用户名: 密码: 验证码:
填埋垃圾原位好氧加速稳定化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
填埋垃圾原位好氧加速稳定化技术通过对垃圾氧浓度和含水率的调节与控制,加快垃圾的稳定化进程,可在较短时间内从源头上削减或消除垃圾污染物的释放。该技术效果好,成本低,对推进生活垃圾可持续填埋技术的发展以及垃圾污染场地的治理均具有重要意义。本论文在自主开发的含水率和氧浓度双参数反馈气水联合调控系统平台的支持下,通过一系列不同填埋环境和不同初始特性垃圾的填埋模拟试验,深入研究了垃圾好氧调控过程含水率和氧浓度参数的变化特征,分析了在优化控制条件下相比其它调控措施对垃圾的加速稳定化效果,以及垃圾初始特性对好氧加速稳定化效果的影响,并基于渗滤液水质和垃圾有机质各指标科学涵义和相互关联性筛选出垃圾稳定化进程的表征指标。主要结论如下:
     确定垃圾顶层为含水率控制对象,以田间持水率为控制值,0年、1年、3年、7年填埋龄垃圾含水率控制值对应时域反射器(TDR)读数分别为80%、70%、63%、61%。确定垃圾底层内壁位置(离中心通风管最远处)为氧浓度控制对象,0年、1年、3年、7年填埋龄垃圾氧浓度控制范围分别为11%~14%、8%~14%、7%~15%、6~17%。
     TDR读数与基于水量平衡计算的垃圾体积含水率相关性分析结果表明,0年、1年、3年、7年填埋龄垃圾两者偏差不超过±5%、±2%、±1%、±1%。好氧调控期间,仅有0年垃圾在调控前期(高温期)和7年垃圾在调控后期因含水率较低触发了自控回灌。这两个潜在的缺水期在调控过程中应引起重视。
     垃圾氧浓度波动频率(通风频率)随好氧调控的进行和垃圾填埋龄的增大而降低。在调控过程中,应逐渐降低通风频率,可在保证氧浓度充足的情况下达到节约成本的目的。0年和1年垃圾耗氧速率变化特征相似,可分为3个阶段:第1阶段耗氧速率高,变化幅度大,反映了垃圾的快速降解期;第2阶段耗氧速率中等,变化幅度极小,反映了垃圾的过渡期;第3阶段耗氧速率极低,且持续下降,反映了垃圾的缓慢降解期。3年和7年垃圾耗氧速率变化呈现单调的降低规律,表明垃圾从一开始已进入缓慢降解期。
     基于渗滤液水质和垃圾有机质各指标科学涵义和相互关联性筛选出垃圾稳定化进程的表征指标为B/C和BDM,并根据指标变化趋势确定了垃圾稳定化终点值为B/C<0.1,BDM<4%。
In-situ aerobic stabilization acceleration technology for municipal solid waste(MSW) landfill can reduce or eliminate waste pollutant release from the source in arelatively short period, through control of oxygen concentration and moisture content inwaste to accelerate the process of waste stabilization. The technology is effective andlow cost, which is significant to the development of MSW sustainable landfill andtreatment of waste stacking yard. In this paper, on support of self-developedtwo-parameter (oxygen concentration and moisture content) feedback joint controlsystem, a series of landfill simulation experiments in different landfill situation andvarious initial waste characteristics were conducted. The variation characteristics ofoxygen concentration and moisture content in aerobic control process were studied. Thestabilization acceleration effect under optimal control was cpompared with other controlmeasures. The impact of initial waste characteristics to stabilization acceleration effectwas analysed. In addition, characteristic index for waste stabilization process wasscreened out from various parameters of leachate quality and organic waste, on basis oftheir scientific meaning and correlation. The main conclusions were as follows:
     The upper layer of waste was determined as target of moisture control, while fieldwater-holding rate of waste as control value. Time domain reflectometer (TDR)readings corresponding to moisture control values for waste of zero,1year,3years and7years of landfill age were80%,70%,63%and61%, respectively. The inner wall ofreactor (farthest from the center ventilation pipe) in the bottom layer of waste wasdetermined as target of oxygen control. The control ranges for waste of zero,1year,3years and7years of landfill age were11%to14%,8%to14%,7%to15%and6%to17%, respectively.
     The correlation analysis of TDR readings and volumetric moisture content basedon water balance calculation showed that for waste of zero,1year,3years and7yearsof landfill age, deviations did not exceed±5%,±2%,±1%and±1%, respectively.Through aerobic control period, auto recirculation happened in initial stage (hightemperature phase) of zero landfill age waste and in later period of7years of landfillage waste due to low moisture content. This two potential water shortage should becared in control process.
     Fluctuation frequency (ventilation frequency) of oxygen concentration in wastereduced along with aerobic control proceeding and waste landfill age increasing. Incontrol process, ventilation frequency should be gradually reduced to achieve thepurpose of cost saving, ensuring adequate oxygen concentration at the same time. Thevariation characteristic of oxygen comsumption rate was similar between zero and1year of landfill age waste. The whole control period could be divided into three stages.In the first stage, oxygen consumption rate has high value and significantchange,reflecting the rapid degradation of waste. In the second stage, oxygen consumption ratewas moderate and keeping stable, reflecting the transition period of waste. In the thirdstage, oxygen consumption rate was very low and continuing declining, reflecting theslow degradation of waste. Oxygen consumption rate of3and7years of landfill agewaste showed single reduction trend, which indicated that waste was in slowdegradation stage from the beginning.
     B/C and BDM were screened out as characteristic indices for waste stabilizationprocess from various parameters of leachate quality and organic waste, on basis of theirscientific meaning and correlation. According to index trend in control process, wastestabilization end value were B/C<0.1,BDM<4%.
引文
[1] Benson C H, Barlaz M A, Lane D T, et al. Stage-of-the practice review of bioreactiorlandills(report). Washington: EPA,2005.
    [2] Reinhart D R, McCreanor P T, Townsend T. The bioreactor landfill: Its status and future.Waste Management&Research,2002,20:172-186.
    [3]中华人民共和国国家统计局.2010年中国统计年鉴中国统计出版社,2011.
    [4] Erses A S, Onay T T, Yenigun O. Comparision of aerobic and anaerobic degradation ofmunicipal solid waste in bioreactor landfills. Bioresource Technology,2008,99:5418-5426.
    [5] Giannis A, Makripodis G, Simantiraki F. Monitoring operational and leachate characteristicsof an aerobic simulated landfill bioreactor. Waste Management,2008,28:1346-1354.
    [6] Prantl R, Tesar M, Huber-Humer M, et al. Changes in carbon and nitrogen pool during in-situaeration of old landfills under varying conditions. Waste Mangement,2006,26:373-380.
    [7] Cappai G, Carucci A, De Gioannis G, et al. Further investigations on MBP and relativeimplications. Tenth International Waste Management and Landfill Symposium, Cagliari, Italy.2005.
    [8] Hazen T C, Oldenburg C M, Borglin S E, et al. Aerobic landfill bioremediation.Environmental remediation technology program (Berkeley lab).1999-2000.
    [9] Borglin S E, Hazen T C, Oldenburg C M. Comparision of aerobic and anaerobic biotreatmentof municipal solid waste. Journal of the Air&Waste Management Association,2004,54:815-822.
    [10] Kim S Y, Tojo Y, Mastsuto T. Compartment model of aerobic and anaerobic biodegradation ina municipal solid waste landfill. Waste Management&Research,2007,25:524-537.
    [11] Von Felde D, Doedens H. Full scale results of landfilling mechanical biological pretreatedMSW. Proceedings of the7th International Waste Management and Landfill Symposium,Sardinia, Italy.1999:1533-1540.
    [12] Borglin S E, Hazen T C, Oldenburg C M. Comparision of aerobic and anaerobic biotreatmentof municipal solid waste. Journal of the Air&Waste Management Association,2004,54:815-822.
    [13] Bernstone C, Dahlin T, Ohlsson T, et al. DC-resistivity mapping of internal landfill structures:Two pre-excavation surveys. Environmental Geology,2000,39:360-371.
    [14] Kallel A, Matsuto T, Tanaka N. Determination of oxygen consumption for landfilledmunicipal solid wastes. Waste Management&Research,2003,21:346-355.
    [15] Andreas L, Bilitewski B. Effects of waste quality and landfill technology on the long-termbehaviour of municipal landfills. Waste Management&Research,1999,17:413-423.
    [16] Lee J Y, Lee C H, Lee K K. Evaluation of air injection and extraction tests in a landfill site inKorea: Implications for landfill management. Environmental Geology,2002,42:945-954.
    [17] Kallel A, Tanaka N, Matsuto T. Gas permeability and tortuosity for packed layers of processedmunicipal solid wastes and incinerator residue. Waste Management&Research,2004,22:186-194.
    [18] Bilgili M S, Demir A, Ozkaya B. Influence of leachate recirculation on aerobic and anaerobicdecomposition of solid wastes. Journal of Hazardous Materials,2007,143:177-183.
    [19] Hoehn E, Johnson C A, Huggenberger P, et al. Investigative strategies and risk assessment ofold unlined municipal solid waste landfills. Waste Management&Research,2000,18:577-589.
    [20] Daniels J L, Schmader M B, Ogunro V O, et al, January24-26,2005. Laboratory-scaleaerobic landfill bioreactor: A precursor to modeling and full-scale investigation.//Evans J C,Reddy K R, Alshawabkeh, A, et al. Waste Containment and Remediation. Austin, UnitedStates, pp.1-10.
    [21] Poulsen T G, Christophersen M, Moldrup P, et al. Modeling lateral gas transport in soiladjacent to old landfill. Journal of Environmental Engineering,2001,127:145–153.
    [22] Pommier S, Chenu D, Quintard M, et al. Modelling of moisture-dependent aerobicdegradation of solid waste. Waste Management,2008,28:1188-1200.
    [23] Brun A, Engesgaard P, Thomas H, et al. Modelling of transport and biogenochemicalprocesses in pollution plumes: Vejen landfill, Denmark. Journal of hydrololgy.2002,256:228-247.
    [24] Kallel A, Tanaka N, Tojo Y, et al. Oxygen intrusion into waste in old landfills of low organiccontent. Waste Management&Research,2006,24:242-249.
    [25] Van Ginke J T, Van Haneghem I A, Raats P A C. Physical properties of composting material:gas permeability, oxygen diffusion coefficient and thermal conductivity. BiosystemsEngineering,2002,81:113-125.
    [26] Heyer K U, Hupe K, Ritzkowski M, et al. Pollutant release and pollutant reduction-impact ofthe aeration of landfills. Waste Management,2005,25:353-359.
    [27] Das K C, Smith M C, David K, et al. Stability and quality of municipal solid waste compostfrom a landfill aerobic bioreduction process. Advances in Environmental Research,2006,6:401-409.
    [28] Rich C, Gronow J, Voulvoulis N. The potential for aeration of MSW landfills to acceleratecompletion. Waste Management,2008,28:1039-1048.
    [29] Read A D, Hudgins M, Harper S, et al. The successful demonstration of aerobic landfilling:the potential for a more sustainable solid waste management approach. Resources,Conservation and Recycling,2001,32:115–146.
    [30] Smith B. Infrared Spectral Interpretation. Boca Raton: CRC Press,1999.
    [31] Tseng D, Vir R, Traina S, et al. A fourier transform infrared spectroscopic analysis of organicmatter degradation in a bench-scale solid substrate fermentation (composting) system.Biotechnology&Bioengineering,1996,52:661-671.
    [32] Ouatmane A, Provenzano M, Hafidi M, et al. Compost maturity assessment using calorimetry,spectroscopy and chemical analysis. Compost Science&Utilization,2000,8:124-134.
    [33] Haberhauer G, Rafferty B, Strebl F, et al. Comparison of the composition of forest soil litterderived from three different sites at various decompositional stages using FTIR spectroscopy.Geoderma,1998,83:331-342.
    [34] Baddi G, Alburquerque J, Gonzalvez J, et al. Chemical and spectroscopic analyses of organicmatter transformations during composting of olive mill wastes. International Biodeterioration&Biodegradation,2004,54:39-44.
    [35] Grube M, Zagreba E, Gromozova E, et al. Comparative investigation of the macromolecularcomposition of mycelia forms Thielavia terrestris by infrared spectroscopy. VibrationalSpectroscopy,1999,19:301-306.
    [36] Reig F, Adelantado J, Moreno M. FTIR quantitative analysis of calcium carbonate (calcite)and silica (quartz) mixtures using the constant ratio method. Application to geologicalsamples. Talanta,2002,58:811-821.
    [37]张西华,黄涛,曹江英,等.厌氧填埋垃圾降解阶段指标体系的建立.环境监测管理与技术,2007,19(1):35-37.
    [38]石洪影,谢冰,魏铮,等.哈尔滨市大型生活垃圾堆场稳定化研究.哈尔滨商业大学学报(自然科学版),2008,24(3):328-330.
    [39]谢冰,刘惠玲,杨义飞,等.哈尔滨市简易垃圾堆场的垃圾降解及稳定化研究.中国给水排水,2009,25(23):123-125.
    [40]谢冰.东北地区垃圾堆场的垃圾降解行为与稳定化研究[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [41]杨玉飞,黄启飞,董路,等.填埋结构对填埋场稳定化的影响.中国环境科学,2005,25(6):710-713.
    [42]孔延花.填埋作业对模拟准好氧填埋场稳定化进程的影响研究[硕士学位论文].成都:西南交通大学,2008.
    [43]杨玉江,赵由才.填埋垃圾腐殖质组成在填埋场稳定度表征中的应用.环境污染与防治,2007,29(2):108-114.
    [44]杨玉江.填埋场生活垃圾降解与稳定化过程研究[博士学位论文].上海:同济大学,2007.
    [45]王里奥,袁辉,崔志强,等.三峡库区垃圾堆放场稳定化指标体系.重庆大学学报,2003,26(4):125-129.
    [46]王里奥,林建伟,刘元元.城市生活垃圾简易堆放场稳定化周期的研究.上海环境科学,2003,22(2):89-93.
    [47]李敏.城市垃圾填埋场稳定化研究——模糊评价方法运用[硕士学位论文].武汉:华中科技大学,2006.
    [48]刘晓立,司文静,王磊.城市垃圾填埋场稳定化沉降灰色理论分析.辽宁工程技术大学学报(自然科学版),2010,29(4):621-624.
    [49]曹丽华,吴军,周正伟,等.南京地区简易生活垃圾堆场的污染现状和稳定化表征.环境工程学报,2010,4(6):1409-1412.
    [50]林建伟,王里奥,刘元元.三峡库区垃圾堆放场稳定化程度的模糊综合判别.上海环境科学,2003,22(2):94-101.
    [51]林建伟,王里奥,刘莉,等.基于BP神经网络的垃圾堆放场稳定化程度的综合判别.新疆环境保护,2004,26(1):30-34.
    [52]刘春尧.准好氧填埋场稳定化进程的室内模拟研究[硕士学位论文].成都:西南交通大学,2004.
    [53]王静,裴佳钦.生活垃圾简易堆放场的稳定化判别及综合整治.中国资源综合利用,2006,24(9):21-24.
    [54]王罗春,赵由才,陆雍森.垃圾填埋场稳定化表征.环境卫生工程,2001,9(4):157-159.
    [55]蒋建国,张唱,黄云峰,等.垃圾填埋场稳定化表征参数的中试实验研究.中国环境科学,2008,28(1):58-62.
    [56]唐平.模拟准好氧填埋场的稳定化进程研究[硕士学位论文].成都:西南交通大学,2005.
    [57]唐平,刘丹,赵由才.准好氧填埋场稳定化指标的室内模拟研究.有色冶金设计与研究,2007,28(23):159-163.
    [58] Tang Ping, Zhao Youcai, Liu Dan. A laboratory study on stabilization criteria of semi-aerobiclandfill. Waste Management&Research,2008,26:566-572.
    [59] Boda B. Evaluation of Stability Parameters for Landfills [Master's dissertation]. Blacksburg:Virginia Polytechnic Institute and State University,2002.
    [60] Vaidya R D. Solid waste degradation, compaction and water holding capacity [Master'sdissertation]. Blacksburg: Virginia Polytechnic Institute and State University,2002.
    [61] Sang N N, Soda S, Sei K, et al. Effect of aeration on stabilization of organic solid waste andmicrobial population dynamics in lab-scale landfill bioreactor. Journal of Bioscience andBioengineering,2008,106:425-432.
    [62] Shalini S S, Karthikeyan O P, Joseph K. Biological stability of municipal solid waste fromsimulated landfills under tropical environment. Bioresource Technology,2010,101:845-852.
    [63] Alvarez-Vazquez H, Jefferson B, Judd S J. Membrane bioreactors vs conventional biologicaltreatment of landfill leachate: A brief review. Journal of Chemical Technology andBiotechnology,2004,79:1043-1049.
    [64] Kjeldsen P, Barlaz M A, Rooker A P, et al. Present and Long-Term Composition of MSWLandfill Leachate: A review. Critical Reviews in Environmental Science and Technology,2002,32:297-336.
    [65] Erses A S, Onay T T, Yenigun O. Comparison of aerobic and anaerobic degradation ofmunicipal solid waste in bioreactor landfills. Bioresource Technology,2008,99:5418-5426.
    [66] Yuen Samuel T.S. Bioreactor Landfills Promoted by Leachate Recirculation: A Full-ScaleStudy:[Doctor's dissertation]. Melbourne: University of Melbourne,1999.
    [67] Tojo Y, Sato M, Matsuo T, et al. Monitoring of leachate quality stored in gas ventilation pipesfor evaluating the degree of landfill stabilization. Waste Management&Research,2011,29:41-49.
    [68] Otieno F A O. Stabilization of solid waste through leachate recycling. Waste Management&Research,1994,12:93-100.
    [69] DeAbreu R. Facultative bioreactor landfill: An environmental and geotechnical study
    [Doctor's dissertation]. New Orleans: University of New Orleans,2003.
    [70] Kim H. Comparative studies of aerobic and anaerobic landfills using simulated landfilllysimeters[Doctor's dissertation]. Gainesville: University of Florida,2005.
    [71] Guasconi M. A Study of settlement in landfills due to biodegradation [Master's Thesis].Newark: New Jersey Institute of Technology,1995.
    [72] Hettiarachchi C H. Mechanics of biobell landfill settlement [Doctor's dissertation]. Newark:New Jersey Institute of Technology,2005.
    [73] Durmusoglu E. Municipal landfill settlement with refuse decomposition and gas generation
    [Doctor's dissertation]. College Station: Texas A&M University,2002.
    [74] Barlaz M A, Rooker A P, Kjeldsen P, et al. Critical evaluation of factors required to terminatethe postclosure monitoring period at solid waste landfills. Environmental Science&Technology,2002,36:3457-3464.
    [75] Rooker A P. A Critical Evaluation of Factors Required to Terminate the Post-closureMonitoring Period at Solid Waste Landfills [Master's Thesis]. Raleigh: North Carolina StateUniversity,2000.
    [76] Kelly R J. Solid Waste Biodegradation Enhancement and the Evaluation of AnalyticalMethods Used to Predict Waste Stability [Master's Thesis]. Blacksburg: Virginia PolytechnicInstitute and State University,2002.
    [77] Kelly R J, Shearer B D, Kim J, et al. Relationships between analytical methods utilized astools in the evaluation of landfill waste stability. Waste Management,2006,26:1349-1356.
    [78] Morris J W F, Vasuki N C, Baker J A, et al. Findings from long-term monitoring studies atMSW landfill facilities with leachate recirculation. Waste Management,2003,23:653-666.
    [79] Ritzkowski M, Heyer K U, Stegmann R. Fundamental process and implications during in situaeration of old landfills. Waste Management,2006,26:356-372.
    [80] Cossu R, Raga R. Test methods for assessing the biological stability of biodegradable waste.Waste Management,2008,28:381-388.
    [81]刘娟.垃圾填埋场稳定化进程核心表征指标研究[硕士学位论文].北京:清华大学,2009.
    [82]李华,赵由才.填埋场稳定化垃圾开采、利用及填埋场土地利用分析.环境卫生工程,2000,8(2):56-61.
    [83] Huang G, Wu Q, Wong J, et al. Transformation of organic matter during co-composting of pigmanure with sawdust. Bioresource Technology,2006,97:1834-1842.
    [84] Li Y, Sun S, Zhou Q, et al. Identification of American ginseng from different regions usingFT-IR and two-dimensional correlation IR spectroscopy. Vibration Spectroscopy,2004,36:227-232.
    [85] Ling H I, Leshchinsky D, Mohri Y, et al. Estimation of municipal solid waste landfillsettlement. Geotechnical and Geoenvironmental Engineering,1998,124:21-28.
    [86] Yen B C, Scanlon B. Sanitary landfill settlement rates. Journal of Geotechnical Engineering,1975,101:475-487.
    [87] Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on modeling ofbioreactor landfill settlement. Waste Management,2009,29:1018-1025.
    [88] Gourc J P, Staub M J, Conte M. Decoupling MSW settlement into mechanical andbiochemical processes-Modeling and validation on large-scale setups. Waste Management,2010,30:1556-1568.
    [89] Yu L, Batlle F, Lloret A. A coupled model for prediction of settlement and gas flow in MSWlandfills. International Journal for Numerical and Analytical Methods in Geomechanics,2010,34:1169-1190
    [90]欧阳峰.生物反应器填埋场渗滤液控制技术研究[博士学位论文].成都:西南交通大学,2002.
    [91]查尔.垃圾渗滤液深度处理技术研究[硕士学位论文].上海:上海交通大学,2010.
    [92] Urbini G, Ariati L, Teruggi S, et al. Leachate quality and produnction from real scale MSWlandfills.//di Pula S. Proceedings of7th International Waste Management and LandfillSymposium. Sardinia: Environmental Sanitary Engineering Centre,1999. pp.73-80.
    [93] Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management: EngineeringPrinciples and Management Issues. Beijing: Tsinghua University Press,2000.
    [94] Lo I M C. Characteristics and treatment of leachate from domestic landfills. EnvironmentInternational,1996,22:433-442.
    [95]张浩.老龄垃圾渗滤液水质特性及吸附预处理[硕士学位论文].天津:天津城市建设学院,2009.
    [96]张浩,孙力平,安莹,等.垃圾渗滤液水质特性研究进展.四川环境,2010,29(2):113-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700