用户名: 密码: 验证码:
太湖溶解性有机质对Cu的形态及生物有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属在水环境中积累引起的潜在危害不仅对我们的环境带来了威胁,也对人体健康产生了威胁。通常,重金属的生物有效性与水环境的物理化学条件有关系,其中溶解性有机质(Dissolved organic matter, DOM)是控制天然水环境中的重金属的生物地球化学行为和毒性的重要因素之一。重金属在太湖的污染也越来越引起了人们的关注,本文在国家973计划项目“湖泊水环境质量演变与水环境基准研究”(2008CB418201)子课题“湖泊水环境质量区域差异特征”和江苏省研究生培养创新工程项目“太湖DOM对重金属在沉积物-水相中分配的影响”(CXZZ11-0317)资助下,完成了全太湖的上覆水、孔隙水和沉积物等200多个样品进行了调查、取样和测试分析,获得有效数据30000多个。在野外调查的基础上,开展了室内模拟实验,并利用实验结果建立了模型,系统探讨了太湖DOM对Cu的形态及生物有效性的影响。研究成果将为由中国环境保护部提出的中国的环境基准战略提供基础数据,为建立适用于我国生态和经济形势的水环境基准体系提供科学支持。本研究的主要结论有以下几点:
     (1)野外测试结果表明,上覆水中,重金属浓度在太湖水体中的含量通常都不高,无论是CCC值(基准连续浓度值,又称为慢性基准值)还是CMC值(基准最大浓度值,又称为急性基准值)都不会给生态环境带来风险。孔隙水中,大多数重金属浓度的含量要低于上覆水中的含量。但是在沉积物中,与当地土壤背景值相比较,重金属都表现出富集现象。空间分布上,无论是上覆水还是沉积物中,大多数重金属从漕桥河到湖泊都表现出一个明显的浓度梯度,这反应了入湖河流对太湖的影响。通过分析沉积物中重金属形态发现:重金属潜在的生物有效性部分含量占到重金属总量的8.4%(Cr)到55.6%(Cu),Cu对水生生物的毒性风险最大。统计显示,太湖沉积物中有机质比起pH值对重金属分布和形态的影响作用更为显著。
     (2)吸附-解吸实验表明,难溶性有机质可以将更多的Cu从水相中吸附到沉积物中,而DOM则增加了沉积物的吸附容量。通过定量化分析太湖不同湖区沉积物中DOM对Cu的潜在结合容量发现,包含较多腐殖质物质外源有机质比湖泊内源有机质对Cu具有更高的结合容量。三维荧光光谱结果表明DOM中腐殖质对Cu的结合容量从11.5mg/g到151.4mg/g,而类蛋白物质的结合容量为26.3mg/g到35.4mg/g。根据DOM结合容量和太湖DOM含量计算可得,如果太湖水体中Cu的含量低于7.87mg/l,Cu将全部以DOM结合态的形式存在于水体中。解析实验表明,沉积物中难溶性有机质可以与Cu形成稳定的化合物,而DOM则有利于Cu的迁移。
     (3)平衡渗透实验结果表明,太湖南部湖区DOM分子量主要为>3500Da的有机物,而北部湖区DOM的分子量范围则为<10000Da。总体上看,南部湖区DOM的分子量要高于北部湖区DOM的分子量。通过分析不同分子量DOM中的物质发现,高分子量的DOM主要为腐殖酸物质,而低分子量的DOM则主要为类蛋白物质。离子选择性电极结果和光谱学结果表明Cu倾向于被太湖低分子量的DOM结合。
     (4)降解实验表明,太湖水体DOM可以在紫外光照射下显著降解,DOM在72h到168h之间降解速度的最快。紫外波长和3DEEM结果表明:在紫外光照条件下,a254的值和四类荧光峰迅速降低,表明DOM被完全降解。而在避光条件下,a254和A254/A400值表明微生物作用可以将大分子的DOM降解为小分子的DOM。DOM中各种组分在不同降解条件下的差异性可以对DOM和Cu的相互作用产生不同效果。在紫外光照条件下,Cu的存在可以促进DOM的降解,而在避光条件下,Cu却抑制了微生物对DOM的降解作用。
     (5)DOM浓度和化学组成极大的地影响着Cu的化学形态,进而影响着Cu的生物有效性和水质基准值。根据太湖DOM的浓度范围和HA在DOM中的百分比含量范围,以及对太湖水环境质量调查结果,生物配体模型(BLM)被用来预测太湖中Cu的形态、生物有效性和水环境质量基准值。结果表明DOM浓度和组成极大的影响着Cu的形态,进而影响着Cu的生物有效性和水质基准值。随着DOM浓度的增加和HA在DOM中百分比含量的增加,Cu对大型蚤的急性毒性值和水质基准值都呈线性关系增长。
Potential danger raised by metal accumulation in aquatic environments and inaquatic organisms not only poses threat to our environments but also to the food safety.Generally, bioavailability of heavy metals is related to physical and chemicalconditions of the aquatic environment. In particular,the dissolved organic matters isimportant control over the biogeochemical behavior and toxicity of heavy metals innatural waters. The heavy metal pollution in the Taihu Lake has been becoming moreand more serious. So we studied the influence of DOM in Taihu Lake on the speciesand bioavailability of Cu, and this work will provide a data base for the ongoingChina’s criteria strategy, which proposed recently by the Ministry of EnvironmentProtection of China to establish its own water quality criteria system based on China’secological and economic situation. Main contents of the thesis are listed as follows:
     (1) Metal concentrations in the water column in Taihu Lake were generally lowand would not give rise to ecological risks either for the CCC or CMC values. Theconcentration of most metals in the interstitial water was not higher than in the watercolumn. In the sediment, metals were enriched compared with the background valuesfor local soil. Spatially, many metals presented a clear spatial gradient in both watercolumn and sediment from the Caoqiao River to the lake, which is a reflection of theimpact of river input s to the lake. The potential bio-available fraction of the heavymetals accounted for8.4%(Cr) to55.6%(Cu) of the total metal concentration.Statistical analysis indicated that organic matters had a significantly stronger controlon the metal distribution and species than pH in Taihu sediment.
     (2) Insoluble organic matter of sediment can absorb most Cu from water phaseand DOM could greatly enhance the sorption capacity. Through quantitativelycharacterizes the Cu binding potential of DOM in sediment from different part ofTaihu Lake, results show that the exogenous DOM included more humic matters thanendogenous DOM and had higher complex capacity than Taihu Lake DOM. Thefluorescence quenching results reflect that the complex capacity of humic componentsin DOM was from111.5mg/g to151.4mg/g, however, the complex capacity of proteincomponents was from26.3mg/g to35.4mg/g. According to the complex capacity andDOM concentration in Taihu Lake, it was calculated that if the Cu concentration inTaihu Lake water was less than7.87mg/l, Cu would exist as DOM complexation inthe water column. The desorption experiment indicated that insoluble organic matters could form the most stable complexes, however, DOM was favorable for the metaltransportation.(3)The equilibrium membrane dialysis method was employed to determine themolecular weight distribution of dissolved organic matters in the Taihu Lake sediment.Results indicate that Taihu DOM was dominated with the molecular weight>3500Dain south lake, while DOM was dominated with the molecular weight between<10000Da. Overall, south lake DOM had a higher molecular weight than that in northlake. Through analyzing the substances in different molecular weight DOM, it wasfound that the high molecular weight DOM was mainly consisted by the humicmatters while the low molecular weight DOM was mainly comprised by theprotein-lake matters. The ISE results and3DEEM spectral characteristics showed thatCu tended to be associated with low molecular weight DOM in Taihu Lake.
     (4) DOM in the Taihu water was significantly degraded under UV radiation. Theconcentration of TOC declined quickly between72h and168h. UV absorption and3DEEM results showed that the a254decreased quickly and the four fluorescencepeaks also disappeared quickly under UV radiation condition. This indicated a morecomplete degradation under UV radiation. Under the dark condition, the a254andA254/A400ratio showed the action of microorganisms in converting high molecularweight substances into low molecular weight substances. The Variation of degradationbehavior of different components in DOM can caused different effects on theinteraction between DOM and Cu. Under UV condition,Cu can promote thedegradation of DOM by the UV radiation, however, in dark, Cu inhibit thedegradation of DOM by microbes.
     (5) According the range of DOM concentration and percentage of HA in DOM,BLM was used to predict the species, bio-available and Water quality criteria of Cubased on the investigation of Taihu Lake water quality. The results indicated that theDOM concentration and components significantly influenced the species of Cu andthen influenced the bio-available and water quality criteria of Cu. With the increase ofDOM concentration or the percentage of HA, acute toxicity and water quality criteriaof Cu to Daphnia magna increased with a linear correlation.
引文
[1]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学与研究,2006,19(3):1-6.
    [2]林玉锁.浅议我国环境基准的研究[J].环境导报,1994,(1):19-20.
    [3] US Department of the Interior. Report of the subcommittee or water quality criteria [R].Washington DC: US Department of the Interior,1968.
    [4] National Academy of Science and National Academy of Engineering. Water quality criteria [R].Washington DC: National Academy Press,1972.
    [5] USEPA. Quality criteria for water [R]. Washington DC: Office of Water and HazardousMaterials,1980.
    [6] Yuan H Z, Shen J, Liu E F, et al. Assessment of nutrients and heavy metals enrichment insurface sediments from Taihu Lake, a eutrophic shallow lake in China[J]. Environmentalgeochemistry and health,2011,33(1):67-81.
    [7]郑志侠,潘成荣,丁凡.巢湖表层沉积物中重金属的分布及污染评价[J].农业环境科学学报,2011,30(1):161-165.
    [8]卢少勇,焦伟,金相灿,等.滇池内湖滨带沉积物中重金属形态分析[J].中国环境科学,2010,30(4):487-492.
    [9]吴丰昌,孟伟,宋永会,等.中国湖泊水环境基准的研究进展[J].环境科学学报,2008,28(12):2385-2393.
    [10]周启星.环境基准研究与环境标准制定进展及展望[J].生态与农村环境学报,2010,26(1):1-8.
    [11] Barbier F, Duc G, Petit-Ramel M. Adsorption of lead and cadmium ions from aqueoussolution to the montmorillonite/water interface[J]. Colloids and Surfaces A: physicochemicaland engineering aspects,2000,166(1):153-159.
    [12] Sun F H, Zhou Q X. Metal accumulation in the polychaete Hediste japonica with emphasis oninteraction between heavy metals and petroleum hydrocarbons[J]. Environmental Pollution,2007,149(1):92-98.
    [13] Arshad M, Silvestre J, Pinelli E, et al. A field study of lead phytoextraction by various scentedPelargonium cultivars[J]. Chemosphere,2008,71(11):2187-2192.
    [14] Jones R P, Hassan S M, Rodgers Jr J H. Influence of contact duration on sediment-associatedcopper fractionation and bioavailability[J]. Ecotoxicology and environmental safety,2008,71(1):104-116.
    [15] Gorski P R, Armstrong D E, Hurley J P, et al. Influence of natural dissolved organic carbonon the bioavailability of mercury to a freshwater alga[J]. Environmental Pollution,2008,154(1):116-123.
    [16] Maddock J E L, Carvalho M F, Santelli R E, et al. Contaminant metal behaviour duringre-suspension of sulphidic estuarine sediments[J]. Water, Air,&Soil Pollution,2007,181(1):193-200.
    [17] Wu J, Zhang H, He P J, et al. Insight into the heavy metal binding potential of dissolvedorganic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J].Water research,2011,45(4):1711-1719.
    [18] Yin H B, Fan C X, Ding S M, et al. Geochemistry of iron, sulfur and related heavy metals inmetal-polluted Taihu Lake sediments[J]. Pedosphere,2008,18(5):564-573.
    [19]路永正,阎百兴.重金属在松花江沉积物中的竞争吸附行为及pH的影响[J].环境科学研究,2010,23(1):20-25.
    [20] Niu H, Deng W, Wu Q, et al. Potential toxic risk of heavy metals from sediment of the PearlRiver in South China[J]. Journal of Environmental Sciences,2009,21(8):1053-1058.
    [21] Melník M, Kabe ová M, Dunaj-Jur o M, et al. Copper (II) Coordination Compounds:Classification and Analysis of Crystallographic and Structural Data[J]. Journal of coordinationchemistry,1997,41(1-2):35-182.
    [22] Ergül H A, Topcuo lu S, lmez E, et al. Heavy metals in sinking particles and bottomsediments from the eastern Turkish coast of the Black Sea[J]. Estuarine, Coastal and ShelfScience,2008,78(2):396-402.
    [23] Guven D E, Akinci G. Heavy metals partitioning in the sediments of Izmir Inner Bay[J].Journal of Environmental Sciences,2008,20(4):413-418.
    [24] Amery F, Degryse F, Van Moorleghem C, et al. The dissociation kinetics of Cu-dissolvedorganic matter complexes from soil and soil amendments[J]. Analytica Chimica Acta,2010,670(1):24-32.
    [25] Matsuo A Y O, Playle R C, Val A L, et al. Physiological action of dissolved organic matter inrainbow trout in the presence and absence of copper: sodium uptake kinetics andunidirectional flux rates in hard and softwater[J]. Aquatic toxicology,2004,70(1):63-81.
    [26] Prasad M, Xu H, Saxena S. Multi-component sorption of Pb (II), Cu (II) and Zn (II) ontolow-cost mineral adsorbent[J]. Journal of hazardous materials,2008,154(1):221-229.
    [27] Ferrand E, Dumat C, Leclerc-Cessac E, et al. Phytoavailability of zirconium in relation to itsinitial added form and soil characteristics[J]. Plant and soil,2006,287(1):313-325.
    [28] Tye A M, Young S, Crout N M J, et al. Speciation and solubility of Cu, Ni and Pb incontaminated soils[J]. European Journal of Soil Science,2004,55(3):579-590.
    [29] Worms I, Simon D F, Hassler C S, et al. Bioavailability of trace metals to aquaticmicroorganisms: importance of chemical, biological and physical processes on biouptake[J].Biochimie,2006,88(11):1721-1731.
    [30] Zhang Y, Qin B, Zhu G, et al. Chromophoric dissolved organic matter (CDOM) absorptioncharacteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropicallake[J]. Hydrobiologia,2007,581(1):43-52.
    [31]朱广伟,秦伯强,高光,等.太湖近代沉积物中重金属元素的累积[J].湖泊科学,2005,17(2):143-150.
    [32] Baham J, Sposito G. Chemistry of water-soluble, metal-complexing ligands extracted from ananaerobically-digested sewage sludge[J]. Journal of Environmental Quality,1983,12(1):96-100.
    [33] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matterin soils: a review[J]. Soil science,2000,165(4):277-304.
    [34] Thacker S A, Tipping E, Gondar D, et al. Functional properties of DOM in a stream drainingblanket peat[J]. Science of the Total Environment,2008,407(1):566-573.
    [35] Saadi I, Borisover M, Armon R, et al. Monitoring of effluent DOM biodegradation usingfluorescence, UV and DOC measurements[J]. Chemosphere,2006,63(3):530-539.
    [36]郭卫东,黄建平,洪华生,等.河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J].环境科学,2010,31(6):1419-1427.
    [37] Lou T, Xie H. Photochemical alteration of the molecular weight of dissolved organicmatter[J]. Chemosphere,2006,65(11):2333-2342.
    [38] Zhang T, Lu J, Ma J, et al. Fluorescence spectroscopic characterization of DOM fractionsisolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere,2008,71(5):911-921.
    [39] De Vittor C, Paoli A, Fonda Umani S. Dissolved organic carbon variability in a shallowcoastal marine system (Gulf of Trieste, northern Adriatic Sea)[J]. Estuarine, Coastal and ShelfScience,2008,78(2):280-290.
    [40] Ortega-Retuerta E, Reche I, Pulido-Villena E, et al. Distribution and photoreactivity ofchromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean)[J].Marine Chemistry,2010,118(3):129-139.
    [41] Wu F, Tanoue E. Isolation and partial characterization of dissolved copper-complexingligands in streamwaters[J]. Environmental science&technology,2001,35(18):3646-3652.
    [42] Chen J, LeBoeuf E J, Dai S, et al. Fluorescence spectroscopic studies of natural organicmatter fractions[J]. Chemosphere,2003,50(5):639-647.
    [43]江志坚,黄小平,张景.大亚湾海水中总有机碳的时空分布及其影响因素[J].海洋学报,2009,31(1):91-99.
    [44]乔春光,魏群山,王东升,等.典型南方水源溶解性有机物分子量分布变化及去除特性[J].环境科学学报,2007,27(2):195-200.
    [45]钱伟,杨玉盛,曾宏达,等.内河DOM降解的三维荧光、紫外光谱研究——以白马河为例[J].亚热带资源与环境学报,2007,2(3):42-49.
    [46] Zhang Y, Yin Y, Liu X, et al. Spatial-seasonal dynamics of chromophoric dissolved organicmatter in Lake Taihu, a large eutrophic, shallow lake in China[J]. Organic Geochemistry,2011,42(5):510-519.
    [47] Yao X, Zhang Y, Zhu G, et al. Resolving the variability of CDOM fluorescence todifferentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere,2011,82(2):145-155.
    [48]宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J].环境科学学报,2010,30(11):2321-2331
    [49] Huo S, Xi B, Yu H, et al. Characteristics of dissolved organic matter (DOM) in leachate withdifferent landfill ages[J]. Journal of Environmental Sciences,2008,20(4):492-498.
    [50] Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matterfrom natural waters and a wastewater effluent[J]. Water research,2001,35(4):985-996.
    [51]张彦,张远,于涛,等.太湖沉积物及孔隙水中氮的时空分布特征[J].环境科学研究,2010,23(11):1333-1342.
    [52]Stumm W, Morgan J J. Aquatic chemistry: chemical equilibria and rates in natural water[sM].3rd ed. New York: John Wiley and Sons,1996:744.
    [53]张远,张彦,于涛.太湖典型湖区沉积物外源有机质贡献率研究[J].环境科学研究,2011,24(3):251-259.
    [54] Grasso D, Chin Y, Weber W J. Structural and behavioral characteristics of a commercialhumic acid and natural dissolved aquatic organic matter[J]. Chemosphere,1990,21(10):1181-1197.
    [55] Lenheer J A, Huffman E W D. Classification of organic solutes in water by usingmacroreticular resin[J]. JR Stat. Soc.;(United States),1976,4(6):737-751.
    [56] Suba J D, Essington M E. Adsorption of fluometuron and norflurazon: Effect of tillage anddissolved organic carbon[J]. Soil science,1999,164(3):145-155.
    [57] Martin-Mousset B, Croue J P, Lefebvre E, et al. Distribution and characterization of dissolvedorganic matter of surface waters[J]. Water Research,1997,31(3):541-553.
    [58]孟庆俊,张彦,冯启言,等.腐殖酸对NH+4-N在饱和含水层中迁移的影响[J].环境科学,2011,32(11):3357-3364.
    [59] Cole J J, Caraco N F. Carbon in catchments: connecting terrestrial carbon losses with aquaticmetabolism[J]. Marine and Freshwater Research,2001,52(1):101-110.
    [60]范成新,季江,隋桂容.太湖底泥蓄积和主要的理化性质空间分布特征:太湖环境生态研[M].北京:气象出版社,1998.
    [61] Park J H, Kalbitz K, Matzner E. Resource control on the production of dissolved organiccarbon and nitrogen in a deciduous forest floor[J]. Soil Biology and Biochemistry,2002,34(6):813-822.
    [62] Zhang Y, Qin B, Zhu G, et al. Chromophoric dissolved organic matter (CDOM) absorptioncharacteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropicallake[J]. Hydrobiologia,2007,581(1):43-52.
    [63] Charnock C, Kj nn O. Assimilable organic carbon and biodegradable dissolved organiccarbon in Norwegian raw and drinking waters[J]. Water Research,2000,34(10):2629-2642.
    [64] Vandenbruwane J, De Neve S, Qualls R G, et al. Comparison of different isotherm models fordissolved organic carbon (DOC) and nitrogen (DON) sorption to mineral soil[J]. Geoderma,2007,139(1):144-153.
    [65] Osburn C L, Retamal L, Vincent W F. Photoreactivity of chromophoric dissolved organicmatter transported by the Mackenzie River to the Beaufort Sea[J]. Marine Chemistry,2009,115(1):10-20.
    [66] Gao H, Zepp R G. Factors influencing photoreactions of dissolved organic matter in a coastalriver of the southeastern United States[J]. Environmental Science&Technology,1998,32(19):2940-2946.
    [67] Akagi J, Zsolnay á. Effects of long-term de-vegetation on the quantity and quality of waterextractable organic matter (WEOM): Biogeochemical implications[J]. Chemosphere,2008,72(10):1462-1466.
    [68] Fukushima M, Tatsumi K, Nagao S. Degradation characteristics of humic acid duringphoto-Fenton processes[J]. Environmental science&technology,2001,35(18):3683-3690.
    [69] L nborg C, Davidson K, álvarez–Salgado X A, et al. Bioavailability and bacterialdegradation rates of dissolved organic matter in a temperate coastal area during an annualcycle[J]. Marine Chemistry,2009,113(3):219-226.
    [70] Trulleyová, Rul k M. Determination of biodegradable dissolved organic carbon in waters:comparison of batch methods[J]. Science of the total environment,2004,332(1):253-260.
    [71] Alm s R, Lombn s P, Sogn T A, et al. Speciation of Cd and Zn in contaminated soilsassessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach andryegrass[J]. Chemosphere,2006,62(10):1647-1655.
    [72] Degryse F, Smolders E, Merckx R. Labile Cd complexes increase Cd availability to plants[J].Environmental science&technology,2006,40(3):830-836.
    [73] Walsh A R, O'Halloran J. Chromium speciation in tannery effluent—II. Speciation in theeffluent and in a receiving estuary[J]. Water research,1996,30(10):2401-2412.
    [74] Rangsivek R, Jekel M R. Removal of dissolved metals by zero-valent iron (ZVI): Kinetics,equilibria, processes and implications for stormwater runoff treatment[J]. Water research,2005,39(17):4153-4163.
    [75] Murakami M, Fujita M, Furumai H, et al. Sorption behavior of heavy metal species bysoakaway sediment receiving urban road runoff from residential and heavily traffickedareas[J]. Journal of hazardous materials,2009,164(2):707-712.
    [76] Nogueira P F M, Mel o M G G, Lombardi A T, et al. Natural DOM affects copper speciationand bioavailability to bacteria and ciliate[J]. Archives of environmental contamination andtoxicology,2009,57(2):274-281.
    [77] Shi Z, Di Toro D M, Allen H E, et al. Modeling kinetics of Cu and Zn release from soils[J].Environmental science&technology,2005,39(12):4562-4568.
    [78]祝惠,阎百兴,张丰松,等.粒级、pH和有机质对汞在松花江沉积物表面吸附-解吸的影响[J].环境科学,2010,31(10):2315-2320.
    [79]马爱军,周立祥,何任红.水溶性有机物对草萘胺在土壤中吸附与迁移的影响[J].环境科学学报,2006,27(2):356-360.
    [80] Hellweger F L, Ruan X, Sanchez S. A simple model of tetracycline antibiotic resistance in theaquatic environment (with application to the Poudre River)[J]. International journal ofenvironmental research and public health,2011,8(2):480-497.
    [81] Liu R, Lead J R, Baker A. Fluorescence characterization of cross flow ultrafiltration derivedfreshwater colloidal and dissolved organic matter[J]. Chemosphere,2007,68(7):1304-1311.
    [82] Ryan D K, Weber J H. Copper (II) complexing capacities of natural waters by fluorescencequenching[J]. Environmental Science&Technology,1982,16(12):866-872.
    [83]Wu F C, Evans R D, Dillon P J, et al. Molecular size distribution characteristics of themetal–DOM complexes in stream waters by high-performance size-exclusion chromatography(HPSEC) and high-resolution inductively coupled plasma mass spectrometry (ICP-MS)[J].Journal of Analytical Atomic Spectrometry,2004,19(8):979-983.
    [84] Wu F C, Mills R B, Evans R D, et al. Kinetics of metal-fulvic acid complexation using astopped-flow technique and three-dimensional excitation emission fluorescencespectrophotometer[J]. Analytical chemistry,2004,76(1):110-113.
    [85] Wu J, Zhang H, He P J, et al. Insight into the heavy metal binding potential of dissolvedorganic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J].Water research,2011,45(4):1711-1719.
    [86] Rashid M A.1985. Geochemistry of Marine Humic Substances[M]. New York:Springer-Verlag.
    [87]李云峰,王兴理.腐殖质-金属离子的络合稳定性及土壤胡敏素的研究[M].贵阳:贵州科计出版社,1999.
    [88]傅平青.水环境中的溶解有机质及其与金属离子的相互作用—荧光光谱学研究[M].中国科学院研究生院,2004.
    [89] Kuiters A T, Mulder W. Water-soluble organic matter in forest soils[J]. Plant and Soil,1993,152(2):225-235.
    [90]陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸Cd的影响极其机制[J].环境科学学报,2002,22(2):150-155.
    [91] Kaiser K, Kaupenjohann M, Zech W. Sorption of dissolved organic carbon in soils: effects ofsoil sample storage, soil-to-solution ratio, and temperature[J]. Geoderma,2001,99(3):317-328.
    [92] Chen H, Wang A. Adsorption characteristics of Cu (II) from aqueous solution onto poly(acrylamide)/attapulgite composite[J]. Journal of hazardous materials,2009,165(1):223-231.
    [93] Chen A H, Liu S C, Chen C Y, et al. Comparative adsorption of Cu (II), Zn (II), and Pb (II)ions in aqueous solution on the crosslinked chitosan with epichlorohydrin[J]. Journal ofhazardous materials,2008,154(1):184-191.
    [94] Du Laing G, Vanthuyne D R J, Vandecasteele B, et al. Influence of hydrological regime onpore water metal concentrations in a contaminated sediment-derived soil[J]. EnvironmentalPollution,2007,147(3):615-625.
    [95]徐玉芬,吴平霄,党志.水溶性有机质对土壤中污染物环境行为影响的研究进展[J].矿物岩石地球化学通报,2007,26:307-3101.
    [96]高太忠,张昊,周建伟.溶解性有机物对土壤中重金属环境行为的影响[J].生态环境学报,2011,20(4):652-658.
    [97] Moore T R, De Souza W, Koprivnjak J F. Controls on the sorption of dissolved organiccarbon by soils[J]. Soil Science,1992,154(2):120-129.
    [98] Hu L, Diez-Rivas C, Hasan A R, et al. Transport and interaction of arsenic, chromium, andcopper associated with CCA-treated wood in columns of sand and sand amended with peat[J].Chemosphere,2010,78(8):989.
    [99] Jackson B P, Ranville J F, Bertsch P M, et al. Characterization of colloidal and humic-boundNi and U in the “dissolved” fraction of contaminated sediment extracts[J]. Environmentalscience&technology,2005,39(8):2478-2485.
    [100] Shafer M M, Hoffmann S R, Overdier J T, et al. Physical and kinetic speciation of copperand zinc in three geochemically contrasting marine estuaries[J]. Environmental science&technology,2004,38(14):3810-3819.
    [101]董丽娴.溶解性有机质对砷形态及藻类有效性的影响[M].同济大学,2008
    [102] Moldrup P, Kjaergaard C, de Jonge L W. Colloids and Colloid-Facilitated Transport ofContaminants in Soils[J]. Vadose Zone Journal,2004,3(2):321-325.
    [103]石陶然,张远,于涛,等.滇池沉积物不同分子量溶解性有机质分布及其Cu和Pb的相互作用[J].环境科学研究,2013,26(2):137-144.
    [104]宋宁慧,单正军.水溶性有机物对绿麦隆胁迫下小麦幼苗生物利用性和毒性的影响[J].环境科学研究,2012,25(4):460-466.
    [105]陈春羽,王定勇.水溶性有机质对土壤及底泥中汞吸附行为的影响[J].环境科学学报,2009,29(2):312-317.
    [106]祝亮,伍钧,周江敏,等.溶解性有机质对Cu在土壤中吸附-解吸行为的影响[J].农业环境科学学报,2008,27(5):1779-1785.
    [107] Herbert B E, Bertsch P M, McFee W W, et al. Characterization of dissolved and colloidalorganic matter in soil solution: a review[C]. Carbon forms and functions in forest soils. SoilScience Society of America Inc.,1995:63-88.
    [108] Weng L, Temminghoff E J M, Van Riemsdijk W H. Contribution of individual sorbents tothe control of heavy metal activity in sandy soil[J]. Environmental science&technology,2001,35(22):4436-4443.
    [109] Schr der T J, Hiemstra T, Vink J P M, et al. Modeling of the solid-solution partitioning ofheavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse[J].Environmental science&technology,2005,39(18):7176-7184.
    [110]陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响[J].应用生态学报,2002,13(2):183-186
    [111]林琳,吴敬禄.太湖梅梁湾富营养化过程的同位素地球化学证据.中国科学,2005,35(增刊Ⅱ):55-62.
    [112] Fujitake N, Kodama H, Nagao S, et al. Chemical properties of aquatic fulvic acids isolatedfrom Lake Biwa, a clear water system in Japan[J]. Humic Substances Research,2009,5(6):45-53
    [113] Imai A, Fukushima T, Matsushige K, et al. Fractionation and characterization of dissolvedorganic matter in a shallow eutrophic lake, its inflowing rivers, and other organic mattersources[J]. Water research,2001,35(17):4019-4028.
    [114] Wang L, Wu F, Zhang R, et al. Characterization of dissolved organic matter fractions fromLake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences,2009,21(5):581-588.
    [115] Chi Q Q, Zhu G W, Langdon A. Bioaccumulation of heavy metals in fishes from Taihu Lake,China[J]. Journal of Environmental Sciences,2007,19(12):1500-1504.
    [116] Zhu G, Qin B, Gao G, et al. Accumulation characteristics of heavy metals in the sediments ofLake Taihu, China[J]. Hupo Kexue,2005,17(2):143-150.
    [117] Qu W C, Dickman M, Sumin W. Multivariate analysis of heavy metal and nutrientconcentrations in sediments of Taihu Lake, China[J]. Hydrobiologia,2001,450(1):83-89.
    [118] Radecka H, Zieli ska D, Radecki J. Interaction of organic derivatives of tin (IV) and lead(IV) with model lipid membranes[J]. Science of the total environment,1999,234(1):147-153.
    [119] Gavriil A M, Angelidis M O. Metal and organic carbon distribution in water column of ashallow enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, island of Lesvos,Greece[J]. Estuarine, Coastal and Shelf Science,2005,64(2):200-210.
    [120] Eutrophication of shallow lakes with special reference to Lake Taihu, China[M]. Springer,2007.
    [121] Yuan X Y, Wang A H, Xu N Z. Chemical partitioning of heavy metals and theircharacteristics for sediments from Lake Taihu[J]. Geochimica,2004,33(6):611-618.
    [122] Zhang Y P, Qu W C. Determination of heavy metal contents in the sediments from TaihuLake and its environmental significance[J]. Rock and Mineral Analysis,2001,20(1):34-37.
    [123]傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究[J].地球化学,2004,33(3):301-308.
    [124]傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028.
    [125]刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J].湖泊科学,2009,21(2):234-241.
    [126]张运林,秦伯强,龚志军.太湖有色可溶性有机物荧光的空间分布及其与吸收的关系[J].农业环境科学学报,2006,25(5):1337-1342.
    [127] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation ofparticulate trace metals[J]. Analytical chemistry,1979,51(7):844-851.
    [128] Peng J, Song Y, Yuan P, et al. The remediation of heavy metals contaminated sediment[J].Journal of hazardous materials,2009,161(2):633-640.
    [129] Ye H, Zhu Q, Du D. Adsorptive removal of Cd (II) from aqueous solution using natural andmodified rice husk[J]. Bioresource technology,2010,101(14):5175-5179.
    [130] Abd El-Azim H, El-Moselhy K M. Determination and partitioning of metals in sedimentsalong the Suez Canal by sequential extraction[J]. Journal of Marine Systems,2005,56(3):363-374.
    [131] Chen G, Zeng G, Du C, et al. Transfer of heavy metals from compost to red soil andgroundwater under simulated rainfall conditions[J]. Journal of hazardous materials,2010,181(1):211-216.
    [132] Boyle E A, Edmond J M, Sholkovitz E R. The mechanism of iron removal in estuaries[J].Geochimica et Cosmochimica Acta,1977,41(9):1313-1324.
    [133]张彦,冯启言,孟庆俊,等.溶解性有机质对重金属迁移的影响[J].中国科技论文,2013,8(3):240-244.
    [134] Li Z L, Zhou L X. Cadmium transport mediated by soil colloid and dissolved organic matter:A field study[J]. Journal of Environmental Sciences,2010,22(1):106-115.
    [135] Liu S, Lim M, Fabris R, et al. Comparison of photocatalytic degradation of natural organicmatter in two Australian surface waters using multiple analytical techniques[J]. OrganicGeochemistry,2010,41(2):124-129.
    [136] Nishijima W, Speitel Jr G E. Fate of biodegradable dissolved organic carbon produced byozonation on biological activated carbon[J]. Chemosphere,2004,56(2):113.
    [137]付美云,周立祥.垃圾渗滤液水溶性有机物对土壤吸附重金属Cu2+、Pb2+的影响[J].环境科学学报,2006,25(5):828-834.
    [138]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15(6):1083-1087.
    [139] Hyeong K, Capuano R M. The effect of organic matter and the H2O2organic-matter-removalmethod on the δD of smectite-rich samples[J]. Geochimica et Cosmochimica Acta,2000,64(22):3829-3837.
    [140] Geng A C, Zhang S, Harald H. Complex behaviour of trivalent rare earth elements by humicacids[J]. Journal of Environmental Sciences(China),1998,10(3):302-308.
    [141] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatichumic substances[J]. Analytica Chimica Acta,1997,337(2):133-149.
    [142] S nia R G B, Jorge N, Wagner J B. Origin of dissolved organic carbon studied by UV-visspectroscopy[J]. Acta hydrochim Hydrobiol,2003,31:513-518
    [143]Liu G L, Cai Y. Complexation of arsenite with dissolved organic matter: Conditionaldistribution coeffcients and apparent stability constants[J]. Chemosphere,2010,81:890-896.
    [144]Hur J, Lee B M. Characterization of binding site heterogeneity for copper within dissolvedorganic matter fractions using two-dimensional correlation fluorescence spectroscopy[J].Chemosphere,2011,83:1603-1611.
    [145] Park J H. Spectroscopic characterization of dissolved organic matter and its interactionswith metals in surface waters using size exclusion chromatography[J]. Chemosphere,2009,77:485-494.
    [146] Chen M, Price R M, Yamashita Y, et al. Comparative study of dissolved organic matter fromgroundwater and surface water in the Florida coastal Everglades using multi-dimensionalspectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry,2010,25(6):872-880.
    [147] Amery F, Degryse F, Degeling W, et al. The copper-mobilizing-potential of dissolvedorganic matter in soils varies10-fold depending on soil incubation and extractionprocedures[J]. Environmental science&technology,2007,41(7):2277-2281.
    [148]曾海鳌,吴敬禄.外源对太湖河口沉积物有机质贡献的同位素示踪[J].海洋地质与第四纪地质,2009,29(1):109-115.
    [149] Hur J, Kim G. Comparison of the heterogeneity within bulk sediment humic substancesfrom a stream and reservoir via selected operational descriptors[J]. Chemosphere,2009,75:483-490
    [150] Liu L, Song C Y, Yan Z G, et al. Characterizing the release of different composition ofdissolved organic matter in soil under acid rain leaching using three-dimensionalexcitation–emission matrix spectroscopy[J]. Chemosphere,2009,77:15-21.
    [151] Maie N, Yang C, Miyoshi T, et al. Chemical characteristics of dissolved organic matter in anoligotrophic subtropical wetland/estuarine ecosystem[J]. Limnology and oceanography,2005:23-35.
    [152] Baker A, Spencer R G M. Characterization of dissolved organic matter from source to seausing fluorescence and absorbance spectroscopy[J]. Science of the Total Environment,2004,333(1):217-232.
    [153] CrouéJ P, Benedetti M F, Violleau D, et al. Characterization and copper binding of humicand nonhumic organic matter isolated from the South Platte River: Evidence for the presenceof nitrogenous binding site[J]. Environmental science&technology,2003,37(2):328-336.
    [154] Andrews J E, Greenaway A M, Dennis P F. Combined carbon isotope and C/N ratios asindicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay,Kingston Harbour, Jamaica[J]. Estuarine, Coastal and Shelf Science,1998,46(5):743-756.
    [155] Liu K K, Kao S J, Wen L S, et al. Carbon and nitrogen isotopic compositions of particulateorganic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northernTaiwan[J]. Science of the Total Environment,2007,382:103-120.
    [156] Salm C R S C R, Saros J E S J E, Fritz S C F S C, et al. Phytoplankton productivity acrossprairie saline lakes of the Great Plains (USA): a step toward deciphering patterns through lakeclassification models[J]. Canadian Journal of Fisheries and Aquatic Sciences,2009,66(9):1435-1448.
    [157] Itoh N, Tamamura S, Kumagai M. Distributions of polycyclic aromatic hydrocarbons in asediment core from the north basin of Lake Biwa, Japan[J]. Organic Geochemistry,2010,41(8):845-852.
    [158] Fu P Q, Wu F C, Liu C Q, et al. Fluorescence characterization of dissolved organic matter inan urban river and its complexation with Hg(II)[J]. Applied Geochemistry,2007,22:1668-1679
    [159] Konstantinou M, Kolokassidou K, Pashalidis I. Studies on the interaction of olive cake andits hydrophylic extracts with polyvalent metal ions (Cu (II), Eu (III)) in aqueous solutions[J].Journal of hazardous materials,2009,166(2):1169-1173.
    [160] MG van den Berg C. Determination of the complexing capacity and conditional stabilityconstants of complexes of copper (II) with natural organic ligands in seawater by cathodicstripping voltammetry of copper-catechol complex ions[J]. Marine Chemistry,1984,15(1):1-18.
    [161] Yamashita Y, Jaffe R. Characterizing the Interactions between Trace Metals and DissolvedOrganic Matter Using Excitation Emission Matrix and Parallel Factor Analysis[J].Environmental science&technology,2008,42(19):7374-7379.
    [162] Plaza C, Brunetti G, Senesi N, et al. Molecular and quantitative analysis of metal ion bindingto humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy[J].Environmental science&technology,2006,40(3):917-923.
    [163] Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope andC/N ratios as source indicators of organic matter provenance in estuarine systems: evidencefrom the Tay Estuary, Scotland[J]. Estuarine, Coastal and Shelf Science,1994,38(3):219-233.
    [164] Guo L, White D M, Xu C, et al. Chemical and isotopic composition ofhigh-molecular-weight dissolved organic matter from the Mississippi River plume[J]. MarineChemistry,2009,114(3):63-71.
    [165] Derse E, Karen L, Scott D, et al. Identifying sources of nitrogen to Hanalei Bay, Kauai,utilizing the nitrogen isotope signature of macroalgae[J]. Environmental science&technology,2007,41(15):5217-5223.
    [166] Kao S J, Liu K K. Stable carbon and nitrogen isotope systematics in a human-disturbedwatershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbonand nitrogen fluxes[J]. Global Biogeochemical Cycles,2000,14(1):189-198.
    [167] Mueller C W, Brüggemann N, Pritsch K, et al. Initial differentiation of vertical soil organicmatter distribution and composition under juvenile beech (Fagus sylvatica L.) trees[J]. Plantand soil,2009,323(1):111-123.
    [168] Mathers N, Dalal R, Maraseni T, et al. Afforestation of agricultural land with spotted gum(Corymbia citriodora) increases soil carbon and nitrogen in a Ferrosol[C]//Proceedings of the19th World Congress of Soil Science (WCSS2010). Australian Society of Soil Science,2010:1-4.
    [169]Zhang Y, Zhang Y, Yu T, et al. Characterization and environmental significance ofdegradation of DOM from Taihu Lake under different conditions using multiple analyticaltechniques[J]. Fresenius Environmental Bulletin,2012,21:1118-1126.
    [170] Tao Y, Yuan Z, Wei M, et al. Characterization of heavy metals in water and sediments inTaihu Lake, China[J]. Environmental monitoring and assessment,2012,184(7):4367-4382.
    [171] Alain M, Anthony M. The mature of Cu bounding to natural organic matter[J]. Gechimica etCosmochimica Acta,2010,74:2556-2580.
    [172]LI F, Zhang X X, Dai R Z. The bioavailability of heavy metal and environmental qualitystandard for soil[J]. Guangdong Trace Elements Science,2008,15(1):7-10.
    [173] Shafer M M, Hoffmann S R, Overdier J T, et al. Physical and kinetic speciation of copperand zinc in three geochemically contrasting marine estuaries[J]. Environmental science&technology,2004,38(14):3810-3819.
    [174] Gondar D, Thacker S A, Tipping E, et al. Functional variability of dissolved organic matterfrom the surface water of a productive lake[J]. Water research,2008,42(1):81-90.
    [175] Qiu J W, Tang X, Zheng C, et al. Copper complexation by fulvic acid affects copper toxicityto the larvae of the polychaete Hydroides elegans [J]. Marine environmental research,2007,64(5):563-573.
    [176] Pehlivanoglu-Mantas E, Sedlak D L. Measurement of dissolved organic nitrogen forms inwastewater effluents: Concentrations, size distribution and NDMA formation potential[J].Water research,2008,42(14):3890-3898.
    [177] Xu Y D, Yue D B, Zhu Y, et al. Fractionation of dissolved organic matter in mature landfillleachate and its recycling by ultrafiltration and evaporation combined processes[J].Chemosphere,2006,64(6):903-911.
    [178] Knoth de Zarruk K, Scholer G, Dudal Y. Fluorescence fingerprints and Cu2+-complexingability of individual molecular size fractions in soil-and waste-borne DOM[J]. Chemosphere,2007,69(4):540-548.
    [179] Sleighter R L, Hatcher P G. Molecular characterization of dissolved organic matter (DOM)along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolutionelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Marine Chemistry,2008,110(3):140-152.
    [180] Ramamoorthy S, Kushner D J. Heavy metal binding sites in river water[J].1975,56,399-401.
    [181] Smith Jr R G. Evaluation of combined applications of ultrafiltration and complexationcapacity techniques to natural waters[J]. Analytical Chemistry,1976,48(1):74-76.
    [182] Chen Z, Cai Y, Solo-Gabriele H, et al. Interactions of arsenic and the dissolved substancesderived from turf soils[J]. Environmental science&technology,2006,40(15):4659-4665.
    [183] Xiao M, Wu F, Liao H, et al. Characteristics and distribution of low molecular weightorganic acids in the sediment porewaters in Bosten Lake, China[J]. Journal of EnvironmentalSciences,2010,22(3):328-337.
    [184] Wang X, Chen X, Liu S, et al. Effect of molecular weight of dissolved organic matter ontoxicity and bioavailability of copper to lettuce[J]. Journal of Environmental Sciences,2010,22(12):1960-1965.
    [185] Truitt R E, Weber J H. Determination of complexing capacity of fulvic acid for copper (II)and cadmium (II) by dialysis titration[J]. Analytical Chemistry,1981,53(2):337-342.
    [186]王静,吴丰昌,王立英,等.超滤、三维荧光光谱与高效体积排阻色谱联合表征地表水环境中溶解有机质的性质[J].环境科学,2008,29(11):3027-3034.
    [187]王立英,吴丰昌,黎文,等.水体溶解有机质富集分离方法的研究进展[J].地球与科学,2008,36(2):171-178.
    [188] Prahl F G, Bennett J T, Carpenter R. The early diagenesis of aliphatic hydrocarbons andorganic matter in sedimentary particulates from Dabob Bay, Washington[J]. Geochimica etCosmochimica Acta,1980,44(12):1967-1976.
    [189] Bessbousse H, Verchère J F, Lebrun L. Characterisation of metal-complexing membranesprepared by the semi-interpenetrating polymer networks technique. Application to the removalof heavy metal ions from aqueous solutions[J]. Chemical Engineering Journal,2012.
    [190]王福利,郭卫东.秋季南海珠江口和北部湾溶解有机物的光降解[J].环境科学学报,2010,30(3):606-613.
    [191] El Sabrouti M A, Abaza K M, Mahmoud B A. Chemical species of organic matter in an opendelta lake sediments, Egypt[J]. Fresenius Environmental Bulletin,1994,3(12):707-712.
    [192] Tanaka F, Fukushima M, Kikuchi A, et al. Influence of chemical characteristics of humicsubstances on the partition coefficient of a chlorinated dioxin[J]. Chemosphere,2005,58(10):1319-1326.
    [193]范晓明,李先国,唐旭利,等.水体中DOM的光解影响因素研究[J].海洋科学,2012,34(5):191-196.
    [194] V h talo A V, Salonen K, Salkinoja-Salonen M, et al. Photochemical mineralization ofsynthetic lignin in lake water indicates enhanced turnover of aromatic organic matter undersolar radiation[J]. Biodegradation,1999,10(6):415-420.
    [195] Osburn C L, Morris D P, Thorn K A, et al. Chemical and optical changes in freshwaterdissolved organic matter exposed to solar radiation[J]. Biogeochemistry,2001,54(3):251-278.
    [196] Don A, Kalbitz K. Amounts and degradability of dissolved organic carbon from foliar litterat different decomposition stages[J]. Soil Biology and Biochemistry,2005,37(12):2171-2179.
    [197] Obernosterer I, Benner R. Competition between biological and photochemical processes inthe mineralization of dissolved organic carbon[J]. Limnology and Oceanography,2004,49(1):117-124.
    [198] Wetzel R G, Hatcher P G, Bianchi T S. Natural photolysis by ultraviolet irradiance ofrecalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism[J].Limnology and Oceanography,1995:1369-1380.
    [199] Opsahl S, Benner R. Distribution and cycling of terrigenous dissolved organic matter in theocean[J]. Nature,1997,386,480-482.
    [200] Mostofa K M G, Yoshioka T, Konohira E, et al. Photodegradation of fluorescent dissolvedorganic matter in river waters[J]. Geochemical Journal,2007,41(5):323-331.
    [201] Paquin P R, Santore R C, Wu K B, et al. The biotic ligand model: a model of the acutetoxicity of metals to aquatic life[J]. Environmental Science&Policy,2000,3:175-182.
    [202] Playle R C, Dixon D G, Burnison K. Copper and cadmium binding to fish gills: modificationby dissolved organic carbon and synthetic ligands[J]. Canadian Journal of Fisheries andAquatic Sciences,1993,50(12):2667-2677..
    [203] Di Toro D M, Allen H E, Bergman H L, et al. Biotic ligand model of the acute toxicity ofmetals.1. Technical basis[J]. Environmental Toxicology and Chemistry,2009,20(10):2383-2396.
    [204] Slaveykova V I, Wilkinson K J. Predicting the bioavailability of metals and metal complexes:Critical review of the biotic ligand model[J]. Environmental Chemistry,2005,2(1):9-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700