A. Modelling of Kelvin-Helmholtz instability andsplashing of melt layers from plasma-facing components in tokamaks under plasmaimpact. Nucl Fusion,2010,50:115005.
    [83] Miloshevsky G V, Hassanein A. Modeling of macroscopic melt layer splashing duringplasma instabilities. J Nucl Mater,2011,415: S74-S77.
    [84] Newitt D M, Dombrowski N, Knelman F H. Liquid Entrainment1: The mechanism ofdrop formation from gas or vapor bubbles. Trans. Inst Chem Eng,1954,32:244-261.
    [85] Nakamura K, Suzuki S, Tanabe T, et al. Disruption erosions of various kinds oftungsten. Fusion Eng Des,1998,39-40:295-301.
    [86] Link J, Akiba M, Duwe R, et al. Material degradation and particle formation undertransient thermal loads. J Nucl Mater,2001,290-293:1102-1106.
    [87] Garkusha I E, Makhlaj V A, Chebotarev V V, et al. Experimental study of plasmaenergy transfer and material erosion under ELM-like heat loads. J Nucl Mater,2009,390-391:814-817.
    [88] Coenen J W, Philipps V, Brezinsek S, et al. Melt-layer ejection and material changesof three different tungsten materials under high heat-flux conditions in the tokamakedge plasma of TEXTOR Nucl Fusion,2011,51:113020.
    [89] Makhankov, A. Barabash V, Mazul I, et al. Performance of the different tungstengrades under fusion relevant power loads. J Nucl Mater,2001,290-293:1117-1122.
    [90] Taniguchi M, Nakamura K, Sato K, et al. Disruption erosion tests on La2O3containing tungsten material. Fusion Technol,2001,39:890-893.
    [91] Linke J, Hirai T, Rodig M, et al. Performance of plasma-facing materials underintense thermal loads in tokamaks and stellarators. Fusin Sci Tech,2004,46:142-151.
    [92] Ghezzi F, Zani M, Magni S, et al. Surface and bulk modification of W-La2O3armormock-up. J Nucl Mater,2009,393:522-526.
    [93] Hassanein A, Konkashbaev I. Erosion of plasma-facing materials during a tokamakdisruption. Suppl J Nucl Fusion,1994,5:193-224.
    [94] Sestero A. Protection of walls from hard disruptions in large Tokamaks. Nucl fusion,1977,17:115-123.
    [95] Hassanein A. Response of plasma facing components to various transient events intokamak devices: Serious concerns for ITER. Presented at the1st InternationalSymposium on Edge Plasma and Surface Component Interactions in Steady StateMagnetic Fusion Devices, Gifu, Japan, May20-22,2007
    [96] Litunovsky V N, Kuznetsov V E, Lyublin B V, et al. Study of shielding layer plasmaparameters in experiments on intensive plasma stream-material interaction. FusionEng Des,1997,34-35:359-363.
    [97] Safronov V, Arkhipov N, Bakhtin V, et al. Material erosion and erosion productsunder plasma heat loads typical for ITER hard disruptions. J Nucl Mater,2001,290-293:1052-1058.
    [98] Belan V G, Levashov V F, Maynashev V S, et al. Features of dynamics and structureof the shielding layer at the interaction of plasma flow with target. J Nucl Mater,1996,233-237:763-766.
    [99] Hassanein A, Konkashbaev I. Lifetime evaluation of plasma-facing materials during atokamak disruption. J Nucl Mater,1996,233-237:713-717.
    [100] Arkhipov N I, Bakhtin V P, Kurkin S M, et al. Study of structure and dynamics ofshielding layer for inclined incidence of plasma stream at MK-200facility. J NuclMater,1996,233-237:767-770.
    [101] Roth J, Tsitrone E, Loarer T, et al. Tritium inventory in ITER plasma-facing materialsand tritium removal procedures. Plasna Phys Control Fus,2008,50:103001.
    [102]万发荣.金属材料的辐射损伤.北京:科学出版社,1993.
    [103] M slang A, Diegele E, Klimiankou M, et al. Towards a reduced activation structuralmaterials database for fusion DEMO reactors. Nucl Fusion,2005,45:649-655.
    [104] Esteban G A, Perujo A, Sedano L A, et al. Hydrogen isotope diffusive transportparameters in pure polycrystalline tungsten. J Nucl Mater,2001,295:49-56.
    [105] Causey R A. Hydrogen isotope retention and recycling in fusion reactor plasmafacingcomponents. J Nucl Mater,2002,300:91-117.
    [106] Ogorodnikova O V, Roth J, Mayer M. Deuterium retention in tungsten in dependenceof surface conditions, J Nucl Mater,2003,313-316:469-477.
    [107] Causey R A, Doerner R, Fraser H, et al. Defects in tungsten responsible for molecularhydrogen isotope retention after exposure to low energy plasmas, J Nucl Mater,2009,390-391:717-720.
    [108] Ogorodnikova O V, Roth J, Mayer M. Ion-driven deuterium retention in tungsten. JAppl Phys,2008,103:034902.
    [109] Alimov V K, Shu W M, Roth J, et al. Surface morphology and deuterium retention intungsten exposed to low-energy, high flux pure and helium-seeded deuterium plasmas.Phys Scr,2009, T138:014048.
    [110] Poon M, Haasz A A, Davis J W, et al. Impurity effects and temperature dependence ofD retention in single crystal tungsten, J Nucl Mater,2003,313-316:199-203.
    [111] Condon J B, Schober T. Hydrogen bubbles in metals. J Nucl Mater,1993,207:1-24.
    [112] Tokunaga K, Baldwin M J, Doerner R P, et al. Blister formation and deuteriumretention on tungsten exposed to low energy and high flux deuterium plasma. J NuclMater,2005,337-339:887-891.
    [113] Lindig S, Balden M, Alimov V Kh, et al. Subsurface morphology changes due todeuterium bombardment of tungsten. Phys Scr,2009, T138:014040.
    [114] Tokunaga K, Doerner R P, Seraydarian R, et al. Schedler, Modification of tungstencoated carbon by low energy and high flux deuterium irradiation. J Nucl Mater,2002,307-311:126-129.
    [115] Shu W M, Luo G N, Yamanishi T. Mechanism of retention and blistering innear-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV.J Nucl Mater,2007,367-370:1463-1467.
    [116] Shu W M, Wakai E, Yamanishi T. Blister bursting and deuterium bursting releasefrom tungsten exposed to high fluence of high flux and low energy deuterium plasma.Nucl Fusion,2007,47:201-209.
    [117] Luo G N, Shu W M, Nishi M. Incident energy dependence of blistering at tungstenirradiated by low energy high flux deuterium plasma beams. J Nucl Mater,2005,347:111-117.
    [118] Shimada T, Kikuchi H, Ueda Y, et al. Blister formation in tungsten by hydrogen andcarbon mixed ion beam irradiation. J Nucl Mater,2003,313-316:204-208.
    [119] Wang W, Roth J, Lindig S, et al. Blister formation of tungsten due to ionbombardment. J Nucl Mater,2001,299:124-131.
    [120] Raunier S, Balat-Pichelin M, Sans J. Tungsten behavior under proton flux and hightemperature. Nucl Instr Meth B,2009,267:1841-1848
    [121] Lasser R. Tritium and Helium-3in Metals. Berlin Heidelberg: Spring-Verlag,1989.
    [122] Picraux S T. Defect trapping of gas atoms in metals. Nucl Instr Meth,1981,182-183:413-437.
    [123] Caspers L M, Fastenau R H J, Veen A. Mutation of vacancies to divacancies byhelium trapping in molybdenum effect on the onset of percolation. Phys Stat Sol (a),1978,46:541-546.
    [124] Ye M Y, Takamura S, Ohno N. Study of hot tungsten emissive plate in high heat fluxplasma on NAGDIS-I. J Nucl Mater,1997,241-243:1243-1247.
    [125]王佩璇,宋家树.材料中的氦及氚渗透.北京:国防工业出版社,2002.
    [126] Henriksson K O E, Nordlund K, Krasheninnikov A. The depths of hydrogen andhelium bubbles in tungsten: a comparison. Fusion Sci Technol,2006,50:43-57
    [127] Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure bythe exposure to helium plasma under fusion relevant plasma conditions. Nucl Fusion,2009,49:095005.
    [128] Cipiti B B, Kulcinski G L. Helium and deuterium implantation in tungsten at elevatedtemperatures. J Nucl Mater,2005,347:298-306.
    [129] Tokunaga K, Tamura S, Yoshida N, et al. Synergistic effects of high heat loading andhelium irradiation of tungsten. J Nucl Mater,2004,329-333:757-760.
    [130] Evans J H. An interbubble fracture mechanism of blister formation onhelium-irradiation metals. J Nucl Mater,1977,68:129-140.
    [131] Greuner H, Maier H, Balden M, et al. Investigation of W components exposed to highthermal and high H/He fluxes. J Nucl Mater,2011,417:495-498.
    [132] Sun J J, Taylor E J, Srinivasan R, MREF-ECM process for hard passive materialssurface finishing. J Mater Process Tech,2001,108:356-368.
    [133] Kajita S, Nishijima D, Ohno N, et al. Reduction of laser power threshold for meltingtungsten due to subsurface helium holes. J Appl Phys,2006,100:103304.
    [134] Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten underfusion relevant plasma conditions. Nucl Fusion,2008,48:035001.
    [135] Sakaguchi W, Kajita B S, Ohno N. In situ reflectivity of tungsten mirrors underhelium plasma exposure. J Nucl Mater,2009,390-391:1149-1152
    [136] Kajita S, Ohno N, Sakaguchi W. Visualized Blow-off from Helium IrradiatedTungsten in Response to ELM-like Heat Load. Plasma Fusion Res,2009,4:004.
    [137] Sakaguchi W, Kajita S, Ohno N. Formation Condition of Fiberform NanostructuredTungsten by Helium Plasma Exposure. Plasma Fusion Res,2010,5: S1023.
    [138] Baldwin M J, Doerner R P, Nishijima D. The effects of high fluence mixed-species(deuterium, helium, beryllium) plasma interactions with tungsten. J Nucl Mater,390-391:886-890.
    [139] Nishijima D, Ye M Y, Ohno N, et al. Incident ion energy dependence of bubbleformation on tungsten surface with low energy and high flux helium plasmairradiation. J Nucl Mater,2003,313-316:97-101
    [140] Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes ontungsten surface with low-energy and high-flux helium plasma irradiation inNAGDIS-II. J Nucl Mater,2004,329-333:1029-1033.
    [141] Kajita S, Takamura S, Ohno N, et al. Sub-ms laser pulse irradiation on tungsten targetdamaged by exposure to helium plasma. Nucl Fusion,2007,47:1358-1366.
    [142] Nishijima D, Iwakiri H, Amano K, et al. Suppression of blister formation anddeuterium retention on tungsten surface due to mechanical polishing and heliumpre-exposure. Nucl Fusion,2005,45:669.
    [143] Linke J, Brinkmann J, Du J, et al. Perspectives on Tungsten as a Divertor Material.Presented at the ANS20th Topical Meeting on the Technology of Fusion Energy,Nashville, USA, August27-31,2012.
    [144] Temmerman G De, Zielinski J J, Diepen S, et al. ELM simulation experiments onPilot-PSI using simultaneous high flux plasma and transient heat/particle source. NuclFusion,2011,51:073008.
    [145] Morgan T W, Zielinski J J, Hensen B J, et al. Reduced damage threshold for tungstenusing combined steady state and transient sources. J Nucl Mater,2013, in press.http://dx.doi.org/10.1016/j.jnucmat.2013.01.168.
    [146] Tokunaga K, Fujiwara T, Ezato K, et al. Effects of helium implantation on damageduring pulsed high heat loading of tungsten. J Nucl Mater,2007,367-370:812-816.
    [147] Temmerman G De, Bystrov K, Doerner R P, et al. Helium effects on tungsten underfusion-relevant plasma loading conditions. J Nucl Mater,2013, in press.http://dx.doi.org/10.1016/j.jnucmat.2013.01.012
    [148] M.J. Baldwin, R.P. Doerner. Formation of helium induced nanostructure ‘fuzz’ onvarious tungsten grades. J Nucl Mater,2010,404:165-173.
    [149] Greuner H, Bolt H, Boeswirth B, et al. Design, performance and construction of a2MW ion beam test facility for plasma facing components. Fusion Eng Des,2005,75-79:345-350.
    [150] Greuner H, Boeswirth B, Boscary J, et al. High heat flux facility GLADIS:Operational characteristics and results of W7-X pre-series target tests. J Nucl Mater,2007,367-370:1444-1448.
    [151] Manhard A, Fantz U, St bler A, et al. Spectroscopic studies on positive ion basedneutral beam injection systems. Max-Planck-Institut für Plasmaphysik, Report IPP4/289,2008.
    [152] Duwe R, Kuhnlein W, Münstermann H. The new electron beam apparatus formaterials testing in the hot cells-design and preliminary experience. Proc18thSymposium on Fusion Thechnology, Karlsruhe, Germany,1994.
    [153] Schiller S, Heisig U, Panzer S. Electron beam technology. New York: Wiley,1982.
    [154] Wirtz M. Thermal shock behavior of different tungsten grades under varyingconditions [doctor dissertation]. Aachen: RWTH Aachen University,2012.
    [155] Schwab A, Bretschneider J, Buque C, et al. Application of electron channellingcontrast to the investigation of strain localization effects in cyclically deformed fcccrystals. Philos Mag Lett,1996,74:449-454.
    [156] Babak A V. Effect of recrystallization on the fracture thoughness of tungsten. PowderMetall Met Ceram,1983,22(4):316-318.
    [157] Suresh S. Fatigue of materials. Cambridge: Cambridge University Press,1998.
    [158] Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armourmaterials. J Nucl Mater,2007,363-365:301-307.
    [159] Tanabe T, Akiba M, Ueda Y, et al. On the utilization of high Z materials as a plasmafacing component. Fusion Eng Des,1998,39-40:275-285.
    [160] Mathaudhu S N, Rosset A J, Hartwig K T, et al. Microstructures and recrystallizationbehavior of severely hot-deformed tungsten. Mater Sci Eng A,2009,503:28-31.
    [161] Denissen C J M, Liebe J, Rijswick M. Recrystallisation temperature of tungsten as afunction of the heating ramp. Int J Refract Met Hard Mater,2006,24:321-324.
    [162] ITER Materials Assessment Report (MAR), ITER Doc. G74MA1001-07-11W0.2,2001(internal project document distributed to the ITER Participants).
    [163] Humphreys F J, Hatherley M. Recrystallization and related annealing phenomena.New York: Elsevier Science,2004.
    [164] Clareborough L M, Hargreaves M E, Loretto M H. Recovery and recrystallization ofmetals. New York: Interscience,1963.
    [165] Joshi A, Stein D F. Intergranular brittleness studies using auger spectroscopy. MetTrans,1970,1:2543-2546.
    [166] Suresh S, Fatigue of Materials. Cambridge: Cambridge University Press,1998.
    [167]刘志义,刘冰,王引真.脉冲电流对2091铝锂合金动态再结晶动力学的影响.材料研究学报,2001,15(3):358-364.
    [168]余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001.
    [169] Porter D A Easterling K E. Phase transformations in metals and alloys. London:Chapman Hall,2001.
    [170] Kozeschnik E, Pletenev V, Zolotorevsky N, et al. Aluminum nitride precipitation andtexture development in batch-annealed bake-hardening steel. Metall Mater Trans,1999,30A:1663-1673.
    [171] Becoulet M, Huysmans G, Thomas P, et al. Edge localized modes control: experimentand theory; J Nucl Mater,2005,337-339:677-683.
    [172] Linke J, Lorenzetto P, Majerus P, et al. Eu development of high heat flux compnonets.Fusion Sci Technol,2005,47:678-685.
    [173] Linke J. High heat flux performance of plasma facing components under serviceconditions in future fusion reactors. Trans Fusion Sci Technol.2006,49:455-464.
    [174] Kirk A, Lisgo S, Nardon E, et al. Physics of ELM power fluxes to plasma facingcomponents and implications for ITER. J Nucl Mater.2011,417:481-486.
    [175] Linke J, Loewenhoff T, Massaut V, et al. Performance of different tungsten gradesunder transient thermal loads. Nucl Fusion,2011,51:073017.
    [176] Makhlaj V A, Garkusha I E, Malykhin S V, et al. Residual stresses in tungsten underexposures with ITER ELM-like plasma loads. Phys Scr,2009, T138:014060.
    [177] Wirtz M, Linke J, Pintsuk G, et al. Comparison of the thermal shock performance ofdifferent tungsten grades and the influence of microstructure on the damage behavior.Phys Scr,2011, T145:014058.
    [178] Garkusha I E, Arkhipov N I, Klimov N S, et al. The latest results fromELM-simulation experiments in plasma accelerators. Phys Scr,2009, T138:014054.
    [179] Ueda Y, Toda M, Nishikawa M, et al. Effects of repetitive ELM-like heat pulses ontungsten surface morphology. Fusion Eng Des,2007,82:1904-1910.
    [180] Pintsuk G, Prokhodtseva A, Uytdenhouwen I. Thermal shock characterization oftungsten deformed in two orthogonal directions. J Nucl Mater,2011,417:481-486.
    [181]徐锋,左敦稳,王珉,等. CVD金刚石厚膜的机械抛光及其残余应力的分析.人工晶体学报,2004,33(3):436-444.
    [182] Pestchanyi S, Garkusha I, Landman I. Simulation of tungsten armour cracking due tosmall ELMs in ITER. J Nucl Mater,2010,85:1697-1701.
    [183] Roedig M, Kupriyanov I, Linke J, et al. Simulation of transient heat loads on high heatflux materials and components. J Nucl Mater,2011,417:761-764.
    [184] Timoshenko S, Goodier J. Theory of elasticity. New York: McGraw-Hill,1970.
    [185] Chiem C Y, Lee W S. The influence of dynamic shear loading on plastic deformationand microstructure of tungsten single crystals. Mater Sci Eng A,1994,186:43-50.
    [186] Asfhani R, Chen E, Crowson A. High strain rate behavior of refractory metals andalloys. Warrendale, PA: The Metallurgical Society,1992.
    [187] Kako K, Isozaki S, Takaki S, et al. Deformation mechanisms in high-purityFe-50Cr(-5W) alloys at elevated temperatures. Phys Stat Sol,1998,167:481-494.
    [188] Murr L E, Meyers M A, Niou C S, et al. Shock-induced deformation twinning intantalum. Acta mater,1997,45:157-175.
    [189] Hsiung L M, Lassila D H. Shock-induced deformation twinning and omegatransformation in tantalum and tantalum-tungsten alloys. Acta mater,2000,48:4851-4865.
    [190] Pappu. S, Sen S, Murr L E, et al. Deformation twins in oriented, columnar-grainedtungsten rod ballistic penetrators. Mater Sci Eng A,2001,298:144-157.
    [191] Wongwiwat K, Murr L E. Effect of shock pressure, pulse duration, and grain size onshock-deformation twinning in Molybdenum. Mater Sci Eng,1978,35:273-285.
    [192] Murr L E, Esquivel E V. Review observations of common microstructural issuesassociated with dynamic deformation phenomena: Twins, microbands, grain sizeeffects, shear bands and dynamic recrystallization. J mater Sci,2004,39:1153-1168.
    [193] Salishchev G, Galeyev R, Zherebtsov S V. Dynamic recrystallization of Titanium andTi-6Al-4V Alloy. J Mater Proc Tech,2001,38:27-31.
    [194] Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion ofAl-5Ma-0.6Mn (AA5083). Mater Sci Eng A.1996,205:23-30.
    [195] Salishchev G A, Imayev R M, Senkov O N, et al. Formation of a submicrocrystallinestructure in TiAl and Ti3Al intermetallics by hot working. Mater Sci Eng A.2000,286:236-243.
    [196] Trillo E A, Esquivel, Murr L E. Dynamic recrystallization-induced flow phenomena intungsten-tantalum (4%)[011] single-crystal rod ballistic penetrators. Mater Character,2002,48:407-411.
    [197] Murr L E, Pizana C. Dynamic recrystalization: The dynamic deformation regime.Metall Mater Trans A,2007,38A:2611-2627.
    [198] Gray G T, Vecchio K S. Influence of peak pressure and temperature on thestructure/property response of shock-loaded Ta and Ta-10W. Metall Mater Trans A,1995,26A:2555-2563.
    [199] Pizana C, Esquivel E V, Murr L E. The role of dynamic recrystallizaiton in [001]single-crystal W and W-Ta alloy ballistic rod penetration into steel targets. J MaterSci,2005,40:4849-4857.
    [200] Worthington A M. On impact with a liquid surface. Proc Phys Soc Lond,1883,34:217-230.
    [201] Matthews J W. Epitaxial growth. New York: Academic Press,1975.
    [202] Goldstein H W, Walsh P N, White D. Rare earths. I. Vaporization of La2O3andNd2O3: dissociation energies of gaseous Lao and NdO. J Phys Chem,1961,65:1400-1404.
    [203] Loarte A, Lipschultz B, Kukushkin A S, et al. Power and particle control. Nucl Fusion,2007,47: S203-S263.
    [204] Barnes R S, Redding G B,Cottrell A H. Philos Mag,1958,3:97-99.
    [205] Barnes R S. Embrittlement of stainless steels and nickel-based alloy at hightemperature induced by neutron radiation. Nature,1965,206:1307-1310.
    [206] Sass S L, Eyre B L. Diffraction from void and bubble arrays in irradiated molybdenum.Philos Mag,1973,27:1447-1453.
    [207] Abd El Keriem M S,Werf D P, Pleiter F. Helium-vacancy interaction in tungsten.Phys Rev B,1993,47:14771-14777.
    [208] Mills P J, Green P F, Palmstr m C J, et al. Analysis of diffusion in polymers byforward recoil spectrometry. Appl Phys Lett,1984,45:957-959.
    [209] Ueda Y, Miyata K, Ohtsuka Y, et al. Exposure of tungsten nano-structure to TEXTORedge plasma. J Nucl Mater,2011,415: S92-S95.
    [210] Takamura S, Miyamoto T, Tomida Y, et al. Investigation on the effect of temperatureexcursion on the helium defects of tungsten surface by using compact plasma device. JNucl Mater,2011,415: S100-S103.
    [211] Baldwin M J, Lynch T C, Doerner R P, et al. Nanostructure formation on tungstenexposed to low-pressure rf helium plasmas: A study of ion energy threshold and earlystage growth. J Nucl Mater,2011,415: S104-S107.
    [212] Behrisch R, Scherzer B M U. He wall bombardment and wall erosion in fusion devices.Radiat Eff,1983,78:393-403.
    [213] Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten witharborescent shape due to helium plasma irradiation. Plasma Fusion Res,2006,51:1-2.
    [214] Shinohara K, Kawakami A, Kitajima S, et al. Effects of He+irradiation on themechanical properties of molybdenum. J Nucl Mater,1991,179-181:246-249.
    [215] Tokunaga K, Fujiwara T, Ezato K. Effects of high heat flux hydrogen and heliummixture beam irradiation on surface modification and hydrogen retention in tungstenmaterials. J Nucl Mater,2009,390-391:916-920.
    [216] Behrisch R, Eckstein W. Sputtering by particle bombardment. Berlin: Springer,2007.
    [217] Nichols F A. Kinetics of diffusional motion of pores in solids. J Nucl Mater,1969,30:143-165.
    [218] Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation onplasma facing metals. J Nucl Mater,2005,337-339:946-950.
    [219] Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungstenduring low-energy helium ion irradiation. J Nucl Mater,2000,283-287:1134-1138.
    [220] Zhang Y X, Kang R K, Guo D M, et al. Microstructure studies of the grinding damagein monocrystalline silicon wafers. Rare Metal,2007,26:13-18.
    [221] Jiang J Z, Zhao Y W, Wang Y G, et al. A chemical mechanical polishing model basedon the viscous flow of the amorphous layer. Wear,2008,265:992-998.
    [222] Xu J, Luo J B, Wang L L, et al. The crystallographic change in sub-surface layer ofthe silicon single crystal polished by chemical mechanical polishing. Tribol Int,2007,40:285-289.
    [223] Thomson G P, Structure and properties of solid surfaces. Chicago, IL: The Universityof Chicago Press,1953.
    [224] Zenobia S J, Garrison L M, Kulcinski G L. The response of polycrystalline tungsten to30keV helium ion implantation at normal incidence and high temperatures. J NuclMater,2012,425:83-92.
    [225] Kaminsky M, Das S K. Orientation dependence of blister shape in niobiummonocrystals implanted with channeled helium ions. Appl Phys Lett,1973,23:293-295.
    [226] Kaminsky M. Plasma comtamination and wall erosion in thermonuclear reactors. IEEETrans Nucl Sci,1971,18:208-217.
    [227] Milacek L H, Daniels R D. Orientation dependence of pitting and blistering inproton-irradiated Aluminum crystals. J Appl Phys,1968,39:5714-5717.
    [228] Das S K, Kaminsky M. Blistering in helium ion implanted (111) niobiummonocrystals. J Appl Phys,1973,44:2520-2529.
    [229] Shu W M, Wakai E, Yamanishi T. Blister bursting and deuterium bursting releasefrom tungsten exposed to high fluences of high flux and low energy deuterium plasma.Nucl Fusion,2007,47:201-209.
    [230] Miyamoto M, Nishijima D, Ueda Y, et al. Observations of suppressed retention andblistering for tungsten exposed to deuterium-helium mixture plasmas. Nucl Fusion,2009,49:065035.
    [231] Robinson M T, Oen O S. Computer studies of the slowing down of energetic atoms incrystals. J Appl Phys,1963,34:2385-2398.
    [232] Robinson M T, Oen O S. The channeling of energetic atoms in crystal lattices. ApplPhys Lett,1963,2:30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700