用户名: 密码: 验证码:
混凝—生物脱氮联合工艺处理垃圾渗滤液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫生填埋依然是现今最普遍应用的城市固体废弃物处理处置方式之一,在其过程中产生的一种有毒害作用、具有严重污染性质且成分非常复杂的高浓度废水被称之为垃圾渗滤液。通常来说,垃圾渗滤液中含有大量的难降解有机物,高浓度的化学需氧量(Chemical oxygen demand, CODcr)和氨氮(NH4+-N),其可生化性差(BOD5/CODCr),碳氮比(Carbon to nitrogen ratio, C/N)低,并存在重金属离子和无机大分子物质。由于渗滤液的水质具有特殊性,使得渗滤液的有效收集与处理已成为城市环境保护中亟待解决的问题之一。
     本研究采用混凝法作为前处理工艺,重点考察中老龄垃圾渗滤液中以腐殖酸(Humic acids, HA)为代表的难降解类有机质的去除,以提高进水渗滤液的可生化性,并为后续生物处理工艺减少污染负荷;而后采用自主设计的新型生物脱氮系统对渗滤液进行深度处理,旨在进一步去除渗滤液中有机污染物以及深度脱氮。
     本文研究中,先对混凝-絮凝预处理渗滤液的工艺条件进行了初步优化,得到了七种混凝剂——硫酸铝(A12(SO4)3)、氯化铝(AlCl3)、硫酸铁(Fe2(SO4)3)、氯化铁(FeCl3)、聚合氯化铝(Poly-aluminum chloride, PAC)、聚合硫酸铁(Polyferric sulfate, PFS)和聚合氯化铝铁(Polymeric aluminum ferric chloride, PAFC)的较佳的工艺条件范围,并对影响其混凝效果的四种因素分别进行分析,发现混凝剂投加剂量以及渗滤液的初始pH值对处理效果的影响最大;其后,利用响应面分析法(RSM)针对这两个重要因素进行了深入的优化,并首次将HA的去除作为重要的响应用于优化混凝-絮凝工艺。试验获得了七种混凝剂的最佳工艺条件,A12(SO4)3投加剂量14.00g/L(相当于铝含量为0.042molAl3+/L),初始pH7.50; AlCl3投加剂量12.00g/L(相当于铝含量为0.050mol A13+/L),初始pH7.00; Fe2(SO4)3投加剂量12.00g/L(相当于铁含量为0.046mol Fe3+/L),初始pH7.50;FeCl3投加剂量10.00g/L(相当于铁含量为0.037mol Fe3+/L),初始pH8.00;PAC投加剂量15.00g/L(铝含量大约为0.082mol A13+/L),初始pH6.00; PFS投加剂量8.00g/L(相当于铁含量为0.008mol Fe3+/L),初始pH6.00; PAFC投加剂量15.00g/L(相当于铝含量为0.085mol A13+/L.铁含量为0.002~0.004molFe3+/L),初始pH5.50,实现了渗滤液中CODCr、色度、浊度、HA、悬浮固体(Suspended solid, SS)以及NH4+-N的同时去除,由于PFS的最佳投加剂量为最少,加之其受投加剂量和初始pH值的影响最小,所以推荐采用取PFS作为混凝剂预处理渗滤液,以求达到去除其中大部分的CODCr、难降解物质以及少部分的NH4+-N,并提高渗滤液的可生化性的目的;此外,在响应面优化得到的准确的最佳工艺条件下,采用傅里叶红外光谱(Fourier transform infrared spectrometer, FTIR)对混凝预处理前后的渗滤液进行了表征,结果表明,与原液相比,经七种混凝剂处理后的渗滤液中,一些符合HA分子结构官能团得以消失或减少,说明不同的混凝剂对渗滤液中HA类的难降解物质均有着不同程度的去除。
     本研究还对自主设计的生物脱氮系统的整体性能进行了探讨,以求达到有效去除CODcr和深度脱氮的目的,结果发现:反应器缺氧槽中溶解氧(Dissolved oxygen, DO)控制在0.4~0.6mg/L左右,好氧槽中DO维持在4mg/L左右,温度30℃,HRT为10d,回流比为1:1,逐步增加进水中渗滤液的比例(10.00%~50.00%),当反应器的新鲜进水中渗滤液所占比例为50.00%,CODcr浓度为5000~5500mg/L, NH4+-N浓度为1450-1510mg/L时,经过120d的运行,反应器最终完成了启动,获得80.00%以上的CODcr去除率(最高为83.84%),NH4+-N及总氮(Total nitrogen, TN)的去除率也分别可达85.00%和81.00%以上(最高值分别为88.87%和85.07%)。
     基于混凝处理工艺和生物脱氮系统的研究,将两个工艺相联合用于处理垃圾渗滤液,并对联合工艺的处理效果进行了分析。结果发现:混凝-生物脱氮联合工艺,能高效处理垃圾渗滤液的CODCr、NH4+-N及TN,去除率分别为91.98%、88.92%和87.37%。
     本课题对不同混凝剂处理渗滤液的混凝性能进行了分析,对混凝剂去除渗滤液中难降解物质的机理进行了初步探讨,填补了混凝-絮凝处理垃圾渗滤液的报道中鲜有难降解有机物去除效果和机理探讨研究的空缺,并为混凝-絮凝工艺处理渗滤液的的实际运用提供一定的参考价值;成功将混凝工艺与生物脱氮工艺相联合,实现渗滤液的高效处理,为渗滤液的处理提供了一种简便且高效的方法,具有一定的理论意义以及广阔的应用前景。
Landfill still remains the most commonly employed treatment for municipal solid waste (MSW) disposal around the world, which generates a high-strength wastewater with complex constituents referred to as landfill leachate. Landfill leachate is generally characterized by a large amount of recalcitrant organic substances, high chemical oxygen demand (CODcr) and ammonium content, low biodegradability (BOD5/CODcr), low carbon to nitrogen ratio (C/N), and the presence of heavy metals and inorganic macro-constituents. Therefore, the collection and treatment of landfill leachate is nowadays recognized as one of the most urgent environmental issues.
     In our investigation, coagulation as a pretreatment was applied to remove recalcitrant organic substances from stabilized landfill leachate, such as humic acids (HA), to improve the biodegradability of leachate and reduce pollutant load of subsequent biological treatment. Then, a self-designed biological nitrogen removal system as an advanced treatment was employed to remove organic pollutants and nitrogen.
     In our studies, process conditions of coagulation-flocculation were optimized by single factor experiments at first. Aluminum sulfate (Al2(SO4)3), aluminum chloride (AICl3), ferric sulfate (Fe2(SO4)3), ferric chloride (FeCl3), polyaluminum chloride (PAC), polyferric sulfate (PFS) and polyaluminum ferric chloride (PAFC), as inorganic coagulants, were used to pretreat landfill leachate. The appropriate ranges of process conditions for the seven coagulants were obtained, and four influencing factors of coagulation process were analyzed. It was found that dose of coagulant and initial pH values of leachate were the most two important factors. Thereafter, response surface methodology (RSM) was used for the further optimization of the two important factors, and HA removal as an important response of RSM was originally used to optimize coagulation-flocculation process. Finally, the obtained optimum process conditions were Al2(SO4)3dose of14.00g/L (corresponding to aluminum content of0.042mol A13+/L) at initial pH7.50, AICl3dose of12.00g/L (corresponding to aluminum content of0.050mol A13+/L) at initial pH7.00, Fe2(SO4)3dose of12.00g/L (corresponding to iron content of0.046mol Fe3+/L) at initial pH7.50, FeCl3dose of10.00g/L (corresponding to iron content of0.037mol Fe3+/L) at initial pH8.00, PAC dose of15.00g/L (corresponding to aluminum content of0.082 mol A13+/L) at initial pH6.00, PFS dose of8.00g/L (corresponding to iron content of0.008mol Fe3+/L) at initial pH6.00, PAFC dose of15.00g/L (corresponding to aluminum content of0.085mol A13+/L and iron content of0.002-0.004mol Fe3+/L) at initial pH5.50, respectively. Because of some reasons such as the least optimum dose and the least influence by dose and initial pH, PFS was recommended for leachate pretreatment to remove the most of CODcr, recalcitrant substances and a small amount of NH4+-N from leachate, and to improve the biodegradability of leachate. The optimum conditions resulted in simultaneous removal of CODcr, color, turbidity, HA, suspended solid (SS) and ammonia (NH4+-N). Moreover, under the obtained optimum conditions, the characterization of leachate samples before/after pretreatment was informed by Fourier transform infrared spectroscopy (FTIR) analysis. Compared with raw leachate, it was found that some functional groups of HA disappeared or was reduced in the leachates treated by the seven coagulants, which indicated that various coagulants could remove recalcitrant substances from leachate in different degrees.
     The performance of self-designed biological nitrogen removal system was also studied, in order to obtain the effective removal of CODcr and nitrogen. The results showed that the start-up of the reactor was completed and CODCr, NH4+-N and total nitrogen (TN) removal efficiencies were achieved to be above80.00%(maximum value=83.84%),85.00%(maximum value=88.87%) and81.00%(maximum value=85.07%), respectively, in the case of dissolved oxygen (DO) in anoxic tanks of around0.4~0.8mg/L, DO in oxic tanks of about4mg/L, temperature of30℃, the hydraulic retention time (HRT) of10d, the effluent recycle ratio of1:1, the proportion of leachate in the fresh influent of50.00%and the concentration of CODcr and NH4+-N in the fresh influent of5000~5500mg/L and1450~1510mg/L, respectively.
     Based on the investigations of coagulation treatment and biological nitrogen removal system, a combined process containing the two treatments was used to treat landfill leachate. The results showed that the combined coagulation-biological nitrogen removal process could remove CODcr, NH4+-N and TN effectively, which could achieve91.98%COD removal,88.92%NH4+-N removal and87.37%TN removal, respectively.
     In this work, the coagulation performance of various coagulants for leachate treatment was analyzed, the mechanisms of recalcitrant substances removal in the leachate pretreatment by coagulants were discussed and a certain reference value for the practical application was offered. Recalcitrant organic substances removal from leachate by coagulation-flocculation process and its removal mechanism, which few studies reported on, were investigated. Furthermore, the performance of biological nitrogen removal system was studied, coagulation treatment and biological nitrogen removal system were combined successfully and effective leachate treatment was achieved by the combined process. The results of this work provide a simple and efficient process for landfill leachate treatment. Consequently, this study has the certain theory significance and the wide application foreground.
引文
[1]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术.北京:化学工业出版社,1999,134-137
    [2]Lema J. M., Mendez R., Blazquez R.. Characteristics of landfill leachates and alternatives for their treatment:a review. Water Air Soil Pollution,1988,40: 223-250
    [3]Foo K. Y., Hameed B. H.. An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials,2009,171: 54-60
    [4]蒋建国.固体废物处置与资源化.北京:化学工业出版社,2007,319-323
    [5]Renou S., Givaudan J. G., Poulain S., et al. Landfill leachate treatment:review and opportunity. Journal of Hazardous Materials,2008,150:468-493
    [6]Chian E. S. K., DeWalle F. B.. Sanitary landfill leachates and their treatment, Journal of the Environmental Engineering Division,1976,102:411-431
    [7]Alvarez-Vazquez H., Jefferson B., Judd S. J.. Membrane bioreactors vs conventional biological treatment of landfill leachate:a brief review, Journal of Chemical Technology and Biotechnology,2004,79:1043-1049
    [8]Im J. H., Woo H. J., Choi M. W., et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Research,2001,35:2403-2410
    [9]Lopez A., Pagano M., Volpe A., et al. Fenton's pre-treatment of mature landfill leachate. Chemosphere,2004,54:1005-1010
    [10]Kennedy K. J., Lentz E. M.. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors. Water Research,2000,34:3640-3656
    [11]Li X. Z., Zhao Q. L.. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment. Chemosphere,2001,44:37-43
    [12]Tatsi A. A., Zouboulis A. I., Matis K. A., et al. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere,2003,53:737-744
    [13]Silva A. C., Dezotti M., Sant' Anna Jr. G. L.. Treatment and detoxification of a sanitary landfill leachate. Chemosphere,2004,55:207-214
    [14]Tabet K., Moulin Ph., Vilomet J. D., et al. Purification of landfill leachate with membrane processes:preliminary studies for an industrial plant. Separation Science Technology,2002,37:1041-1063
    [15]Aziz H. A., Yusoff M. S., Adlan M. N., et al. Physico-chemical removal of iron from semi-aerobic leachate by limestone filter. Waste Management,2004,24: 353-358
    [16]Marttinen S. K., Kettunen R. H., Sormunen K. M., et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere,2002,46:851-858
    [17]Liang Z., Liu J. X., Li J.. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process. Chemosphere,2009,74:1315-1320
    [18]Thurman E. M., Malcolm R. L.. Preparative Isolation of Aquatic Humic Substances. Environmental Science and Technology,1981,15:463-466
    [19]Kjeldsen P., Barlaz M. A., Rooker A. P., et al. Present and long-term composition of MSW landfill leachate:a review. Critical Reviews in Environmental Science and Technology,2002,32:297-336
    [20]Nanny M. A., Ratasuk N.. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Research,2002,36:1572-1584
    [21]Sir M., Podhola M., Patocka T., et al. The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate. Journal of Hazardous Materials,2012,207-208:86-90
    [22]He X. S., Xi B. D., Wei Z. M., et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. Journal of Hazardous Materials,2011,190:293-299
    [23]Jones M. N., Bryan N. D.. Colloidal properties of humic substances. Advances in Colloid and Interface Science,1998,78:1-48
    [24]Ritchie J. D., Perdue E. M.. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochimica et Cosmochimica Acta,2003,67:85-96
    [25]Saar R. A., Weber J. H.. Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions. Analytical Chemistry,1980,52:2095-2100
    [26]Stevenson F. J.. Humus chemistry:genesis, composition, reactions.2nd ed. New York:John Wiley & Sons,1994
    [27]Wu Y. Y., Zhou S. Q., Ye X. Y, et al. Oxidation and coagulation removal of humic acid using Fenton process. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,379:151-156
    [28]Matilainen A., Iivari P., Sallanko J., et al. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water. Environmental Technology,2006 27,1171-1180
    [29]Liu X., Li X. M., Yang Q., et al. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants:Optimization by response surface methodology. Chemical Engineering Journal,2012,200-202: 39-51
    [30]Bieroza M., Baker A., Bridgeman J.. Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Science of the Total Environment,2009,407:1765-1774
    [31]Coble P. G.. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry,1996,51:325-346
    [32]Kang M. G., Ku Y. H., Cho Y. K., et al. Variation of dissolved organic matter and microbial regrowth potential through drinking water treatment processes. Water Science and Technology,2006,6:57-66
    [33]Artiola-Fortuny J., Fuller W. H.. Humic substances in landfill, leachates:I. Humic acid extraction and identification. Journal of Environmental Quality, 1982,11:663-669
    [34]Christensen T. H., Kjeldsen P., Bjerg P. L., et al. Biogeochemistry of landfill leachate plumes. Applied Geochemistry,2001,16:659-718
    [35]Wiszniowski J., Robert D., Surmacz-Gorska J., et al. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments:influence of inorganic salts. Applied Catalysis B:Environmental,2004,53:127-137
    [36]Xu Y. D., Yue D. B., Zhu Y, et al. Fractionation of dissolved organic matter in mature landfill leachate and its recycling by ultrafiltration and evaporation combined processes. Chemosphere,2006,64:903-911
    [37]Wu Y. Y., Zhou S. Q., Ye X. Y., et al. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Safety and Environmental Protection,2011,89:112-120
    [38]Wu Y. Y., Zhou S. Q., Qin F. H., et al. Removal of humic substances from landfill leachate by Fenton oxidation and coagulation. Process Safety and Environmental Protection,2010,88:276-284
    [39]Wu Y. Y., Zhou S. Q., Qin F. H., et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM). Journal of Hazardous Materials,2010,180: 456-465
    [40]Kurniawan T. A., Lo W. H., Chan G. Y. S.. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate, Journal of Hazardous Materials,2006, B129:80-100
    [41]Christensen T. H., Cossu R., Stegmann R.. Landfilling of Waste:Leachate.1st ed. London:Chapman and Hall,1992,185-202
    [42]Aziz S. Q., Aziz H. A., Yusoff M. S., et al. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. Journal of Hazardous Materials, 2011,189:404-413
    [43]Guo J. S., Abbas A. A., Chen Y. P., et al. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Journal of Hazardous Materials,2010,178:699-705
    [44]Packham R. F.. Some studies of the coagulation of dispersed clays with hydrolyzing salts. Journal of Colloid Science,1965,20:81-92
    [45]李风亭,张善发,赵艳.混凝剂与絮凝剂.北京:化学工业出版社,2005,11-12
    [46]Martin R. B.. Fe3+ and Al3+ hydrolysis equilibria. Cooperativity in Al3+hydrolysis reactions. Journal of Inorganic Biochemistry,1991,44:141-147
    [47]Duan J. M., Gregory J.. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science,2003,100-102:475-502
    [48]徐晓军.化学絮凝剂作用原理.北京:科学出版社,2005
    [49]Trinh T. K., Kang L. S.. Response surface methodological approach to optimize the coagulation-flocculation process in drinking water treatment. Chemical Engineering Research and Design,2011,89:1126-1135
    [50]Aziz H. A., Alias S., Adlan M. N., et al. Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology,2007,98: 218-220
    [51]Amokrane A., Comel C., Veron J.. Landfill leachates pretreatment by coagulation-flocculation. Water Research,1997,31:2775-2782
    [52]Sinha S., Yoon Y., Amy G., et al. Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes. Chemosphere,2004,57:1115-1122
    [53]Connolly R., Zhao Y., Sun G., et al. Removal of ammoniacal-nitrogen from an artificial landfill leachate in downflow reed beds. Process Biochemistry,2004, 39:1971-1976
    [54]Monje-Ramirez I., Velasquez M. T. O.. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes. Water Research,2004,38: 2359-2367
    [55]Zouboulis A. I., Chai X. L., Katsoyiannis I. A.. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environment Management,2004,70:35-41
    [56]Golob V., Vinder A., Simonic M.. Efficiency of the coagulatiom/flocculation method for the treatment of dyebath effluents. Dyes and Pigments,2005,67: 93-97
    [57]Patel H., Vashi R. T.. Treatment of textile wastewater by adsorption and coagulation. E-Journal of Chemistry,2010,7:1468-1476
    [58]Amuda O. S., Alade A.. Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination,2006,196:22-31
    [59]Wang J. P., Chen Y. Z., Ge X. W., et al. Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302:204-210
    [60]Loizidou M., Vithoulkas N., Kapetanios E.. Physical chemical treatment of leachate from landfill. Journal of Environmental Science and Health,1992, A27: 1059-1073
    [61]Papadopoulos A., Fatta D., Loizidou M.. Treatment of stabilized landfill leachate by physico-chemical and bio-oxidation processes. Journal of Environmental Science and Health,1998, A33:651-670
    [62]Wang B., Shen Y. Performance of an anaerobic baffled reactor (ABR) as a hydrolysis-acidogenesis unit in treating landfill leachate mixed with municipal sewage. Water Science and Technology,2000,42:115-121
    [63]Yoo H. C., Cho S. H., Ko S. O.. Modification of coagulation and Fenton oxidation processes for cost-effective leachate treatment. Journal of Environmental Science and Health,2001, A36:39-48
    [64]Rivas F. J., Beltran F., Gimeno O., et al. Stabilized leachates:ozone-activated carbon treatment and kinetics. Water Research,2003,37:4823-4834
    [65]Ghafari S., Aziz H. A., Isa M. H., et al. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 2009,163:650-656
    [66]张连凯,李悦,闫家怡,等.混凝吸附-两段SBR法处理垃圾渗滤液.中国给水排水,2006,22(5):92-95
    [67]徐峥勇,杨朝晖,曾光明,等.序批式生物膜反应器(SBBR)处理高氨氮渗滤液的脱氮机理研究.环境科学学报,2006,26(1):55-60
    [68]Chen S., Sun D. Z., Chung J. S.. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system. Waste Management,2008,28:339-346
    [69]Bilgili M. S., Demir A., Ince M., et al. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. Journal of Hazardous Materials,2007,145:186-194
    [70]Jokela J. P. Y., Kettunen R. H., Sormunen K. M., et al. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Research,2002,36:4079-4087
    [71]方程冉,吴征宇,龙於洋,等.UASB反应器处理垃圾渗滤液的启动研究.浙江科技学院学报,2007,19(2):125-128
    [72]袁志宇,成赞林.UASB处理垃圾渗滤液内循环运行试验研究.武汉理工大学学报,2006,28(1):85-88
    [73]曾华,刘金辉,赵素芬,等.厌氧折流板反应器处理垃圾渗滤液的试验研究.江苏环境科技,2007,20(3):12-15
    [74]许玫英,方卫,张丽娟,等.生物脱氮新技术在垃圾渗滤液工程化处理中的应用.环境科学,2007,28(3):607-61
    [75]Castillo E., Vergara M., Moreno Y.. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Management,2007,27:720-726
    [76]Agdag O. N., Sponza D. T.. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems. Process Biochemistry, 2005,40:895-902
    [77]Hoilijoki T. H., Kettunen R. H., Rintala J. A.. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature. Water Research,2000, 34:1435-1446
    [78]Canziani R., Emondi V., Garavaglia M., et al. Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. Journal of Membrane Science,2006,286:202-212
    [79]吴莉娜,宋燕杰,刘牡,等.两级UASB-A/O-SBR工艺深度处理晚期垃圾渗滤液.中南大学学报(自然科学版),2011,42(8):2520-2525
    [80]Cao G. M., Yang G. P., Sheng M., et al. Chemical industrial wastewater treated by combined biological and chemical oxidation process. Water Science and Technology,2009,59:1019-1024
    [81]肖利平,李胜群,周建勇,等.微电解-厌氧水解酸化-SBR串联工艺处理制药废水试验研究.工业水处理,2000,20(11):25-27
    [82]徐高田,秦哲,校华,等.纳米Ti02光催化-SBR联合工艺处理制药废水.环境科学学报,2008,28(7):1314-1319
    [83]颜智勇,周富强,吴根义.气浮-生物接触氧化法处理含油食品废水.水处理技术,2006,32(2):81-83
    [84]钱伯兔.混凝沉淀-SBR-活性炭过滤处理垃圾渗滤液.环境污染治理技术与设备,2005,6(6):66-68
    [85]宁蔚,施卫红,陆涛.混凝沉淀-UASB-AS-气浮工艺在垃圾渗滤液处理中的应用.工业用水与废水,2011,42(6):84-86
    [86]Horan N. J., Gohar H., Hill B.. Application of a granular activated carbon-biological fluidized bed for the treatment of landfill leachates containing high concentrations of ammonia. Water Science and Technology,1997,36: 369-375
    [87]Schwarzenbeck N., Leonhard K., Wilderer P. A.. Treatment of landfill leachate-high tech or low tech? A case study. Water Science and Technology, 2003,48:277-284
    [88]Baumgarten G., Seyfried C. F.. Experiences and new developments in biological pretreatment and physical post-treatment of landfill leachate. Water Science and Technology,1996,34:445-453
    [89]Altinbas M., Yangin C., Ozturk I.. Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Science and Technology,2002, 46:271-278
    [90]Yangin C., Yilmaz S., Altinbas M., et al. A new process for the combined treatment of municipal wastewaters and landfill leachates in coastal areas. Water Science and Technology,2002,46:111-118
    [91]Lin. S. H., Chang C. C.. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research, 2000,34:4243-4249
    [92]Liang Z., Liu J. X.. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system. Journal of Hazardous Materials,2008,151:202-212
    [93]Maranon E., Castrillon L., Fernandez-Nava Y., et al. Coagulation-flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant. Journal of Hazardous Materials,2008,156:538-544
    [94]Suarez S., Lema J. M., Omil F.. Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource Technology,2009,100: 2138-2146
    [95]Li W., Hua T., Zhou Q. X., et al. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination,2010,264:56-62
    [96]Zheng H. L., Zhu G. C, Jiang S. J., et al. Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of floes. Desalination,2011,269:148-156
    [97]国家环保局编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社,1997
    [98]Cheng W. P., Chi F. H.. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method. Water Research,2002,36:4583-4591
    [99]Box G. E. P., Draper N. R.. Empirical Model-building and Response Surfaces. New York:John Wiley and Sons,1987
    [100]Mason R. L., Gunst R. F., Hess J. L.. Statistical design and analysis of experiments with applications to engineering and science.2nd ed. New York: John Wiley and Sons,2003
    [101]Palamakula A., Nutan M. T. H., Khan M. A.. Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form. A APS PharmSciTech,2004,5: 114-121
    [102]Hong F. L., Peng J. C., Lui W. B.. Optimization of the process variables for the synthesis of starch-based biodegradable resin using response surface methodology. Journal of Applied Polymer Science,2011,119:1797-1804
    [103]Singh K. P., Gupta S., Singh A. K., et al. Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite. Chemical Engineering Journal,2010,165:151-160
    [104]Liu B. B., Yang M. H., Qi B. K., et al. Optimizing L-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochemical Engineering Journal,2010, 52:212-219
    [105]Sheng G. P., Zhang M. L., Yu H. Q.. A rapid quantitative method for humic substances determination in natural waters. Analytica Chimica Acta,2007,592: 162-167
    [106]Noordin M. Y., Venkatesh V. C., Sharif S., et al. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology,2004,145: 46-58
    [107]Montgomery D. C.. Design and Analysis of Experiments.5th ed. New York: John Wiley and Sons,2001
    [108]Cheng W. P.. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants. Chemosphere,2002,47:963-969
    [109]Zinatizadeh A. A. L., Mohamed A. R., Abdullah A. Z., et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Research,2006,40:3193-3208
    [110]翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社,2005,320-326
    [111]翁诗甫.傅里叶变换红外光谱分析.第二版.北京:化学工业出版社,2010,377-388
    [112]顾志忙,王晓蓉,顾雪元,等.傅里叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征.分析化学,2000,10(1):314-317
    [113]彭立凤,董敬华,边文骅,等.发酵黄腐酸的红外光谱释析.河北师范大学学报(自然科学版),1997,21(1):87-88,99
    [114]李永恒.腐植酸粘结剂在粉煤成型中的特性.氮肥技术,2006,27(6):22-26
    [115]Andalib M., Nakhla G., McIntee E., et al. Simultaneous denitrification and methanogenesis (SDM):Review of two decades of research. Desalination,2011, 279:1-14
    [116]柳娴,李小明,申婷婷,等.生物工艺处理垃圾渗滤液的研究进展.广州化工,2012,40(18):5-7
    [117]吕娟,陈银广,顾国维.(AO)3SBR脱氮除磷试验研究.环境科学,2008,29(4):937-941
    [118]Lim J. W., Seng C. E., Lim P. E., et al. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresource Technology,2011,102:9876-9883
    [119]Welander U., Henrysson T., Welander T.. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Research,1998,32:1564-1570
    [120]Yang Q., Peng Y. Z., Liu X. H., et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environmental Science and Technology,2007,41: 8159-8164
    [121]Wu L. N., Peng C. Y., Zhang S. J., et al. Nitrogen removal via nitrite from municipal landfill leachate. Journal of Environmental Sciences,2009,21: 1480-1485
    [122]Vilar V. J. P., Rocha E. M. R., Mota F. S., et al. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Research,2011,45:2647-2658
    [123]Castrillon L., Fernandez-Nava Y, Ulmanu M., et al. Physico-chemical and biological treatment of MSW landfill leachate. Waste Management,2010,30: 228-235
    [124]Pereboom J. H. F.. Strength characterisation of microbial granules. Water Science and Technology,1997,36:141-148
    [125]Sliekers A. O., Derwort N., Campos Gomez J. L., et al. Completely autotrophic nitrogen removal over nitrite in one reactor. Water Research,2002,36: 2475-2482
    [126]周群英,高廷耀.环境工程微生物学.第二版.北京:高等教育出版社,2000,124-126
    [127]高廷耀,顾国维.水污染控制工程.第二版.北京:高等教育出版社,1999,64
    [128]Welander U., Henrysson T., Welander T.. Nitrification of landfill leachate using suspended-carrier biofilm technology. Water Research,1997,31:2351-2355
    [129]Shen J. Y., He R., Han W. Q., et al. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials,2009,172:595-600
    [130]Hellinga C., Schellen A. A. J. C., Mulder, J. W., et al. The sharon process:An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology,1998,37:135-142
    [131]Glass C., Silverstein J.. Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite accumulation. Water Research,1998, 32:831-839
    [132]张树军,王淑莹,毛心慰,等.高氨氮垃圾渗滤液高效生物脱氮.中国环境科学,2008,28(3):225-228
    [133]Strous M., Van Gerven E., Kuenen J. G., et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Applied and Environmental Microbiology,1997,63:2446-2448
    [134]Leslie Grady C.P., Daigger Jr. Glen T.,等著,张锡辉,刘勇弟,译.废水生物处理.第二版(改编和扩充).北京:化学工业出版社,2003
    [135]Strous M., Heijnen J. J., Kuenen J. G., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology,1998,50:589-596
    [136]Strous M., Kuenen J. G., Jetten M. S. M.. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology,1999,65: 3248-3250
    [137]Xu Z. Y., Zeng G. M., Yang Z. H., et al. Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource Technology,2010,101:79-86
    [138]Liao D. X., Li X. M., Yang Q., et al. Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World Journal of Microbiology and Biotechnology,2007,23:1015-1020
    [139]廖德祥,吴永明,李小明,等.亚硝化—厌氧氨氧化联合工艺处理高含氮废水的研究.环境科学,2006,27(9):1776-1780
    [140]Liao D. X., Li X. M., Yang Q., et al. Effect of Inorganic Carbon on Anaerobic Ammonium Oxidation. Journal of Environmental Science,2008,20:940-944
    [141]Robertson L. A., Kuenen J. G.. Aerobic denitrification:a controversy revived. Archives of Microbiology,1984,139:351-354
    [142]Joo H. S., Hirai M., Shoda M.. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4. Journal of Bioscience and Bioengineering,2005,100:184-191
    [143]王薇,蔡祖聪,钟文辉,等.好氧反硝化菌的研究进展.应用生态学报,2007,18(11):2618-2625
    [144]张少辉,郑平.厌氧氨氧化反应器启动方法的研究.中国环境科学,2004,24(4):496-500
    [145]Kettunen R. H., Rintala J.A.. Sequential anaerobic-aerobic treatment of sulphur rich phenolic leachates. Journal of Chemical Technology and Biotechnology, 1995,62:177-184
    [146]Zouboulis A. I., Loukidou M. X., Christodoulou K.. Enzymatic treatment of sanitary landfill leachate. Chemosphere,2001,44:1103-1108
    [147]Loukidou M. X., Zouboulis A. I.. Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment. Environmental Pollution,2001,111:273-281
    [148]Gau S. H., Chang F. S.. Improved Fenton method to remove the recalcitrant organics in landfill leachate. Water Science and Technology,1996,34:455-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700