用户名: 密码: 验证码:
二噁英生物检测法在重金属超累积植物热处置中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济和工业化的不断发展,由垃圾焚烧、金属冶炼、农药过度使用等造成的二噁英排放问题日益严重,并得到民众更广泛的关注。同时,上壤污染问题(有机污染物、重金属等)也日益突出,应用超累积植物修复污染土壤后必须进行二次处理,而超累积植物热处理过程中将会排放大量高浓度的重金属和二嗯英等有毒污染物。目前,二嗯英排放的研究主要应用国际黄金法则——HRGC/HRMS作为检测手段,但该方法因其分析费用高、分析周期长以及操作步骤复杂,无法适应二噁英检测新时期的特点——大量样品、低成本和快速检测,因此,为了适应大量复杂组分(例如,富含重金属)环境样品中二嗯英含量的检测,CALUX快速生物检测方法作为一种灵敏度高、准确性好、分析费用低、分析周期短以及操作步骤简单的分析技术,得到专家学者们越来越多的关注。针对CALUX生物检测方法在重金属超累积植物污染物排放特性研究方面的应用问题,本文开展了锌镉超累积植物热处置后重金属、二噁英的排放特性、控制技术以及CALUX快速生物检测技术在污染物分析检测中应用的一系列基础实验研究,得到一些具有现实指导意义的研究结果和结论。本文的主要研究内容如下:
     (1)验证了CALUX快速生物检测方法的质量控制系统,并且研究了不同前处理方法对CALUX生物检测系统的影响,为将来优化改善生物检测前处理步骤奠定实验基础。依托我国典型土壤、飞灰等样品,证明利用CALUX生物检测方法和HRGC/HRMS分析检测环境样品的PCDD/Fs结果线性相关性都很高,验证了CALUX快速生物检测方法针对环境样品可以作为HRGC/HRMS化学分析方法的替代方法,对大量复杂环境样品中PCDD/Fs进行筛选或半定量快速检测。
     (2)本文对超累积植物热处理后重金属的排放控制特性进行了较详细的实验研究。实验证明以焚烧作为最终手段,或者将热解—焚烧两种热处置方式联合应用更具有优势。重金属回收率随熔点的升高而增长,而且高熔点重金属的回收率随反应温度升高相应增加。重金属在底渣中主要以元素形态累积,而且高熔点重金属易于富集于底渣中。高岭土为控制烟气中重金属排放以及富集重金属于灰渣的最佳添加剂。
     (3)在研究植物热处理过程中重金属排放特性的基础上,开展了二噁英排放特性的研究。随焚烧温度的升高烟气中二噁英浓度不断增加,加入活性碳明显降低了PCDD/Fs的排放,因此,考虑到控制烟气中重金属和PCDD/Fs排放的共同目标,活性炭是一种最有效的吸附剂。烟气中PCDD/Fs和Cu的排放浓度变化规律相同,这说明铜氯化物可能会催化PCDD/Fs的生成,而且铜氯化物浓度的增加可能会更有效地增加PCDD/Fs的生成。随着焚烧温度的升高,飞灰中二噁英浓度也随之增加,但是底渣中二嗯英浓度随之降低,且其浓度极低,说明二噁英易于富集于飞灰中。
     (4)重金属超累积植物热处理所得环境样品中富含重金属,利用CALUX快速生物检测方法分析样品中PCDD/Fs时,重金属离子可能对检测结果具有影响效果。从总体趋势来看,重金属离子种类越多,对荧光素酶活性的削弱影响越大。五种重金属离子中对荧光素酶活性影响较大的可能为两种重金属离子——Hg2+与Cu2+。随Hg2+浓度的增加相对荧光素酶活性逐渐减弱,而且CALUX生物检测系统的H1L6.1细胞系对Hg2+容许能力较弱,而细胞系对Cu2+容许能力较强。重金属离子单独作用时对细胞存活率影响较小,Hg2+和Cu2+共同作用对细胞的存活影响最大,<0.5μg/ml-medium为细胞存活率的最大重金属离子容忍浓度。此外,实验结果表明较高浓度硝酸对CALUX生物检测系统的运行会造成实质上的影响。然而,不同浓度硝酸对细胞存活率的影响不明显且并无特定规律,可能是促进作用,也可能是抑制作用。
Along with accelerated economic and industrialization development, waste combustion, metal smelting, and overuse of pesticide have led to increasingly serious problem of PCDD/Fs emissions, and more widespread attention. Meanwhile, the issue of contaminated soil (organic pollutants, heavy metals) has been increasingly outstanding, but thermal treatment of hyperaccumulators, which remedy the contaminated soil, will discharge the flue gas and fly ash with high concentration of heavy metals, PCDD/Fs and other toxic pollutants. At present, the detection technology of PCDD/Fs is mostly HRGC/HRMS, which is the international gold method of dioxin assay, but this method can not adapt to the detection process with low cost and fast assay, because of high cost, long period and complication of the assay. Therefore, in order to adapt to the PCDD/Fs detection in environmental samples with a large number of complex components (e.g., rich in heavy metal), CALUX bioassay, as an analysis method with high sensitivity, good accuracy and low cost, short analysis period, and simple operation steps, has raised more attention of experts. This dissertation launched a series of fundamental experiment studies in the issue of application of CALUX bioassay on pollutants emission derived from thermal treatment of Zn-Cd hyperaccumulators. The objectives of the current research involved as follows:
     (1) The quality control system of CALUX bioassay has been validate, and the influence of different pretreatment methods on CALUX bioassay system has been studied in this dissertation, in order to lay the experimental groundwork for improving and optimizing the pretreatment steps of bioassay. The results of PCDD/Fs contents in typical soil and fly ash samples by CALUX bioassay and HRGC/HRMS prove that CALUX-TEQs and MS-TEQs are highly linear correlated, and CALUX bioassay, which can be the alternative method for HRGC/HRMS, can screen or semi quantitatively detect PCDD/Fs contents in a great number of environmental samples.
     (2) This dissertation is launched a series of experiment studies in the issue of emission control characteristics of heavy metals derived from hyperaccumulators thermal treatment. The results indicate that incineration, or joint application of pyrolysis and incineration, have more advantages. The recovery rates of heavy metals increase with the elevatory melting points, moreover, the recovery rates of heavy metals with high melting points raise with the increasing reaction temperatures. The heavy metals forms accumulated in bottom ash are elemental speciation, and heavy metals with high melting points tend to accumulate in bottom ash. Furthermore, kaolin is the best additive to control heavy metal emissions and to accumulate heavy metals in ashes.
     (3) Based on the study of emission characteristics of heavy metals derived from hyperaccumulators thermal treatment, the PCDD/Fs emission characteristics have been studied. PCDD/Fs concentrations in flue gas are raised with the increasing combustion temperatures, and the PCDD/Fs concentrations with activated carbon significantly decrease, but PCDD/Fs increase with kaolin as additive, so activated carbon is the most effective adsorbent, in order to control the emissions of heavy metals and PCDD/Fs. Moreover, the emission rules of PCDD/Fs and Cu in flue gas are same, so copper chlorides may catalyze the PCDD/Fs generation, and the increase of copper chlorides concentrations may further promote the generation. Considering the fly ash, PCDD/Fs concentrations also increase with the raised temperatures, but the concentrations in bottom ash are on the contrary and extremely low, which proves that PCDD/Fs tend to accumulate in fly ash.
     (4) The environmental samples derived from thermal treatment of hyperaccumulators are rich in heavy metals, so when CALUX bioassay analyzes PCDD/Fs in samples, heavy metal ions may influence the results. In general, adding more kinds of heavy metal ions will cause greater impact on luciferase activity, and the luciferase activity expression decreases. Hg2+and Cu2+are the most influential ions on luciferase activity:the increasing Hg2+concentration will reduce relative luciferase activity, and the effect of Hg2+on the luciferase activity expression is remarkable, but the effect of Cu2+is less. Five different heavy metal ions, when isolated from the mix, will inferiorly affect the relative survival ratio. The combined action of Hg2+and Cu2+most affects cell survival ratio, and their maximum tolerance concentration to relative survival ratio is<0.5μg/ml-medium. Furthermore, the results indicate that higher concentration of nitric acid solution will actually affect CALUX bioassay system, but different concentrations of nitric acid solution have no obvious effect on cell activity, and the influence may be stimulative, or may be inhibiting.
引文
[1]Mandal P. Dioxin:a review of its environmental effects and its aryl hydrocarbon receptor biology[J]. Journal of Comparative Physiology B,2005,175(4):221-230.
    [2]Brown D J, Chu M, Van Overmeire I, et al. Determination of REP values for the CALUX bioassay and comparison to the WHO TEF values[J]. Organohal. Comp.,2001,53:211-214.
    [3]Nording M, Denison M S, Baston D, et al. Analysis of dioxins in contaminated soils with the CALUX and CAFLUX bioassays, an immunoassay, and gas chromatography/high-resolution mass spectrometry[J]. Environmental Toxicology and Chemistry,2007,26(6):1122-1129.
    [4]Joung K E, Chung Y H, Sheen Y Y. DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples[J]. Science of The Total Environment,2007,372(2-3):657-667.
    [5]Hilscherova K, Kannan K, Nakata H, et al. Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentration Profiles in Sediments and Flood-Plain Soils of the Tittabawassee River, Michigan[J]. Environmental Science & Technology,2003,37(3):468-474.
    [6]Houtman C J, Booij P, Jover E, et al. Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses[J]. Chemosphere,2006,65(11):2244-2252.
    [7]Hilscherova K, Kannan K, Kang Y, et al. Characterization of dioxin-like activity of sediments from a Czech River Basin[J]. Environmental Toxicology and Chemistry, 2001,20(12):2768-2777.
    [8]Hammes K, Schmidt M W I, Smemik R J, et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007,21(3):B3016.
    [9]Hurst M R, Chan-Man Y L, Balaam J, et al. The stable aryl hydrocarbon receptor agonist potency of United Kingdom Continental Shelf (UKCS) offshore produced water effluents[J]. Marine Pollution Bulletin,2005,50(12):1694-1698.
    [10]Behnisch P, Hosoe K, Shiozaki K, et al. Melting and incineration plants of municipal waste[J]. Environmental Science and Pollution Research,2002,9(5):337-344.
    [11]Skarck M, Janosck J, Cupr P, et al. Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays[J]. Environment International,2007,33(7):859-866.
    [12]Song C L, Huang R J, Wang Y Q, et al. Determination of in Vitro Biotoxicity in Exhaust Particulate Matter from Heavy-Duty Diesel Engine[J]. Bulletin of Environmental Contamination and Toxicology,2006,76(1):24-32.
    [13]Skarck M, Janosek J, Cupr P, et al. Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays[J]. Environment International,2007,33(7):859-866.
    [14]Brown L E, Trought K R, Bailey C I, et al.2,3,7,8-TCDD equivalence and mutagenic activity associated with PM10 from three urban locations in New Zealand[J]. Science of The Total Environment,2005,349(1-3):161-174.
    [15]Kurosawa S, Aizawa H, Park J. Quartz crystal microbalance immunosensor for highly sensitive 2,3,7,8-tetrachlorodibenzo-p-dioxin detection in fly ash from municipal solid waste incinerators[J]. Analyst,2005,130(11):1495-1501.
    [16]Wang W, Gao X, Zheng L, et al. Reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans in MSWI fly ash by sodium hypophosphite[J]. Separation and Purification Technology,2006,52(1):186-190.
    [17]Gustavsson L, Hollert H, Jonsson S, et al. Reed beds receiving industrial sludge containing nitroaromatic compounds[J]. Environmental Science and Pollution Research-International, 2007,14(3):202-211.
    [18]Engwall M, Hjelm K. Uptake of dioxin-like compounds from sewage sludge into various plant species-assessment of levels using a sensitive bioassay[J]. Chemosphere,2000,40(9-11):1189-1195.
    [19]Gonzalez-Doncel M, Femndez-Torija C, Hinton D E, et al. Stage-Specific Toxicity of Cypermethrin to Medaka (Oryzias latipes) Eggs and Embryos Using a Refined Methodology for an In Vitro Fertilization Bioassay[J]. Archives of Environmental Contamination and Toxicology, 2004,48(1):87-98.
    [20]Teraoka H, Dong W, Tsujimoto Y, et al. Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish[J]. Biochemical and Biophysical Research Communications,2003,304(2):223-228.
    [21]Nakamura Masafumi. Hiyoshi's activity related to the Bioassay, 科楽世(CALUX Assay) [R]. Beijing:“二噁英快速检测-生物检测法的普及和发展趋势”研讨会暨国家环境分析测试中心-株式会社日吉生物检测合作实验室启动会,2012.
    [22]USEPA. Method 8280B Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by high resolution gas chromatography/lowresolution mass spectrometry (HRGC/LRMS)[S].2007.
    [23]USEPA. Method 8290A Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS)[S].2007.
    [24]Yan J H, Chen T, Li X D, et al. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China[J]. Journal of Hazardous Materials, 2006,135(1-3):47-51.
    [25]Singer R, Lansky D M, Hauck W W. Bioassay Glossary[J]. Pharmacopeial Forum, 2006,4(32):1359-1365.
    [26]Behnisch P A, Hosoe K, Sakai S. Bioanalytical screening methods for dioxins and dioxin-like compounds — a review of bioassay/biomarker technology[J]. Environment International,2001,27(5):413-439.
    [27]株式会社日吉的CALUX利用萤火虫的发光原理的生物检测法,二噁英类简易分析方法[EB/OL]. http://www.calux.cn/chinese_1/mechanism1.html.
    [28]Murk A J, Legler J, Denison M S, et al. Chemical-Activated Luciferase Gene Expression (CALUX):A Novelin VitroBioassay for Ah Receptor Active Compounds in Sediments and Pore Water[J]. Fundamental and Applied Toxicology,1996,33(1):149-160.
    [29]Koppen G, Covaci A, Van Cleuvenbergen R, et al. Comparison of CALUX-TEQ values with PCB and PCDD/F measurements in human serum of the Flanders Environmental and Health Study (FLEHS)[J]. Toxicology Letters,2001,123(1):59-67.
    [30]Schroijen C, Windal I, Goeyens L, et al. Study of the interference problems of dioxin-like chemicals with the bio-analytical method CALUX[J]. Talanta,2004,63(5):1261-1268.
    [31]Behnisch P A, Ilosoe K, Sakai S. Combinatorial bio/chemical analysis of dioxin and dioxin-like compounds in waste recycling, feed/food, humans/wildlife and the environment[J]. Environment International,2001,27(6):495-519.
    [32]Suzuki G, Takigami H, Kushi Y, et al. Evaluation of mixture effects in a crude extract of compost using the CALUX bioassay and HPLC fractionation[J]. Environment International, 2004,30(8):1055-1066.
    [33]Hertog M G L, Hollman P C H, Kahn M B. Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in The Netherlands [J]. J. Agric. Food Chem.,1992(40):2379-2383.
    [34]Hertog M G L, Hollman P C H, Putte B V D. Content of Potentially Anticarcinogenic Flavonoids of Tea Infusions, Wines, and Fruit Juices[J]. J. Agrlc. Food Chem., 1993(41):1242-1246.
    [35]Chao H, Tsou T, Li L, et al. Arsenic inhibits induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human hepatoma cells[J]. Journal of Hazardous Materials, 2006,137(2):716-722.
    [36]Vanderlaan M, Watkins B E, Stanker L. ES&T critical review:Environmental monitoring by immunoassay[J]. Enuron. Sci. Technol.,1988,3(22):247-254.
    [37]Harrison R O, Eduljee G H. Immunochemical analysis for dioxins — progress and prospects[J]. Science of The Total Environment,1999,239(1-3):1-18.
    [38]Kurosawa S, Park J, Aizawa H, et al. Quartz crystal microbalance immunosensors for environmental monitoring[J]. Biosensors and Bioelectronics,2006,22(4):473-481.
    [39]Harrison R O, Carlson R E. An immunoassay for TEQ screening of dioxin/furan samples: Current status of assay and applications development[J]. Chemosphere,1997,34(5-7):915-928.
    [40]Goksoyr A, Husoy A. The cytochrome P450 1A1 response in fish:application of immunodetection in environmental monitoring and toxicological testing[J]. Marine Environmental Research,1992,34(1-4):147-150.
    [41]刘燕群,周宜开,吕斌,等.二噁英的毒性与生物学检测研究进展[J].环境与职业医学,2004,21(5):417-421.
    [42]Hollert H, Durr M, Olsman H, et al. Biological and Chemical Determination of Dioxin-like Compounds in Sediments by Means of a Sediment Triad Approach in the Catchment Area of the River Neckar[J]. Ecotoxicology,2002,11(5):323-336.
    [43]Song M, Jiang Q, Xu Y, et al. AhR-active compounds in sediments of the Haihe and Dagu Rivers, China[J]. Chemosphere,2006,63(7):1222-1230.
    [44]Dindal A, Thompson E, Aume L, et al. Application of Site-Specific Calibration Data Using the CALUX by XDS Bioassay for Dioxin-like Chemicals in Soil and Sediment Samples[J]. Environmental Science & Technology,2007,41(24):8376-8382.
    [45]Nichkova M, Park E, Koivunen M E, et al. Immunochemical determination of dioxins in sediment and serurn samples[J]. Talanta,2004,63(5):1213-1223.
    [46]Behnisch P A, Hosoe K, Brouwer A, et al. Screening of Dioxin-Like Toxicity Equivalents for Various Matrices with Wildtype and Recombinant Rat Hepatoma H4IIE Cells[J]. Toxicological Sciences,2002,69(1):125-130.
    [47]Li W, Wu W Z, XU Y, et al. Measuring TCDD Equivalents in environmental samples with the micro-EROD assay:comparison with HRGC/HRMS data[J]. bulletin of Environmental Contamination And Toxicology,2002,1 (68):111-117.
    [48]Li W, Wu W Z, Barbara R B, et al. A new enzyme immunoassay for PCDD/F TEQ screening in environmental samples:Comparison to micro-EROD assay and to chemical analysis[J]. Chemosphere,1999,38(14):3313-3318.
    [49]Hirobe M, Goda Y, Okayasu Y, et al. The use of enzyme-linked immunosorbent assays (ELISA) for the determination of pollutants in environmental an industrial wastes[J]. Water Science And Technology,2006,11-12(54):1-9.
    [50]Saito K, Ishizuka M, Hosono S, et al. Development of screening method of dioxin in environmental samples by enzyme-linked immunosorbent assay[J]. Bunseki Kagaku, 2006,12(55):993-997.
    [51]Behnisch P A, Hosoe K, Shiozaki K, et al. Low-Temperature Thermal Decomposition of Dioxin-like Compounds in Fly Ash:Combination of Chemical Analysis with in Vitro Bioassays (EROD and DR-CALUX)[J]. Environmental Science & Technology,2002,36(23):5211-5217.
    [52]Brown D J, Orelien J, Gordon J D, et al. Mathematical Model Developed for Environmental Samples:Prediction of GC/MS Dioxin TEQ from XDS-CALUX Bioassay Data[J]. Environmental Science & Technology,2007,41(12):4354-4360.
    [53]Iwamoto K, Kato I, Yu X M, et al. Application of immunoassay to microquantitation of environmental endocrine disruptors[J]. Biomedical Research-Tokyo,2004,1(25):9-15.
    [54]Roy S, Mysior P, Brzezinski R. Comparison of dioxin and furan TEQ determination in contaminated soil using chemical, micro-EROD, and immunoassay analysis[J]. Chemosphere, 2002,48(8):833-842.
    [55]Schwirzer S M G, Hofmaier A M, Kettrup A, et al. Establishment of a Simple Cleanup Procedure and Bioassay for Determining 2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity Equivalents of Environmental Samples[J]. Ecotoxicology and Environmental Safety, 1998,41(1):77-82.
    [56]Center C E H G. Food storage:refrigerator and freezer[R].2004.
    [57]Hoogenboom R. The combined use of the CALUX Bioassay and the HRGC/HRMS method for the detection of novel dioxin sources and new dioxin-like compounds[J]. Environmental Science and Pollution Research,2002,9(5):304-306.
    [58]Windal I, Van Wouwe N, Eppe G, et al. Validation and Interpretation of CALUX as a Tool for the Estimation of Dioxin-Like Activity in Marine Biological Matrixes[J]. Environmental Science & Technology,2005,39(6):1741-1748.
    [59]Tsutsumi T, Amakura Y, Nakamura M, et al. Validation of the CALUX bioassay for the screening of PCDD/Fs and dioxin-like PCBs in retail fish[J]. Analyst,2003,5(128):486-492.
    [60]Scippo M, Eppe G, De Pauw E, et al. DR-CALUX(?) screening of food samples:evaluation of the quantitative approach to measure dioxin, furans and dioxin-like PCBs[J]. Talanta, 2004,63(5):1193-1202.
    [61]Warner M, Eskenazi B, Patterson D G, et al. Dioxin-Like TEQ of women from the Seveso, Italy area by ID-HRGC//HRMS and CALUX[J].2004,15(4):310-318.
    [62]Laier P, Cederberg T, Larsen J C, et al. Applicability of the CALUX bioassay for screening of dioxin levels in human milk samples[J]. Food Additives Contaminants,2003,20(6):583-595.
    [63]Brown D J, Orelien J, Gordon J D, et al. Mathematical Model Developed for Environmental Samples:Prediction of GC/MS Dioxin TEQ from XDS-CALUX Bioassay Data[J]. Environmental Science & Technology,2007,41(12):4354-4360.
    [64]Joung K E, Chung Y H, Sheen Y Y. DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples[J]. Science of The Total Environment,2007,372(2-3):657-667.
    [65]Kanematsu M, Shimizu Y, Sato K, et al. Distribution of dioxins in surface soils and river-mouth sediments and their relevance to watershed properties[J]. Water Science & Technology,2006,2(53):11-21.
    [66]Baston D S, Denison M S. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay:Normalization of superinduction results for improved sample potency estimation[J]. Talanta,2011,83(5):1415-1421.
    [67]Dindal A, Thompson E, Aume L, et al. Application of Site-Specific Calibration Data Using the CALUX by XDS Bioassay for Dioxin-like Chemicals in Soil and Sediment Samples[J]. Environmental Science & Technology,2007,41(24):8376-8382.
    [68]Nording M, Denison M S, Baston D, et al. Analysis of dioxins in contaminated soils with the CALUX and CAFLUX bioassays, an immunoassay, and gas chromatography/high-resolution mass spectrometry[J]. Environmental Toxicology and Chemistry,2007,26(6):1122-1129.
    [69]Yasuhiko F, Toshiki M, Junko F, et al. Application of iron oxide catalyst to detoxify dioxins in fly ash and possibility of CALUX assay for saving analysis cost and time[J]. Organohalogen compounds,2001(54):211-214.
    [70]T V, K V L, M E, et al. Implementation of the CALUX bioassay for the analysis of PCDD/F's and dioxin-like PCB's in atmospheric deposition samples from the flemish monitoring network [J]. Organohalogen Compounds,2011(73):1924-1927.
    [71]Behnisch P A, Hosoe K, Shiozaki K, et al. Low-Temperature Thermal Decomposition of Dioxin-like Compounds in Fly Ash:Combination of Chemical Analysis with in Vitro Bioassays (EROD and DR-CALUX)[J]. Environmental Science & Technology,2002,36(23):5211-5217.
    [72]David B, Yasuyuki K, Osamu I, et al. Validation study for the use of the dioxin responsive CALUXTM assay for analysis of Japanese ash and soil samples [J]. Organohalogen Compounds, 2000(45):200-203.Validation study for the use of the dioxin responsive CALUXTM assay for analysis of Japanese ash and soil samples
    [73]George C. C, Michael C, Dahman T, et al. A Novel Low-Cost Air Sampling Device (AmbStack Sampler) and Detection System (CALUX Bioassay) for Measuring Air Emissions of Dioxin, Furan, and PCB on a TEQ Basis Tested With a Model Industrial Boiler[J]. Organohalogen compounds,1999(40):79-82.
    [74]Kaminski M D. Assessment of gross accumulation and leaching characteristic of heavy metals in a contaminated urban[D].,1998.
    [75]姜薇.重金属污染物在红壤中迁移规律及修复技术研究[D].华中科技大学市政工程,2012.
    [76]陈静生,周家义.中国水环境重金属研究[M].北京:中国人民大学出版社,1992.
    [77]Brown T D, Smith D N, Hargis R A, et al. Mercury Measurement and Its Control:What We Know, Have Learned, and Need to Further Investigate[J]. Journal of the Air & Waste Management Association,1999,49(9):1-97.
    [78]Wang M, Zhang M. Concentrations and chemical associations of heavy metals in urban and suburban soils of the Hangzhou City, Zhejiang Province[J]. Acta Scientiae Circumstantiae, 2002,5(22):603-608.
    [79]Wang Q, Liu X, Cui Y, et al. Soil contamination and heavy metals at individual sites of industry and mining associated with wastewater irrigation in China [J].2002,3(22):354-359.
    [80]Liao G. Research on health risk for heavy metals pollution in a mine environment [J]. Progress in Safety Science and Technology,2006,5(10):205-208.
    [81]Wu D F, Wu Y B, Ren X J, et al. Application of Pollution Soil by Heave Metal in China[J]. Resource Development & Market,2010,26(1):63-65.
    [82]Ross S M. Sources and forms of potentially toxic metals in soil—plant systems[M]//Ross S M. Toxic Metals in Soil—Plant Systems. United Kingdom:John Wiley and Sons Ltd, Chichester, 1994:3-25.
    [83]Abrahams P W. Soils:their implications to human health[J]. Science of The Total Environment,2002,291(1-3):1-32.
    [84]Vasquez-Murrieta M S, Cruz-Mondragon C, Trujillo-Tapia N, et al. Nitrous oxide production of heavy metal contaminated soil[J]. Soil Biology and Biochemistry, 2006,38(5):931-940.
    [85]Wu S, Xia X, Lin C, et al. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985-2008)[J]. Journal of Hazardous Materials, 2010,179(1-3):860-868.
    [86]Park B, Lee J, Ro H, et al. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health[J]. Applied Soil Ecology, 2011,51(0):17-24.
    [87]Desaules A. Critical evaluation of soil contamination assessment methods for trace metals[J]. Science of The Total Environment,2012,426(0):120-131.
    [88]Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China[J]. Journal of Geochemical Exploration, 2010,104(3):118-127.
    [89]Tume P, Bech J, Reverter F, et al. Concentration and distribution of twelve metals in Central Catalonia surface soils[J]. Journal of Geochemical Exploration,2011,109(1-3):92-103.
    [90]谢学锦,周国华.多目标地球化学填图及多层次环境地球化学监控网络——基本概念与方法[J].地质通报,2002,21(12):809-816.
    [91]奚小环.生态地球化学:从调查实践到应用理论的系统工程[J].地学前缘,2008,15(5):1-8.
    [92]Xia X, Yang Z, Cui Y, et al. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China[J]. Journal of Geochemical Exploration,2013(online published).
    [93]唐文春,张秀芝,何玉生,等.成都盆地平原区浅层土壤Cd、Pb、Zn分布特征及其成因初探[J].地球化学,2007,36(1):89-97.
    [94]赵琦.成都市多目标地球化学调查和双层采样的效果[J].中国地质,2002,29(2):186-191.
    [95]张德存,张宏泰.江汉平原多目标地球化学调查主要成果与意义[J].中国地质,2001,28(12):1-4,21.
    [96]夏学齐,陈骏,廖启林,等.南京地区表土镉汞铅含量的空间统计分析[J].地球化学,2006,35(1):95-102.
    [97]杨忠芳,侯青叶,余涛,等.农田生态系统区域生态地球化学评价的示范研究:以成都经济区土壤Cd为例[J].地学前缘,2008,15(5):23-35.
    [98]Liao Q, Evans L J, Gu X, et al. A regional geochemical survey of soils in Jiangsu Province, China:Preliminary assessment of soil fertility and soil contamination[J]. Geoderma,2007,142(1-2):18-28.
    [99]Huang S S, Liao Q L, Hua M, et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China[J]. Chemosphere, 2007,67(11):2148-2155.
    [100]Chen T, Zheng Y, Lei M, et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China[J]. Chemosphere,2005,60(4):542-551.
    [101]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603-608.
    [102]郭平,谢忠雷,李军,等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108-112.
    [103]曾静静.兰州城市表层土壤重金属Cu, Zn, Pb的分布及磁化率特征[D].兰州大学环境科学,2007.
    [104]崔邢涛,染文楼,郭海全,等.石家庄城市土壤重金属污染及潜在生态危害评价[J].现代地质,2011,25(1):169-175.
    [105]中国国家环境监测总站.中国土壤元素背景值[M].北京,中国:中国环境科学出版社,1990.
    [106]Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation[J]. Engineering Geology,2001,60(1-4):193-207.
    [107]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44.
    [108]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [109]Raskin I, Kumar P B A N, Dushenkov S, et al. Bioconcentration of heavy metals by plants[J]. Curr. Opin. Biotechnol.,1994,5:285-290.
    [110]Cunningham S D, Berti W R. Remediation of contaminated soils with green plants:an overview.[J]. In Vitro Cell. Dev.,1993,29:207-212.
    [111]Raskin I, Smith R D, Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment[J]. Curr. Opin. Biotechnol.,1997,221-226(8).
    [112]Chaney R L, Mallik M, Li Y M, et al. Phytoremediation of soil metals.[J]. Curr. Opin. Biotechnol.,1997(8):279-284.
    [113]Cunningham S D, Berti W R, Huang J W W. Phytoremediation of contaminated soils[J]. Trends Biotechnol.,1995(13):393-397.
    [114]Salt D E, Smith R D, Raskin I. Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49(1):643-668.
    [115]邢前国,潘伟斌,张太平.重金属污染土壤的植物修复技术[J].生态科学,2003,22(3):275-279.
    [116]Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescensand metal tolerant Silene vulgaris grown on sludge-amended soils[J]. Environ. Sci. Technol.,1995,1581-1585(29).
    [117]Baker A J M, Reeves R D, McGrath S P. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants — a feasibility study[M]//HINCHEE R E, OLFENBUTTEL R F. In In Situ Bioreclamation. Stoneham, MA:Butterworth-Heinemann, 1991:539-544.
    [118]Lu S, Du Y, Zhong D, et al. Comparison of Trace Element Emissions from Thermal Treatments of Heavy Metal Hyperaccumulators[J]. Environmental Science & Technology, 2012,46(9):5025-5031.
    [119]肖维林.砷超富集植物蚁蚣草产后处置及其资源化研究[D].南昌,中国:南昌大学Environmental Engineering,2007.
    [120]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989(1):81-126.
    [121]Anderson C W N, Brooks R R, Chiarucci A, et al. Phytomining for nickel, thallium and gold[J]. Journal of Geochemical Exploration,1999,67(1-3):407-415.
    [122]石晋丽,朱甘培.中国香薷属植物的药用及开发前景[J].中药材,1994(12):10-13.
    [123]周晋,孟然,王艳,等.三氧化二砷不同给药方法治疗急性粒细胞白血病的临床鸡肉察和随访[J].中华医学杂志,2004,84(5):405-408.
    [124]彭长宏,唐谟堂.砷污染防治与含砷木材防腐剂的开发应用[J].安全与环境学报,2001,1(4):10-13.
    [125]Sas-Nowosielska A, Kucharski R, Malkowski E, et al. Phytoextraction crop disposal--an unsolved problem[J]. Environmental Pollution,2004,128(3):373-379.
    [126]Sarret G, Vangronsveld J, Manceau A, et al. Accumulation Forms of Zn and Pb in Phaseolus vulgaris in the Presence and Absence of EDTA[J]. Environmental Science & Technology, 2001,35(13):2854-2859.
    [127]Zhao F J, Lombi E, Breedon T, et al. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri[J]. Plant, Cell & Environment,2000,23(5):507-514.
    [128]Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass[J]. Organic Geochemistry,1999,30(12):1479-1493.
    [129]赵丽华,赵中一.固体废弃物处理技术现状[J].环境科学动态,2002(03):26-27.
    [130]Garbisu C, Alkorta I. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J]. Bioresource Technology,2001,77(3):229-236.
    [131]Hetland M D, Gallagher J R, Daly D J. Processing of plants used to phytoremediate lead-contaminated sites[M]//Phytoremediation Wetlands and Sediments. Columbus:Battelle Press, 2001:129-136.
    [132]Xing Q G, Pan W B. On incineration of plants with high concentration of cadmium and lead[J]. Ecology and Environment,2004,13(4):585-586,600.
    [133]Nzihou A, Stanmore B. The fate of heavy metals during combustion and gasification of contaminated biomass — A brief review[J]. Journal of Hazardous Materials,2013,256-257(0):56-66.
    [134]Chou I, Wu Y, Wang L, et al. Metal interference on luciferase activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in bioassays of recombinant mouse hepatoma cells[J]. Journal of Hazardous Materials,2009,165(1-3):881-885.
    [135]徐梦侠.城市生活垃圾焚烧厂二恶英排放的环境影响研究[D].浙江大学能源环境工程,2009.
    [136]刘红梅.城市生活垃圾焚烧厂周围环境介质中二恶英分布规律及健康风险评估研究[D].浙江大学热能工程,2013.
    [137]宋雪英,李昕馨,伦小文,等.张士灌区多环芳烃污染土壤的植物修复[J].生态环境学报,2009,18(2):531-534.
    [138]张晶,汪勇,林先贵,等.植物间作系统在多环芳烃污染农田修复中的应用[J].安全与环境学报,2009,9(5):76-80.
    [139]US EPA Method 29 Determination of Metals Emission from Stationary Sources[S]. Washington, DC:United States Environmental Protection Agency,1996.
    [140]USEPA. USEPA Method 23 Determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from municipal waste combustors[S]. Washington DC:1997.
    [141]USEPA. Method 23 Determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from municipal waste combustors[S]. Washington DC:1997.
    [142]Dioxins[R].Goverment of Japan,2009.
    [143]Kulkarni P S, Crespo J G, Afonso C A M. Dioxins sources and current remediation technologies -- A review[J]. Environment International,2008,34(1):139-153.
    [144]Stanmore B R. The formation of dioxins in combustion systems[J]. Combustion and Flame, 2004,136(3):398-427.
    [145]Finocchio E, Busca G, Notaro M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Appl. Catal. B,2006,62(1-2):12-20.
    [146]Hurst M R, Balaam J, Chan-Man Y L, et al. Determination of dioxin and dioxin-like compounds in sediments from UK estuaries using a bio-analytical approach:chemical-activated luciferase expression (CALUX) assay[J]. Marine Pollution Bulletin,2004,49(7-8):648-658.
    [147]Joung K E, Chung Y H, Sheen Y Y. DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples[J]. Sci. Total Environ., 2007,372(2-3):657-667.
    [148]National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants [R]. The People's Republic of China:2007.
    [149]Fiedler H. National PCDD/PCDF release inventories under the Stockholm Convention on Persistent Organic Pollutants[J]. Chemosphere,2007,67(9):S96-S108.
    [150]QuaB U, Fermann M, Broker G. The European dioxin air emission inventory project--final results[J]. Chemosphere,2004,54(9):1319-1327.
    [151]Everaert K, Baeyens J. The formation and emission of dioxins in large scale thermal processes[J]. Chemosphere,2002,46(3):439-448.
    [152]Schuhmacher M, Granero S, Llobet J M, et al. Assessment of baseline levels of PCDD/F in soils in the neighbourhood of a new hazardous waste incinerator in Catalonia, Spain[J]. Chemosphere,1997,35(9):1947-1958.
    [153]Lohmann R, Jones K C. Dioxins and furans in air and deposition:A review of levels, behaviour and processes[J]. Sci. Total Environ.,1998,219(1):53-81.
    [154]Li X, Yan M, Chen T, et al. Levels of PCDD/Fs in soil in the vicinity of a medical waste incinerator in China:The temporal variation during 2007-2009[J]. Journal of Hazardous Materials, 2010,179(1-3):783-789.
    [155]Yan J H, Xu M X, Lu S Y, et al. PCDD/F concentrations of agricultural soil in the vicinity of fluidized bed incinerators of co-firing MSW with coal in Hangzhou, China[J]. Journal of Hazardous Materials,2008,151 (2-3):522-530.
    [156]Alcock R E, Gemmill R, Jones K C. Improvements to the UK PCDD/F and PCB atmospheric emission inventory following an emissions measurement programme[J]. Chemosphere,1999,38(4):759-770.
    [157]H. Jones P, de Gerlache J, Marti E, et al. The global exposure of man to dioxins:A perspective on industrial waste incineration[J]. Chemosphere,1993,26(8):1491-1497.
    [158]Database of sources of environmental releases of dioxin-like compounds in the United States[R]. Washington DC, USA:Exposure Assessment and Risk Characterization Group, National Center for Environmental Assessment-Washington Office, Office of Research, Development and U.S. Environmental Protection Agency,2000.
    [159]The environmental monitoring report on the Persistent Organic Pollutants (POPs) in Japan[R]. Japan:Environmental Health Department, Ministry of the Environment, Government of Japan,2002.
    [160]Abad E, Adrados M A, Caixach J, et al. Dioxin abatement strategies and mass balance at a municipal waste management plant[J]. Environmental Science & Technology,2002,36(1):92-99.
    [161]Kim B, Lee S, Mun S, et al. A case study of dioxin monitoring in and around an industrial waste incinerator in Korea[J]. Chemosphere,2005,58(11):1589-1599.
    [162]Domingo J L, Schuhmacher M, Muller L, et al. Evaluating the environmental impact of an old municipal waste incinerator:PCDD/F levels in soil and vegetation samples[J]. Journal of Hazardous Materials,2000,76(1):1-12.
    [163]Domingo J L, Schuhmacher M, Granero S, et al. PCDD/F Levels in the Vicinity of an Old Municipal Solid Waste Incinerator:Temporal Variation in Soils[J]. Archives of Environmental Contamination and Toxicology,1999,36(4):377-383.
    [164]Liu J, Liu W. Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) in the soil in a typical area of eastern China[J]. Journal of Hazardous Materials,2009,163(2-3):959-966.
    [165]Method for toxic equivalents (TEQs) determinations for dioxin-like chemical activity with the CALUX bioassay[R]. USA:Environmental Protection Agency,2007.
    [166]Brown D J, Goeyens L, Overmeire I V, et al. QUALITY CONTROL CRITERIA IMPLEMENTED FOR MONITORING THE USE OF THE CALUX(?) BIOASSAY[J]. Organohalogen Compounds,2001(54):32-35.
    [167]Montgomery D C. Statistical basis of the control chart[M]//Introduction to statistical quality control. New York:John Wiley,2001.
    [168]Besselink H, Jones A D, Pijnappels M, et al. Comparison of DR-CALUX and HRGC/MS-derived TEQ's:introduction of conversion factors[J]. Organohalogen Compounds, 2003(60):203-206.
    [169]Commission Directive 2002/69/EC of 26 July 2002 laying down the sampling methods and the methods of analysis for the official control of dioxins and the determination of dioxin-like PCBs in foodstuffs Official journal of the European communities[R]. European Commission, 2002.
    [170]USEPA. Technologies for monitoring and measurement of dioxin and dioxin-like compounds in soil and sediment[R].USEPA office and research and development,2005.
    [171]Chao H, Wang Y, Chen H, et al. Differential effect of arecoline on the endogenous dioxin-responsive cytochrome P450 1A1 and on a stably transfected dioxin-responsive element-driven reporter in human hepatoma cells[J]. Journal of Hazardous Materials, 2007,149(1):234-237.
    [172]Hoogenboom L, Traag W, Bovee T, et al. The CALUX bioassay:Current status of its application to screening food and feed[J]. TrAC Trends in Analytical Chemistry, 2006,25(4):410-420.
    [173]Chang M, Chung Y. Dioxin contents in fly ashes of MSW incineration in Taiwan[J]. Chemosphere,1998,36(9):1959-1968.
    [174]Cobo M, Galvez A, Conesa J A, et al. Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia[J]. Journal of Hazardous Materials,2009,168(2-3):1223-1232.
    [175]Schuhmacher M, Agramunt M C, Rodriguez-Larena M C, et al. Baseline levels of PCDD/Fs in soil and herbage samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain[J]. Chemosphere,2002,46(9-10):1343-1350.
    [176]Caserini S, Cernuschi S, Giugliano M, et al. Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants[J]. Chemosphere,2004,54(9):1279-1287.
    [177]Im S H, Kannan K, Giesy J P, et al. Concentrations and Profiles of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Soils from Korea[J]. Environmental Science & Technology,2002,36(17):3700-3705.
    [178]Schuhmacher M, Domingo J L. Long-term study of environmental levels of dioxins and furans in the vicinity of a municipal solid waste incinerator[J]. Environment International, 2006,32(3):397-404.
    [179]Schuhmacher M, Granero S, Rivera J, et al. Atmospheric deposition of PCDD/Fs near an old municipal solid waste incinerator:levels in soil and vegetation[J]. Chemosphere, 2000,40(6):593-600.
    [180]Oh J, Choi S, Lee S, et al. Influence of a municipal solid waste incinerator on ambient air and soil PCDD/Fs levels[J]. Chemosphere,2006,64(4):579-587.
    [181]Schulz D. PCDD/PCDF-German policy and measures to protect man and the environment[J]. Chemosphere,1993,27(1-3):501-507.
    [182]Shaw S D, Berger M L, Brenner D, et al. Application of the CALUX bioassay for the determination of PCDD/Fs and dioxin-like PCBs in tissues of harbor seals[J]. Organohal. Comp., 2006,68:587-590.
    [183]Hasegawa J, Guruge K S, Seike N, et al. Determination of PCDD/Fs and dioxin-like PCBs in fish oils for feed ingredients by congener-specific chemical analysis and CALUX bioassay[J]. Chemosphere,2007,69(8):1188-1194.
    [184]Misaki K, Kawami H, Tanaka T, et al. Aryl hydrocarbon receptor ligand activity of polycyclic aromatic ketones and polycyclic aromatic quinones[J]. Environmental Toxicology and Chemistry,2007,26(7):1370-1379.
    [185]Hoogenboom R, Van Ede K, Portier L, et al. The use of the DR CALUX assay for identification of novel risks[J]. Organohal. Comp.,2008,70:760-763.
    [186]Brown D J, Van Overmeire I, Goeyens L, et al. Analysis of Ah receptor pathway activation by brominated flame retardants[J]. Chemosphere,2004,55(11):1509-1518.
    [187]Behnisch P A, Hosoe K, Sakai S. Brominated dioxin-like compounds:in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds[J]. Environment International,2003,29(6):861-877.
    [188]Samara F, Gullett B K, Harrison R O, et al. Determination of relative assay response factors for toxic chlorinated and brominated dioxins/furans using an enzyme immunoassay (EIA) and a chemically-activated luciferase gene expression cell bioassay (CALUX)[J]. Environment International,2009,35(3):588-593.
    [189]Samara F, Wyrzykowska B, Tabor D, et al. Toxicity comparison of chlorinated and brominated dibenzo-p-dioxins and dibenzofurans in industrial source samples by HRGC/HRMS and enzyme immunoassay[J]. Environment International,2010,36(3):247-253.
    [190]Okimoto M, Takechi Y, Nakamura M, et al. Toxicity evaluation of brominated and brominated/chlorinated dioxins using the CALUX bioassay[J]. Organohal. Comp., 2008,70:1821-1824.
    [191]Van den Berg M, Birnbaum L S, Denison M, et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds [J]. Toxicological Sciences,2006,93(2):223-241.
    [192]Domingo J L, Granero S, Schuhmacher M. Congener profiles of PCDD/Fs in soil and vegetation samples collected near to a municipal waste incinerator[J]. Chemosphere, 2001,43(4-7):517-524.
    [193]Domingo J L, Schuhmacher M, Agramunt M C, et al. PCDD/F levels in the neighbourhood of a municipal solid waste incinerator after introduction of technical improvements in the facility[J]. Environment International,2002,28(1-2):19-27.
    [194]Schuhmacher M, Granero S, Xifr A, et al. Levels of PCDD/Fs in soil samples in the vicinity of a municipal solid waste incinerator[J]. Chemosphere,1998,37(9-12):2127-2137.
    [195]Schuhmacher M, Domingo J L, Granero S, et al. Soil monitoring in the vicinity of a municipal solid waste incinerator:Temporal variation of PCDD/Fs[J]. Chemosphere, 1999,39(3):419-429.
    [196]Wagrowski D M, Hites R A. Insights into the Global Distribution of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans[J]. Environmental Science & Technology, 2000,34(14):2952-2958.
    [197]Hagenmaier H, Lindig C, She J. Correlation of environmental occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans with possible sources[J]. Chemosphere, 1994,29(9-11):2163-2174.
    [198]Mininni G, Sbrilli A, Maria Braguglia C, et al. Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator[J]. Atmospheric Environment,2007,41 (38):8527-8536.
    [199]Oh J, Lee K, Lee J, et al. The evaluation of PCDD/Fs from various Korean incinerators[J]. Chemosphere,1999,38(9):2097-2108.
    [200]Alcock R E, Jones K C. Pentachlorophenol (PCP) and chloranil as PCDD/F sources to sewage sludge and sludge amended soils in the UK[J]. Chemosphere,1997,35(10):2317-2330.
    [201]Kanematsu M, Shimizu Y, Sato K, et al. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields:Combination usage of the CALUX assay with HRGC/HRMS[J]. Chemosphere,2009,76(6):860-866.
    [202]Lundin L, Marklund S. Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a Municipal Solid-Waste Incinerator[J]. Environmental Science & Technology, 2008,42(4):1245-1250.
    [203]Stieglitz L, Zwick G, Beck J, et al. On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators[J]. Chemosphere,1989,18(1-6):1219-1226.
    [204]Olie K, Vermeulen P L, Hutzinger O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands[J]. Chemosphere,1977,6(8):455-459.
    [205]Chen T, Yan J H, Lu S Y, et al. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china[J]. Journal of Hazardous Materials, 2008,150(3):510-514.
    [206]Shin K, Chang Y. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from korean municipal solid waste incinerators[J]. Chemosphere,1999,38(11):2655-2666.
    [207]XDS-CALUX Assay Report[R].XDS Inc.,2005.
    [208]Giachetti G, Sebastiani L. Metal accumulation in poplar plant grown with industrial wastes[J]. Chemosphere,2006,64(3):446-454.
    [209]Raskin I, Smith R D, Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment[J]. Current Opinion in Biotechnology,1997,8(2):221-226.
    [210]Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. 2001,409(6820):579.
    [211]Zhao F J, Dunham S J, McGrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist,2002,156(1):27-31.
    [212]Epelde L, Becerril J M, Hernandez-Allica J, et al. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction[J]. Applied Soil Ecology,2008,39(3):299-310.
    [213]Kumar P B A N, Dushenkov V, Motto H, et al. Phytoextraction:The Use of Plants To Remove Heavy Metals from Soils[J]. Environmental Science & Technology, 1995,29(5):1232-1238.
    [214]Peterson P J. Adaption to toxic metals[M]//ROBB D A, PIERPOINT W S. Metal and micronutrients:uptake and utilization by plants. London:Academic Press,1983:51-69.
    [215]Koppolu L, Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I:Preparation of synthetic hyperaccumulator biomass[J]. Biomass and Bioenergy,2003,24(1):69-79.
    [216]Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration,1977,7:49-57.
    [217]Keller C, Ludwig C, Davoli F, et al. Thermal Treatment of Metal-Enriched Biomass Produced from Heavy Metal Phytoextraction[J]. Environmental Science & Technology, 2005,39(9):3359-3367.
    [218]Demirbas A H. Biofuels for future transportation necessity[J]. Energy Educ Sci Technol A, 2010(26):13-23.
    [219]Li C, Suzuki K. Resources, properties and utilization of tar[J]. Resources, Conservation and Recycling,2010,54(11):905-915.
    [220]Meawad A S, Bojinova D Y, Pelovski Y G. An overview of metals recovery from thermal power plant solid wastes[J]. Waste Management,2010,30(12):2548-2559.
    [221]Nonpolluting municipal waste incineration:Myth or reality?[R]. Bern, Switzerland:SAEFL (Swiss Agency for the Environment Forests and Landscape),1999.
    [222]Belevi H, Moench H. Factors Determining the Element Behavior in Municipal Solid Waste Incinerators.1. Field Studies[J]. Environmental Science & Technology,2000,34(12):2501-2506.
    [223]Gullett B K, Touati A. PCDD/F emissions from forest fire simulations[J]. Atmospheric Environment,2003,37(6):803-813.
    [224]Gullett B, Touati A. PCDD/F emissions from burning wheat and rice field residue[J]. Atmospheric Environment,2003,37(35):4893-4899.
    [225]Shen C, Tang X, Yao J, et al. Levels and patterns of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province, China[J]. Journal of Hazardous Materials,2010,179(1-3):197-202.
    [226]Nganai S, Lomnicki S, Dellinger B. Ferric Oxide Mediated Formation of PCDD/Fs from 2-Monochlorophenol[J]. Environmental Science & Technology,2008,43(2):368-373.
    [227]Lavric E D, Konnov A A, Ruyck J D. Modeling the formation of precursors of dioxins during combustion of woody fuel volatiles[J]. Fuel,2005,84(4):323-334.
    [228]Oehme M, Muller M D. Levels and congener patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans in solid residues from wood-fired boilers. Influence of combustion conditions and fuel type[J]. Chemosphere,1995,30(8):1527-1539.
    [229]Wey M Y, Wu H Y, Tseng H H, et al. Experimental Testing of Spray Dryer for Control of Incineration Emissions[J]. Journal of Environmental Science and Health, Part A, 2003,38(5):975-989.
    [230][2013-6-20]. http://baike.baidu.com/view/3522457.htm.
    [231]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution ecology and phytochemistry[J]. Biorecovery, 1989,1:81-126.
    [232]Reeves R D, Baker A J M. Metal-accumulating plants[M]//RASKIN I, ENSLEY B D. Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. New York:John Wiley & Sons, Inc.,2000:193-230.
    [233]Baker A J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils[M]//TERRY N, BANUELOS G, VANGRONSVELD J. Phytoremediation of Contaminated Soil and Water. Boca Raton, FL:Lewis Publisher,2000:85-107.
    [234]Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004,259(1):181-189.
    [235]Jiang J P, Wu L H, Li N, et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties[J]. European Journal of Soil Biology,2010,46(1):18-26.
    [236]Yang J. Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process[J]. Bioresource Technology, 2010,101(19):7653-7657.
    [237]Deng D M, Shu W S, Zhang J, et al. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii[J]. Environmental Pollution,2007,147(2):381-386.
    [238]Yang J, Peng C, Tang C, et al. Zinc removal from hyperaccumulator Sedum alfredii Hance biomass[J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1353-1359.
    [239]Yan R, Gauthier D, Flamant G, et al. Thermodynamic study of the behaviour of minor coal elements and their affinities to sulphur during coal combustion[J]. Fuel,1999,78(15):1817-1829.
    [240]Belevi H, Langmeier M. Factors Determining the Element Behavior in Municipal Solid Waste Incinerators.2. Laboratory Experiments[J]. Environmental Science & Technology, 2000,34(12):2507-2512.
    [241]Yan R, Gauthier D, Flamant G. Volatility and chemistry of trace elements in a coal combustor[J]. Fuel,2001,80(15):2217-2226.
    [242]Koppolu L, Agblevor F A, Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅱ:Lab-scale pyrolysis of synthetic hyperaccumulator biomass[J]. Biomass and Bioenergy,2003,25(6):651-663.
    [243]Abanades S, Flamant G, Gauthier D. Kineties of Heavy Metal Vaporization from Model Wastes in a Fluidized Bed[J]. Environmental Science & Technology,2002,36(17):3879-3884.
    [244]Abanades S, Flamant G, Gauthier D. Modelling of heavy metal vaporisation from a mineral matrix[J]. Journal of Hazardous Materials,2001,88(1):75-94.
    [245]Sun L S, Abanades S, Lu J D, et al. Volatilization of heavy metals during incineration of municipal solid wastes[J]. Journal of Environmental Sciences,2004,16(4):635-639.
    [246]Liu J, Falcoz Q, Gauthier D, et al. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion[J]. Chemosphere, 2010,80(3):241-247.
    [247]Linak W P, Wendt J O L. Toxic metal emissions from incineration:Mechanisms and control[J]. Progress in Energy and Combustion Science,1993,19(2):145-185.
    [248]Wey M, Hwang J, Chen J. Mass and Elemental Size Distribution of Chromium, Lead and Cadmium under Various Incineration Conditions [J]. Journal of Chemical Engineering of Japan, 1998,31(4):506-517.
    [249]Morf L S, Brunner P H, Spaun S. Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator[J]. Waste Management and Research, 2000,18(1):4-15.
    [250]Pollution control standard for hazardous wastes incineration[R]. Beijing, P.R.C.:State Environmental Protection Administration and State Administration of Quality Supervision, Inspection and Quarantine,2001.
    [251]Vogg H. Behavior of metals in the incineration of municipal wastes[J]. Int. Chem. Eng., 1987,27:177-182.
    [252]Chun P, Hall M J. Sorbent capture of lead and barium in a bench-scale incinerator combusting simulated waste lubricating oil[J]. Combust. Sci. Tech.,1996,116:517-539.
    [253]Gullett B K, Raghunathan K. Reduction of Coal-Based Metal Emissions by Furnace Sorbent Injection[J]. Energy & Fuels,1994,8(5):1068-1076.
    [254]Rio S, Verwilghen C, Ramaroson J, et al. Heavy metal vaporization and abatement during thermal treatment of modified wastes[J]. Journal of Hazardous Materials,2007,148(3):521-528.
    [255]Sloss L, Smith I. Trace Element Emission[M]. London, UK:IEA Clean Coal Centre Press, 2000.
    [256]Jakob A, Stucki S, Kuhn P. Evaporation of heavy metals during the heat tratment of municipal solid waste incinerator fly ash[J]. Environ. Sci. Technol.,1995,29:2429-2436.
    [257]Lind T, Kauppinen E I, Nilsson K. Heavy metal behavior during circulating fluidized bed combustion of willow (salix):the 15th international conference on fluidized bed combustion, Savannah, Georgia,1999[C].
    [258]Chiang K, Wang K, Lin F, et al. Chloride effects on the speciation and partitioning of heavy metal during the municipal solid waste incineration process[J]. Science of The Total Environment, 1997,203(2):129-140.
    [259]Verhulst D, Buekens A, Spencer P J, et al. Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces[J]. Environmental Science & Technology, 1996,30(1):50-56.
    [260]Y. N, M. L, D. R. Environmental impact of a cadmium atmospheric pollution at Marseille (South France)[J]. J. Phys. IV France,2003,107:961-964.
    [261]Savage G M, Bordson D L, Diaz L F. Important issues related to air pollution at municipal solid waste facilities[J]. Environmental Progress,1988,7(2):123-130.
    [262]Tran Q K, Steenari B, lisa K, et al. Capture of Potassium and Cadmium by Kaolin in Oxidizing and Reducing Atmospheres[J]. Energy & Fuels,2004,18(6):1870-1876.
    [263]Rio S, Verwilghen C, Ramaroson J, et al. Heavy metal vaporization and abatement during thermal treatment of modified wastes[J]. Journal of Hazardous Materials,2007,148(3):521-528.
    [264]Huang Y, Jin B, Zhong Z, et al. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology,2004,86(1):23-32.
    [265]Clement R, Tashiro C. Forest fires as a source of PCDDs and PCDFs:the 11th International Symposium on Chlorinated Dioxins and Related Compounds, Research Triangle Park, NC, 1991 [C].
    [266]Tejima H, Nakagawa I, Shinoda T, et al. PCDDs/PCDFs reduction by good combustion technology and fabric filter with/without activated carbon injection[J]. Chemosphere, 1996,32(1):169-175.
    [267]国家环境保护总局,国家质量监督检验检疫总局.GB18484—2001危险废物焚烧污染控制标准[S].2001.
    [268]国家环保总局.GB18485-2001生活垃圾焚烧污染控制标准[S].2001.
    [269]McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review[J]. Chemical Engineering Journal,2002,86(3):343-368.
    [270]Annex I:Applicable existing national and subnational standards, guidelines or guidance for BAT[EB/OL].http://www.pops.int/documents/meetings/bat%5Fbep/3rd%5Fsession/egb%5F3%5 F2/secsxannexesi%5Fiiofguidance.doc.
    [271]Guideline A-8 [EB/OL]. http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_079113.pdf.
    [272]Hasegawa J, Guruge K S, Seike N, et al. Determination of PCDD/Fs and dioxin-like PCBs in fish oils for feed ingredients by congener-specific chemical analysis and CALUX bioassay[J]. Chemosphere,2007,69(8):1188-1194.
    [273]Ni Y, Zhang H, Fan S, et al. Emissions of PCDD/Fs from municipal solid waste incinerators in China[J]. Chemosphere,2009,75(9):1153-1158.
    [274]Gao H, Ni Y, Zhang H, et al. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China[J]. Chemosphere,2009,77(5):634-639.
    [275]陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究[D].浙江大学环境 工程,2006.
    [276]Wang D, Xu X, Zheng M, et al. Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion[J]. Chemosphere,2002,48(8):857-863.
    [277]Du Y, Jin Y, Lu S, et al. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China[J]. Journal of the Air & Waste Management Association,2013,63(2):230-236.
    [278]Chang Y, Fan W, Dai W, et al. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators[J]. Journal of Hazardous Materials,2011,192(2):521-529.
    [279]Azkona A, Tsotsos D. Dangerous substances in waste, Technical report No 38[R]. Copenhagen, Denmark:European Environment Agency,2000.
    [280]Lundin L, Marklund S. Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator[J]. Environmental Science & Technology, 2008,42(4):1245-1250.
    [281]Wikstrom E. The role of chlorine during waste combustion[D]. Umea, Sweden:Umea University,1999.
    [282]Wehrmeier A, Lenoir D, Schramm K W, et al. Patterns of isomers of chlorinated dibenzo-p-dioxins as tool for elucidation of thermal formation mechanisms[J]. Chemosphere, 1998,36(13):2775-2801.
    [283]Weber R, Hagenmaier H. PCDD/PCDF formation in fluidized bed incineration[J]. Chemosphere,1999,38(11):2643-2654.
    [284]Ryu J, Choi K, Mulholland J A. Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion:Formation mechanism fingerprints [J]. Chemosphere,2006,65(9):1526-1536.
    [285]Huang H, Buekens A. On the mechanisms of dioxin formation in combustion processes[J]. Chemosphere,1995,31(9):4099-4117.
    [286]潘声旺,魏世强,袁馨,等.环毛蚓在高羊茅修复土壤菲污染过程中的作用[J].生态环境学报,2010,19(3):594-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700