用户名: 密码: 验证码:
弹光调制傅里叶变换光谱仪稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹光调制傅里叶变换光谱仪作为一种高速、高灵敏度、宽光谱范围的光谱测量技术,在深空探测、环境保护、生物医学、国防建设等瞬态光谱探测领域具有潜在的应用价值和发展前景。弹光调制器作为弹光调制傅里叶变换光谱仪的核心干涉部件,在工作过程中普遍存在因热耗散导致的调制效率降低和光程差不稳定现象,制约着弹光调制傅里叶变换光谱仪的波长精密度和测量稳定性。因此,如何降低热耗散对弹光调制器光程差稳定性的影响,使弹光调制傅里叶变换光谱仪在长时间工作过程中保持高的测量稳定性,成为弹光调制傅里叶变换光谱仪需要解决的重要科学问题。
     论文基于弹光调制傅里叶变换光谱技术的基本原理及多物理场耦合特性,对弹光调制傅里叶变换光谱仪的稳定性进行研究,开发出了高稳定性弹光调制干涉仪及控制系统。
     首先,论文研究了热耗散对弹光调制器稳定性的影响机理。基于弹光调制器振动模态和损耗类型,分析了匹配特性对弹光调制器振动性能的影响;结合弹光调制器的温漂模型及频率漂移模型,分析了热耗散对压电驱动器和弹光晶体品质因数及匹配特性的影响,得到了热耗散对弹光调制器的调制效率和光程差稳定性的影响特性,并进行实验验证。为弹光调制傅里叶变换光谱仪稳定性研究,奠定了理论基础和实验依据。
     其次,为降低弹光调制器工作过程中的升温幅度,提出了一种反谐振匹配型弹光调制器设计方案。基于高压驱动下压电体的电致伸缩效应,对比了谐振匹配方案与反谐振匹配方案的品质因数和调制效率,分析了反谐振匹配方案对升温幅度的降低作用,并结合研制的高压驱动电路对方案的可行性进行了验证。
     第三,为消除热耗散对弹光调制傅里叶变换光谱仪稳定性的影响,在反谐振匹配的基础上,研制出带宽匹配型弹光调制器及双闭环自适应控制系统。以弹光调制器匹配特性和调制效率为基础,分析了初始频率偏移量与驱动频率间的函数关系,建立了包含驱动频率、升温幅度和光程差因子的稳定控制数学模型,结合Lyapunov稳定控制理论完成控制系统硬件及程序设计。
     最后,将多次反射方式与带宽匹配型弹光调制器相结合,搭建了弹光调制傅里叶变换光谱测量平台,验证其波长精密度和测量稳定性。结果表明,该方案将弹光调制傅里叶变换光谱仪的波长精密度提高了70倍。
As a newly developed spectrum measuring technology, photoelastic modulation Fouriertransform spectrometer (PEM-FTS) with high speed, high sensitivity and wide spectrum haspotential applications and development prospects in the transient spectral detecting fields suchas aerospace exploration, environmental monitoring, biological medicine, national defenseconstruction and so on. Photoelastic modulator is the core component of PEM-FTS, and itsmodulation efficiency become lower and optical path difference become instable during workprocess because of the heat dissipation. The variation above-mentioned is restricting themeasurement precision and stability of PEM-FTS. Wherefore, how to reduce the effect onstability of optical path difference of photoelastic modulator, how to make the PEM-FTSmaintain high measurement stability in the long work, are the important science problemsneed to be solved for researching on PEM-FTS.
     Based on the principles of photoelastic modulation Fourier transform spectroscopy andmulti-physics coupling characteristics, the paper makes study on the stability of PEM-FTS,and develops a high stability photoelastic modulation interferometer, together with its controlsystem.
     Firstly, the influence mechanism on the stability of photoelastic modulator caused bythermal dissipation is researched. The influence on vibration performance of photoelasticmodulator is analysed on account of vibration mode and the type of loss. Combining withtemperature and frequency drifting models of photoelastic modulator, the effect on qualityfactor and coupling characteristics is deduced caused by temperature rise for piezoelectricactuator and photoelastic crystal. The relationship between temperature rise and modulationefficiency and stability of optical path difference is got and verified through experiments. Theresults laid the theoretical basis and experimental evidence for research on stability ofPEM-FTS.
     Secondly, a design scheme of photoelastic modulator is presents coupled byanti-resonant, in order to reduce the temperature rise during processing. Based on theelectrostriction effect of piezoelectrics under high driving voltage, the quality factor andmodulation efficiency is compared between resonance coupled design and anti-resonancecoupled design. Then the effect on temperature rise of anti-resonance coupled design is analyzed, and its feasibility has been verified using the High voltage driver circuit developed.
     Thirdly, in order to eliminate the effect on stability of photoelastic modulationinterferometer caused by heat dissipation, a bandwidth coupled photoelastic modulator anddouble colsed-loop adaptive control system are developed on the basis of anti-resonancecoupled scheme. Taking the coupling characteristics and modulation efficiency as startingpoints, the paper analysis the functional relationship among initial offset frequency anddriving frequency, and establishes a stable control theory model including driving frequency,temperature rise and optical path difference factor. The hardware and program of controlsystem are also finished.
     Finally, a photoelastic modulation Fourier transform spectroscopy measurement platformis built by integrating the multiple-reflect way and bandwidth coupled, in order to verify itswavelength precision and measurement stability. The results show that the design schemeimproves the precision of PEM-FTS as70times as before.
引文
[1] Becker.E.D, Farrar.T.C. Fourier transform spectroscopy[J]. Science,1972,178(4059):361-368.
    [2] Simon.A, Gast.J, Keens.A. Fourier spectrometer. US5,309,217[P],1994.03.03.
    [3] Griffiths.P.R, Hirsche.B.L, Christopher.J.M. Ultra-rapid-scanning Fourier transforminfrared spectrometry,Vibrational spectroscopy,1999.19,165-176.
    [4] Wadsworth.W, Dybwad.J.P. Rugged high speed rotary imaging fourier transformspectrometer for industrial use[J]. SPIE,2002,4577:83-88.
    [5] Wadsworth.W. Dybwad.J.P. Ultra high speed chemical imaging spectrometer[J].SPIE,1997,3082:148-194.
    [6] Zheng.Malin Su. Weijian. Study on infrared imaging spectrometer with large aperturestatic interferometer[C].2009international conference on optical instruments andtechnology. SPIE,2009,7506-9
    [7]田二明,张记龙,李晓等.激光告警系统中小型静态傅里叶变换光谱仪的研究[J].光谱学与光谱分析,2009,29(3):853-857.
    [8]王学琳,孙淑萍,铁梅.傅里叶变换近红外光谱进展[J].现代仪器,1997,(6):1-3.
    [9]余本国,王建中.基于非扫描式干涉仪的光谱探测研究[J].光学学报,2010,30(7):2001-2005.
    [10]李晓,张记龙,薛尚峰等.基于马赫.泽德干涉具的激光光谱探测技术研究[J],光谱学与光谱分析,2009,29(1):62-65.
    [11] Li.Xiao, Zhang.Jilong, Tian.Er.ming, et al. Passive laser spectrum detection technologybased on static interferometer[C],2008international conference on optical instrumentsand technology: Optoelectronic measurement technology and applications, SPIE,2008,7160:716011.1.
    [12] Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer forrapid, remote chemical sensing[J]. Optics Express,2005,13(22):9029-9038.
    [13]刘智超,张记龙,王志斌等.静态傅里叶变换干涉具在大视场探测中的应用[J].光子学报,2009,38(11):2839-3843.
    [14] Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer forrapid, remote chemical sensing[J]. Optics Express,2005,13(22):9029-9038.
    [15] Persky M J. A review of spaceborne infrared Fourier transform spectrometers for remotesensing[J]. Review of scientific instruments,1995,66(10):4763-4797.
    [16]王多加,周向阳.近红外光谱检测在农业和食物分析上的应用[J].光谱学与光谱分析,2004,24(4):448.
    [17]张跃国,张记龙,王志斌等. Wollaston棱镜阵列中子棱镜结构角误差分析[J].应用光学,2011,32(1):80.84.
    [18] Craven.J, Kudenov.M.W, Stapelbroek.M.G, et al. Compact infrared hyperspectralimaging polarimeter[C]. Algorithms and technologies for multispectral hyperspectraland ultraspectral imagery XVI, SPIE,2010,7695:769509.1.
    [19] Jain N, Prabhakar S, Singh R A. Fourier transform infrared spectra and normal modeanalysis of drug molecules: Zidovudine[J]. Journal of Molecular Structure,2012.
    [20] Harrigan G G, LaPlante R H, Cosma G N, et al. Application of high-throughputFourier-transform infrared spectroscopy in toxicology studies: contribution to a study onthe development of an animal model for idiosyncratic toxicity[J]. Toxicology Letters,2004,146(3):197-205.
    [21] Tuthill P G, Monnier J D, Danchi W C, et al. Michelson interferometry with the Keck Itelescope[J]. Publications of the Astronomical Society of the Pacific,2000,112(770):555-565.
    [22] Lewis E N, Treado P J, Reeder R C, et al. Fourier transform spectroscopic imaging usingan infrared focal-plane array detector[J]. Analytical chemistry,1995,67(19):3377-3381.
    [23] Chao.T.H, Lu.T.T. Compact liquid crystal waveguide based Fourier transformspectrometer for in-situ and remote gas and chemical sensing[C]. Optical patternrecognition XIX, SPIE,2008,6977:69770P.1.
    [24] Wang B, Jennifer List. Basic Optical Properties of the Photoelastic Modulator: Part I.Useful Aperture and Acceptance Angle[J]. Polarization Science and Remote Sensing II,2005, Vol.5888:436-443.
    [25]石秀梅,窦汝海,王从网,等.多光束合成场远场特征的傅里叶分析[J].强激光与粒子束,2008,19(12):1942-1946.
    [26]曾爱军,王向朝,董作人等.光弹调制器在偏振方向调制中的应用[J].中国激光,2005,32(8):1063-1067.
    [27] Kemp J C. Piezo-optical birefringence modulators: new use for a long-known effect[J].JOSA,1969,59(8):950-953.
    [28]时善进,沈为民,顾华俭,周望.紧凑型静态傅里叶变换光谱仪的工作原理与光学设计[J].激光杂志,2000,21(3):16-19.
    [29] Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor basedferroelectric single crystals [J]. Journal ofApplied Physics,1997,82(4):1804-1811.
    [30] Crawley E F, De Luis J. Use of piezoelectric actuators as elements of intelligentstructures[J]. AIAAjournal,1987,25(10):1373-1385.
    [31] Hu.C.G, Sun.L.D, Li.Y.N, et al.. Retardation correction for photoelastic modulator-basedmulti-channel reflectance difference spectroscopy [J]. Opt. Soc.2008,25(6):1240.1245.
    [32] Thompson S C, Meyer R J, Markley D C. Performance of transducers with segmentedpiezoelectric stacks using materials with high electromechanical couplingcoefficient[C]//Proceedings of Meetings on Acoustics. Acoustical Society of America,2013,19(1):030021.
    [33] Sherlock N P, Meyer R J. Electromechanical nonlinearities and losses in piezoelectricsonar transducer materials[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEETransactions on,2012,59(8):1618-1623.
    [34] Erturk A, Inman D J. Broadband piezoelectric power generation on high-energy orbits ofthe bistable Duffing oscillator with electromechanical coupling[J]. Journal of Sound andVibration,2011,330(10):2339-2353.
    [35] Wang.Baoliang, List.J. Basic optical properties of the photoelastic modulator part I:useful aperture and acceptance angle,Polarization science and remote sensing II, SPIE,2005,5888,588811-1.
    [36] Theodore C. Oakberg. Relative Variation of Stress-Optical Cofficient with Wavelengthin Fused Silica and Calcium Fluoride[J]. Part of the SPIE Conference on Polarization:Measurment, Analysis, and Remote Sensing,1999,3754:226-234.
    [37]胡春光,孙立东,李艳宁等.光弹调制式反射差分光谱仪的理论分析[J].纳米技术与精密工程,2007,5(1):1-5.
    [38] Buican.T.N. Birefringence interferometers for ultra-high-speed FT spectrometry andhyperspectral imaging:I. Dynamic model of the resonant photoelastic modulator[J].Vibrational spectroscopy,2006,42(1):51-58.
    [39]高永芳,时家明,赵大鹏,等.一种基于光子晶体的远红外与10.6μm激光兼容伪装材料的设计与制备[J].光学学报,2011,31(6):155-158.
    [40]谢启明,李奕威,潘顺臣.红外窗口和整流罩材料的发展和应用[J].红外技术,2012,34(10):559-567.
    [41] Kemp J C, Swedlund J B, Landstreet J D, et al. Discovery of circularly polarized lightfrom a white dwarf[J]. The Astrophysical Journal,1970,161: L77.
    [42] Canit.J.C, Badoz.J. New design for a photoelastic modulator[J]. Appl. Opt.,1983,22(4),592-594.
    [43] Bammer F, Holzinger B, Schumi T. A single crystal photo-elastic modulator[C].Integrated Optoelectronic Devices2007. International Society for Optics and Photonics,2007:64690O-64690O-8.
    [44] Petkov ek R, Saby J, Salin F, et al. SCPEM-Q-switching of a fiber-rod-laser[J]. Opticsexpress,2012,20(7):7415-7421.
    [45] Ozaktas H M, Mendlovic D. Fourier transforms of fractional order and their opticalinterpretation[J]. Optics Communications,1993,101(3):163-169.
    [46] Massey G A. Microscopy and pattern generation with scanned evanescent waves[J].Applied optics,1984,23(5):658-660.
    [47] Badoz J, Billardon M, Canit J C, et al. Sensitive devices to determine the state anddegree of polarization of a light beam using a birefringence modulator[J]. Journal ofOptics,1977,8(6):373.
    [48] Wang Bao-liang, Jennifer List. Basic Optical Properties of the Photoelastic ModulatorPart I: Useful Aperture and Acceptance Angle[J], Proc. SPIE, vol.5888,2005:136-443.
    [49] Kenji Uchino, Ferroelectric Devices[M].1999.
    [50] Tatsuya Izumi, Manabu Hagiwara, Takuya Hoshina, et al. Analysis of VibrationWaveforms of Electromechanical Response to Determine Piezoelectric andElectrostrictive Coefficients [J]. IEEE Transactions on Ultrasonic, Ferroelectrics, andFrequency Control,2012,59(8):1632-1638.
    [51]赵高峰,阳爱民,胡运发.一种新型PID决策模糊控制器的设计与实现[J].计算机工程,2004,30(12):158-161.
    [52] Liu S F, Park S E, Shrout T R, et al. Electric field dependence of piezoelectric propertiesfor rhombohedral0.955Pb (Zn1/3Nb2/3) O3–0.045PbTiO3single crystals[J].Journal of applied physics,1999,85(5):2810-2814.
    [53] Lacan Antoine, Breon F.M, Rosak Alain. A static Fourier Transform Spectrometer forAtmospheric Sounding: Concept and Experimental Implementation [J]. Optics Express,2010,18(8):8239-8250.
    [54] Hayashi S. A versatile photoelastic-modulator driver/controller[J]. Japanese Journal ofApplied Physics,1989,28(part1):720-722.
    [55]吕红丽,贾磊,王雷,高瑞,Cai W J.基于模糊线性化预测模型的HVAC系统温度控制[J].控制与决策,2006,21(12):1412-1416.
    [56]王峰,赵又新.基于FPGA新型压电化学传感器的设计与实现[J].自动化仪表,2011,32(3):68-71.
    [57] Changsheng, Li. Optical Stress Sensor based on Electro-optic Compensation forPhotoelastic Birefringence in a Single Crystal[J]. Applie optics,2011,50(27):5315-5320.
    [58]刘恒,何晓平,张凤田,苏伟,张富堂.静电刚度式谐振微加速度计闭环驱动控制[J].控制理论与应用,2011,28(10):1405-1412.
    [59]袁志林,张淳民,赵葆常.新型偏振干涉成像光谱仪信噪比研究[J].物理学报,2007,56(11):6413-6419.
    [60]贾宏光,吴一辉,于振雷,等.压电驱动微位移工作台动态特性分析[J].光学精密工程,2000,8(5):440-443.
    [61] Brenner K H, Lohmann A W, Ojeda-Casta eda J. The ambiguity function as a polardisplay of the OTF[J]. Optics Communications,1983,44(5):323-326.
    [62] Soummer R, Pueyo L, Sivaramakrishnan A, et al. Fast computation of Lyot-stylecoronagraph propagation[J]. Optics Express,2007,15(24):15935-15951.
    [63] Lee.J.Y, Greenguard.L. The type3nonuniform FFT and its application[J]. Journal ofcomputional physics,2005,206:1-5.
    [64] Agre V, Bammer F, Podobnik B. Influence of the retardation of the multiplexing elementin a dual channel Q-switched laser[J]. Applied Physics B,2013,112(1):73-81.
    [65] Edelman S. Piezoelectric heat exchanger: U.S. Patent4,406,323[P].1983-9-27.
    [66] Kuhn J R, Potter D, Parise B. Imaging polarimetric observations of a new circumstellardisk system[J]. TheAstrophysical Journal Letters,2008,553(2): L189.
    [67] Nelson R D. Heat exchanger having piezoelectric fan means: U.S. Patent4,923,000[P].1990-5-8..
    [68] Furuhashi N, Takayoshi H. Drive circuit for driving a piezoelectric transformer capableof decreasing heat developed from electronic parts composing an inverter circuit: U.S.Patent5,894,184[P].1999-4-13.
    [69] Hotan.A.W. A new signal processing platform for radio astronomy[J]. A&A,2008,485:615–622.
    [70] Pingree. P.J, Blavier.J.F.L, Bekker.D.L. An FPGA/SoC approach to on.board dataprocessing enabling new mars science with smart payloads[J]. IEEEAC,2006,6:1232.
    [71] Werne. T.A, Bekker.D.L, Pingree.P.J, Real-time data processing for an advanced imagingsystem using the Xilinx Virtex-5FPGA[J].IEEEAC,2009,1:1233.
    [72] Tudor N.Buican. Controlling Resonant Photoelastic Modulators[P]. US:6,970,278B1,2005-11.
    [73] Pingree. P.J, Scharenbroich.L.J, Werne. T.A. Implementing legacy.C algorithms in FPGAco-processors for performance accelerated smart payloads[J]. IEEEAC,2007,2:1230.
    [74] Stanko.S, Klein.B, Kerp.J. A field programmable gate array spectrometer for radioastronomy[J]. astronomy&Astrophysics,2008,2227.
    [75] Klein.B, Philipp.S.D, Kr mer.I, Kasemann.C, et al.. The APEX digital fast Fouriertransform spectrometer[J]. Astronomy&Astrophysics,2006,5415.06.
    [76] Buican.T.N. Real-time Fourier transform spectrometry for fluorescence imaging and flowcytometry[C]. Bio-imaging and two.dimensional spectroscopy, SPIE,1990,1205:126-133.
    [77] Buican.T.N, Carrieri.A.H. Ultra-high speed solid-state FTIR spectroscopy andapplications for chemical defense[C]. Proceedings for the army science conference(24th),2004.12.
    [78] Buican.T.N. High retardation–amplitude photoelastic modulator. US7,764,415B2[P].2010.7.27.
    [79]郭彤,胡春光,陈津平,等.垂直扫描白光干涉术用于微机电系统的尺寸表征[J].光学学报,2007,27(4):667-672.
    [80]胡淼,王太勇,乔志峰等.基于弹光调制的红外光谱吸收法在室内VOC检测中的研究[J].光谱学与光谱分析,2012,31(12):3232-3235.
    [81]张敏娟,张记龙,王志斌等.单边干涉数据光谱复原的关键问题分析[J].压电与声光,2012,34(2):180-184.
    [82]王志斌,张瑞,赵冬娥等.光弹调制差频偏振测量及误差分析[J].光学精密工程,2013,21(4):876-883.
    [83]张瑞,王志斌,赵冬娥等.双光弹差频调制型偏振光谱测量技术[J].光电工程,2013,40(4):120-126.
    [84]景宁,王志斌,张记龙,等.弹光调制非线性光程差干涉信号的快速反演[J].激光技术,2012,36(2):271.
    [85]王矜奉,董火民,张沛霖,钟维烈,秦自楷。(yxl)切压电石英谐振器振动模式分析[J]。压电与声光,1998,20(2):99-102.
    [86]田文杰,路峻岭,刘玲玲,张福学。切变振动型石英晶体谐振器的特点及其应用[J]。压电与声光,2006,28(2):150-152.
    [87]殷纯永.现在干涉测量技术[M].天津:天津大学出版社,1999.
    [88]魏燕定,陶惠峰.压电驱动器迟滞特性的Preisach模型研究[J].压电与声光,2004,26(5):364-367.
    [89]耿济栋,姚国兴.压电陶瓷阻尼振动的有限元模型分析[J].振动.测试与诊断,2006,26(3):221-225.
    [90] Senousy M S, Rajapakse R, Mumford D, et al. Self-heat generation in piezoelectric stackactuators used in fuel injectors[J]. Smart Materials and Structures,2009,18(4):045008.
    [91] Naylor.D.A, Tahic.M.K. Apodizing functions for Fourier transform spectroscopy[J].J.Opt.Soc.Am,2007,24(11):3644-3648.
    [92] Roundy S, Wright P K. A piezoelectric vibration based generator for wirelesselectronics[J]. Smart Materials and structures,2004,13(5):1131.
    [93]张维屏,机械振动.机械振动学[M].冶金工业出版社,1983.
    [94]阮鹏,陈智军,付大丰,等.基于COMSOL的声表面波器件仿真[J].测试技术学报,2012,26(005):422-428.
    [95]胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社.2008.
    [96] Peng Q, Dong Y, Li Y. ZnSe semiconductor hollow microspheres[J]. AngewandteChemie International Edition,2003,42(26):3027-3030.
    [97] Agnes G S. Development of a modal model for simultaneous active and passivepiezoelectric vibration suppression[J]. Journal of Intelligent Material Systems andStructures,1995,6(4):482-487.
    [98] Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structuralelements: a survey[J]. Computers&Structures,2000,76(1):347-363.
    [99] Mertz.L. Auxiliary computation for Fourier spectrometry[J]. Infrared physics,1967,7(1):17-23.
    [100] W DuToit N E, Wardle B L. Experimental verification of models for microfabricatedpiezoelectric vibration energy harvesters[J]. AIAAjournal,2007,45(5):1126-1137.
    [101] Zou Y, Tong L, Steven G P. Vibration-based model-dependent damage (delamination)identification and health monitoring for composite structures—a review[J]. Journal ofSound and vibration,2000,230(2):357-378.
    [102] Learner.R.C.M, Thorne.A.P, Jones.I.W. Phase correction of emission line Fouriertransform spectra[J]. J.Opt.Soc.Am,1995,12(10):2165-2171.
    [103]陈大任,李国荣,殷庆瑞.逆压电效应的压电常数和压电陶瓷微位移驱动器[J].无机材料学报,1997,12(6):861-866.
    [104] Seiji Hirose, Akinori Yamada, Takehiro Takano, Sadayuki Takahashi. NewlyDeveloped Measuring Method of High-Power Characteristics of PiezoelectricTransducer Constants Including Dielectric Loss[J]. Proc. SPIE, vol3241,1997:436-442.
    [105] Michaelian.K.H. Interferogram symmetrization and multiplicative phase correction ofrapid.scan and step-scan photocoustic FTIR data[J].Infrared Phys.,1989,29(1):87-100.
    [106] Lester H C, Lefebvre S. Piezoelectric actuator models for active sound and vibrationcontrol of cylinders[J]. Journal of Intelligent Material Systems and Structures,1993,4(3):295-306.
    [107] Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics withcompliant electrodes as a means of actuation[J]. Sensors and Actuators A: Physical,1998,64(1):77-85.
    [108] Du Toit N E. Modeling and design of a MEMS piezoelectric vibration energyharvester[D]. Massachusetts Institute of Technology,2005.
    [109]伍晓红,沈亚鹏.压电功能梯度板自由振动的三维解[J].固体力学学报,2003,24(1):75-82.
    [110]胡寿松.自动控制原理.(第5版)[M].北京:科学出版社,2012.
    [111] Buican.T.N. Birefringence interferometers for ultra.high.speed FT spectrometry andhyper spectral imaging.Dynamic model of theresonant photoelastic modulator[J].Vibrational Spectroscopy,2006,42(1):51-58.
    [112]王艳超,王志斌,张记龙等.大光程差弹光调制干涉仪的温度补偿策略及实现[J].光谱学与光谱分析,2013,33(5):1429-1432.
    [113]魏海潮,王志斌,李晓等.弹光调制干涉具热动态模型及频率漂移的研究[J].激光技术,2013,37(3):390-393.
    [114] Bammer F, Petkovsek R. SCPEM-based polarization modulation ellipsometry in theNIR[C]//SPIE Optical Systems Design. International Society for Optics and Photonics,2011:81690O-81690O-6.
    [115]杜国龙.全固态离子注入波导晶体切伦科夫型二次谐波理论及激光特性研究[D].山东大学,2011.
    [116]任志君,王辉,金洪震,等.具有高阶色散项的交叉相位调制不稳定性分析[J].光学学报,2005,25(2):165-168.
    [117]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2002.
    [118] Sarty.G, Bennett.R, Cox.R. Direct reconstruction of non-Cartesian k-space data using anon.uniform fastFourier transform[J]. Magn. Reson. Med.2001,45:908–915.
    [119]景宁.基于弹光效应的高速红外光谱获取方法[D].硕士学位论文.太原:中北大学,2012.
    [120]靳云汉,李东,王艳林,等. π网络分布参数对石英晶体频率测量的影响[J].北京机械工业学院学报,2004,19(1):76-80.
    [121]ADS9224. http://www.alldatasheet.com.
    [122]霍华德约翰逊.高速数字设计[M].北京:电子工业出版社,2012.
    [123]田广锟,范如东.高速电路PCB设计与EMC技术分析[M].北京:电子工业出版社,2011.
    [124]于博士. http://www.sig007.com/.
    [125]顾菁.干涉成像光谱技术研究[D].硕士学位论文.南京:南京理工大学.2006.
    [126]黄深旺,陈磊,陈进榜,等.红外干涉仪调试和测量技术的研究[J].光学精密工程,1996,4(2):98-102.
    [127]陈友华.遥测用多次反射式弹光调制傅里叶变换光谱技术研究[D].博士学位论文.太原:中北大学,2013.
    [128]张敏娟.弹光调制傅里叶变换光谱复原高速数据处理技术研究[D].博士学位论文.太原:中北大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700