用户名: 密码: 验证码:
基于RAMS的地铁列车车载设备维修策略与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁列车快速、稳定、便捷、低噪、环保,是最佳的大众交通运输工具。近年来,我国城市地铁的发展进入了飞速发展时期,有30多个城市正在筹建,投资超过万亿,为现代化城市建设提供了坚强的运输保障。地铁列车是运输乘客的载体,是地铁运输的核心组成部分,必须提高可靠性、可用性,降低风险和维修费用。目前,地铁列车的运营管理存在以下突出问题:依靠历史经验制定维修策略,依赖检修人员的主观判断进行故障诊断,诊断系统依靠国外技术引进,缺乏统一平台管理数据和制定检修、维护方案。
     本文依托“广州地铁故障诊断系统和专家系统研究”项目,根据地铁列车的系统结构,对车载设备的可靠性、可用性、可维护性和安全性(Reliability Availability Maintainability Safety, RAMS)评估理论开展系统的研究,建立和完善相关数学模型,提出决策方法,解决维修方式不当、维修策略不合理、故障定位困难的问题,开发了故障诊断系统和专家系统并已投入实际应用。本文的主要研究内容包括:
     (1)研究地铁列车的常见故障和各系统的失效组件,从RAMS角度提出影响制定维修策略的9个指标,采用改进型层次分析法(Analytic Hierarchy Process,AHP)和蒙特卡罗法分析相关数据,建立组件关键度定量评估体系,为确定组件的维修方式提供依据。
     (2)结合现场数据的特点,建立组件可靠性模型,提出定量评估系统可靠性和安全性的方法,为建立系统的平均可靠性模型和制定维修策略提供理论基础。并将提出的方法应用于广州地铁一号线的故障数据分析与处理,得出该线路地铁列车部分关键组件的可靠性模型,准确评估了其子系统的可靠性和安全性。
     (3)分析地铁列车的寿命周期费用和维修活动的特点,研究不同维修级别与组件可靠性、可用性、安全性和维修费用之间的关系并建立模型,将维修策略的制定转化成为一个多目标的优化问题,提出一种改进型的混沌自适应进化算法,优化计算该问题。改进后的算法与多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)和多目标快速非支配排序(Non-Dominated Sorting Genetic Algorithm, NSGA2)算法求得的解集相比,在Pareto前端分布上更为均匀,种群保持多样,全局搜索能力更强。文中以可靠性和维修费用为优化目标,以可用性和安全性为约束条件,对维修策略进行优化,得出维修计划最优解集,为制定合理的维修策略提供参考。
     (4)在对现有诊断系统中存在问题分析的基础上,设计和开发了广州地铁一号线地铁列车故障诊断系统和专家系统。设计的诊断系统随车记录故障信息和车辆状态;专家系统中建立了故障数据库、案例库、知识库和模型库,数据库规范了RAMS现场数据的记录方式,案例库辅助建立案例模型,为故障诊断积累经验。结合实际“紧急制动故障”案例,分析了待检案例检索和匹配的过程,系统实现指导定位现场故障原因,并给出检修建议,有效提高检修效率。文中设计的故障诊断系统和专家系统在成本、性能、可靠性等多项参数上具有优势,并通过相关国家和欧洲行业标准的型式试验,已投入使用,填补了国内相关设备研制的空白。
Metro train is one of the best public traffic modes, which is convenient, stable, fast, low noise and clean. In order to solve urban traffic jams, urban metro has become an important trend. In recent years, the development of China's urban metro has entered a rapid development period. There are more than30cities planning to build metros and the investment on metro will be more than1trillion, which will improve the city transportation greatly. Metro train, the core part of the metro transportation, is the carrier of passengers, its reliability, availability are must be improved to reduce the maintenance costs and risks. Currently, the metro train operation management exist the following problems:the maintenance strategy for the metro train is formulated based on experiences; the fault diagnosis of metro trains mostly relies on the subjective judgment of the maintenance staff, diagnostic systems rely on foreign technology, as well as, the management platform of data and maintenance program are lacked.
     This thesis is carried out based on the project:development of Guangzhou Metro fault diagnosis and expert system. According to the metro train system architecture, equipment reliability, availability, maintainability and safety assessment theory are researched, the relevant mathematical models are established and improved. Further more, the problem of improper maintenance and fault location are solved, a fault diagnosis system and expert system are developed which have been put into practical application. The main research contents include:
     First of all, the common failures of metro trains and the failure components of equipment are counted and classified. Moreover, using the improved AHP (Analytic Hierarchy Process) and Monte Carlo method analysis of related data, establish a quantitative evaluation system of components, provide the basis for determine the component maintenance way.
     Next, this thesis analyzes the characteristics of the component running data, and further proposes the modeling method of the component reliability and safety. These methods provide a theoretical basis for establishing average reliability model of the system and formulating the maintenance strategies. Method was applied to fault data analysis and processing, some components' reliability models are obtained. With the established model, the reliability and safety of the equipment can be evaluated accurately.
     Following, the influences on the reliability, availability, safety and maintenance costs, generated by the maintenance interval and repair modes, are analyzed. And, the multi-parameter dynamic model of the RAMS is proposed in the thesis. More important, the thesis proposes an improved chaotic adaptive evolutionary algorithm, by which, the multi-parameter dynamic model can be solved and the maintenance strategy can be obtained. Compared the solution set which obtained by the improved algorithm, Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and Non-Dominated Sorting Genetic Algorithm (NSGA2), the improved algorithm obtained solution set is better. This thesis made reliability and maintenance cost as the optimization goal, availability and security as constraint conditions, optimize the maintenance strategy. The optimal solution set provide reference for reasonable maintenance strategy.
     Finally, On the basis of analyzing the problems existing in diagnostic system, the thesis designs and develops a set of fault diagnosis system and expert system for the metro train. Fault diagnosis system is used to record what information and vehicle status; in the expert system, the fault database, case base, knowledge base and model base are established. Database standardizes the RAMS data recording way, case base is to help establish case model, accumulate experience for fault diagnosis. Combined with the "emergency brake fault" case, the case retrieval and matching process are analyzed. The system realizes the fault location, and gives maintenance recommendations, effectively improve the maintenance efficiency. Fault diagnosis and expert system designed in this paper have advantages in low cost, good performance, high reliability and so on, and have been passed through the relevant national and European industry standard type tests, and used in practice. The fault diagnosis and expert systems fill the domestic blank at related equipment.
引文
[l]李景色.中国地铁发展简史[J].今日科苑,2012(21):82-85.
    [2]李静.浅谈北京地铁公交文化的特点[J].科技经济市场,2012(12):82-83.
    [3]李文斌,孙立杰.北京地铁:21亿背后的执着与热爱[J].中国道路运输,2013(3):44-46.
    [4]梁东升.ATP/ATO在广州地铁1号线信号系统中的应用[J].地铁与轻轨,2002(3):33-39.
    [5]聂畅.西门子列车网络控制系统在广州地铁中的应用[J].电力机车与城轨车辆,2010(1):25-26,34.
    [6]李永军,唐祯敏.地铁调度监督系统的仿真研究[J].现代城市轨道交通,2004(4):30-32.
    [7]刘亚宁.香港地铁检修模式在北京地铁4号线车辆基地设计中应用的可行性研究[J],铁道标准设计,2006(6):97-99.
    [8]钱彬,林燕.地铁设备维修管理系统及其运营管理功能[J].精密制造与自动化,2012(2):2-5.
    [9]韩帮军,范秀敏,马登哲.基于可靠度约束的预防性维修策略的优化研究[J].机械工程学报,2003,39(2):102-105.
    [10]吕德峰,过秀成,孔哲,等.基于可用度的地铁车辆维修检查间隔优化方法[J].东南大学学报:自然科学版,2011,41(4):877-881.
    [11]国际标准EN50126-1999 ".Railway application:Specification of railway reliability, avail-ability, maintenance and safety (RAMS)[S]. Paris:European Committee for Electrotech-nical Standardization,1999.
    [12]国际标准IEC62278-2002:Railway applications:The specification and demonstration of reliability, availability maintainability and safety (RAMS)[S]. Genva:Switzerland,2002.
    [13]Charles W E.可靠性与维修性工程概述[M].北京:清华大学出版社,2010.
    [14]李良巧.可靠性工程师手册[M].北京:中国人民大学出版社,2012.
    [15]董锡明.轨道列车可靠性、可用性、维修性和安全性[M].北京:中国铁道出版社,2009.
    [16]徐志胜.安全系统工程[M].北京:机械工业出版社,2012.
    [17]杨媛.高速铁路供电系统RAMS评估的研究[D].北京:北京交通大学电气工程,2011.
    [18]Carmignani G. An integrated structural framework to cost-based FMECA:The priority-cost FMECA[J]. Reliability Engineering and System Safety,2009,94(4):861-871.
    [19]Stamatis D H.故障模式影响分析FMEA从理论到实践[M].北京:国防工业出版社,2005.
    [20]Kara Z C, Keller A Z, Barody I, et al. An improved FMEA methodology[C].//Annual Reliability and Maintainability Symposium, IEEE, Orlando, FL, USA,1991:248-252.
    [21]Price C J, Taylor N S. FMEA for multiple failures[C].//Annual Reliability and Maintainability Symposium 1998 Proceedings, IEEE, New York, NY, USA,1998:43-47.
    [22]Rhee S J, Ishii K. Using cost based FMEA to enhance reliability and serviceability [J]. Advanced Engineering Informatics,2003,3(4):179-188.
    [23]沈政,牛从民,邓连喜.FMEA在工程机械系统可靠性设计中的应用[J].工程机械,2012,43(12):38-42.
    [24]黄李,张亮,任立明.FMEA分析验证技术在国内航天的研究状况及前景[J].质量与可靠性,2011(1):13-16.
    [25]庞旭青.基于FMEA方法的铁路线路维修安全风险管理研究[J].中国铁路,2012(6):48-50.
    [26]赵雷,韩红新,龚奇勇,等.基于FTA-FMEA联合法综合诊断电子设备故障[J].舰船电子工程,2007,27(3):216-218.
    [27]谭勖,宋振宇,盛沛,等FMEA技术在军事装备维修中的应用[J].价值工程,2012,31(1):324-324.
    [28]谭熙静,何正友,于敏,等.基于DFTA的地铁车站级综合监控系统可靠性分析[J].铁道学报,2011,33(7):52-60.
    [29]冯雪,王喜富.基于动态故障树的计算机联锁系统可靠性及性能分析研究[J].铁道学报,2011,33(12):79-82.
    [30]于源,冯锦阳.基于AHP-FTA的齿轮传动安全性评价[J].北京化工大学学报:自然科学版,2012,39(6):95-98.
    [31]胡海涛,高朝晖,何正友,等.基于FTA和FMEA法的地铁牵引供电系统可靠性评估[J].铁道学报,2012,34(10):48-54.
    [32]陈志诚,齐欢,魏军,等.基于可靠性框图的可靠性建模研究[J].工业设计学报,2011,18(6):407-411.
    [33]路延延,林井祥.基于可靠性框图和故障树的矿井运煤系统分析[J].煤炭技术,2011,30(9):9-11.
    [34]吴嘉宁,阎绍泽,谢里阳.基于RBD与FTA的航天器太阳翼可靠性分析[J].清华大学学报:自然科学版,2012,52(1):15-20.
    [35]Lisnianski A. Extended block diagram method for a multi-state system reliability assessment[J]. Reliability Engineering and System Safety,2007,92(12):1601-1607.
    [36]刘敬辉,戴贤春,郭湛,等.铁路系统基于风险的定量安全评估方法[J].中国铁道科学,2009,30(5):123-128.
    [37]Huang D, Chen T, Wang M J. Fuzzy set approach for event tree analysis[J]. Fuzzy Sets and Systems,2001,118(1):153-165.
    [38]Andrews J D, Dunnett S J. Event-tree analysis using binary decision diagrams[J]. IEEE Transactions on Reliability,2000,49(2):230-238.
    [39]Perez-Oc6n R, Castro J E. Two models for a repairable two-system with phase-type sojourn time distributions[J]. Reliability Engineering and System Safety,2004,84(3): 253-260.
    [40]Pe-rez-Oc6n R, Montoro C. Transient analysis of a repairable system, using phase-type distributions and geometric processes[J]. IEEE Transactions on Reliability,2004,53(2): 185-192.
    [41]Neuts M F, Perez-Oc6n R, Torres C. Repairable models with operating and repair times governed by phase type distributions. Advances in Applied Probability,2000,32(2): 468-479.
    [42]曲长征,于永利.基于随机Petri网的装备维修保障系统性能分析[J].系统工程理论与实践,2012,32(11):2512-2516.
    [43]黄敏,林啸,侯忐文.模糊故障Petri网建模方法及其应用[J].中南大学学报:自然科学版,2013(1):208-215.
    [44]江式伟,吕卫民,冯浩源.基于时间Petri网的装备体系可靠性建模与仿真[J].系统工程与 电子技术,2013(4):895-899.
    [45]Apaydin O. An application for the control of stochastic petri nets via fluidification approach[J]. Gazi University Journal of Science,2012,25(4):901-908.
    [46]Martz H F, Waller R A. Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components[J]. Technometrics,1990,32(4):407-416.
    [47]Vaurio J K. Uncertainties and quantification of common cause failure rates and prob-abilities for system analysis[J]. Reliability Engineering and system safety,2005,90(2): 186-195.
    [48]Vaurio J K. Extensions of the uncertainty quantification of common cause failure rates[J]. Reliability Engineering and system safety,2002,78(1):63-69.
    [49]梁洁,蔡琦,初珠立,等.基于贝叶斯网络的余热排出泵故障诊断[J].原子能科学技术,2012,46(增刊):335-340.
    [50]许丽佳,黄建国,王厚军,等.混合优化的贝叶斯网络结构学习[J].计算机辅助设计与图形学学报,2009,21(5):633-639.
    [51]Portinale L, Raiteri D C, Montani S. Supporting reliability engineers in exploiting the power of Dynamic Bayesian Networks[J]. International Journal of Approximate Reasoning, 2010,51(2):179-195.
    [52]程延伟,谢永成,李光升,等.基于贝叶斯网络的车辆电源系统故障诊断方法[J].计算机工程,2011,37(23):251-253.
    [53]郭文强,张玉杰,侯勇严.基于贝叶斯网络模型构造的汽车故障诊断研究[J].计算机仿真,2011,28(11):315-318.
    [54]张洁.人员密集公共建筑安全设计体系建设初探[D].重庆大学,2006.
    [55]张曙光.高速铁路系统生命周期安全评估体系的研究[J].铁道学报,2007,29(2):20-26.
    [56]彭小兰,范晓明.基于安全检查表法的锅炉厂质量保证体系的安全评价[J].安全与环境工程,2010,17(6):47-50.
    [57]刘辉,张智超,刘强.基于PHA-LEC-SCL法公路隧道施工安全评价研究[J].现代隧道技术,2010(5):32-36,107.
    [58]宗蜀宁,端木京顺,汪建华,等.飞机整机级系统安全性评估方法探讨[J].中国安全科学学报,2011,21(10):125-130.
    [59]丁坚勇,孙建明,张华志,等.高速铁路供电系统安全性评估研究[J].铁道工程学报,2011(5):76-80.
    [60]康熊,王卫东,刘金朝.基于RAMS的高速铁路轨道平顺状态综合评价体系研究[J].中国铁道科学,2013,34(2):13-17.
    [61]徐秋良,姚虹.RAMS管理在轨道交通AFC系统中的应用研究[J].黑龙江科技信息,2013(7):20.
    [62]杨少林,庄运杰.国内城市轨道交通建设RAMS管理模式探讨[J].现代隧道技术,2012,49(5):10-14,22.
    [63]Marseguerra M. Basics of genetic algorithms optimization for RAMS applications[J]. Reliability Engineering and System Safety,2006,91(9):977-991.
    [64]郑建祥.基于可靠性和经济性的城市公交车辆维修策略研究[D].江苏大学,2012.
    [65]贾希胜.以可靠性为中心的维修[J].工程机械与维修,2002(11):116-117.
    [66]高萍.基于可靠性分析的复杂设备预防性维修决策研究[D].清华大学,2008.
    [67]方瑛,黄征,肖枝洪,等.复杂串联系统预防维修策略研究[J].湖北工业大学学报,2011,26(3):17-19.
    [68]蔡景,左洪福,刘明,等.复杂系统成组维修策略优化模型研究[J].应用科学学报,2006,24(5):533-537.
    [69]Andrew K S, Albert H C. Maintenance, Replacement, and Reliability:Theory and Appli-cations[J]. Boca Ration, FL, U.S., CRC Press,2005.
    [70]Li Z G, Zhou S Y, Choubey S, et al. Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures[J]. HE Transactions (Institute of Industrial Engineers),2007,39(3):303-315.
    [71]Ansell J I, Phillips M J. Practical aspects of modelling of repairable systems data using proportional hazards models[J]. Reliability Engineering and System Safety,1997,58(2): 165-171.
    [72]Zuashkiani A, Banjevic D, Jardine A K S. Estimating parameters of proportional hazards model based on expert knowledge and statistical analysis[J]. Journal of the Operational Research Society,2009,60(12):1621-1636.
    [73]Jardine A K S, Banjevic D. Interpretaion of inspection data emanating from equipment condition monitoring tools:method and software[C].//In Mathematical and Statistical Methods in Reliability. Y. M. Armijo, Ed. World Scientific Publishing Company, Singapore,2005:263-278.
    [74]Dhillon B S. Optimum life cycle and labour costs estimation of repairable equipment[J]. Microelectronics and Reliability,1996,36(2):227-229.
    [75]Ryerson C M. RELATING FACTORY TEST FAILURE RESULTS TO FIELD RELIABILITY, REQUIRED FIELD MAINTENANCE, AND TO TOTAL LIFE CYCLE COSTS[J]. Microelectronics Reliability,1973,12(4):357-384.
    [76]Chao T S, Chen C C. Minimization of the life cycle cost for a multistate system under periodic maintenance[J]. International Journal of Systems Science,2000,31(2):217-227.
    [77]Ahuja I P S, Khamba J S. Strategies and success factors for overcoming challenges in TPM implementation in Indian manufacturing industry[J]. Journal of Quality in Maintenance Engineering,2008,14(2):123-147.
    [78]Park K. S, Han S W. TPM-Total productive maintenance:Impact on competitiveness and a framework for successful implementation[J]. Human Factors and Ergonomics In Manufacturing,2001,11(4):321-338.
    [79]Lawrence J J. Use mathematical modeling to give your TPM implementation effort an extra boost[J]. Journal of Quality in Maintenance Engineering,1999,5(1):62-69.
    [80]Guide J V D R, Srivastava R, Kraus M E. Priority scheduling policies for repair shops[J]. International Journal of Production Research,2000,38(4):929-950.
    [81]Matis T I, Jayaraman R, Rangan A. Optimal price and pro rata decisions for combined warranty policies with different repair options[J]. ⅡE Transactions,2008,40(10):984-991.
    [82]Kim S Y, Frangopol D M, Zhu B J. Probabilistic optimum inspection/repair planning to extend lifetime of deteriorating structures[J]. Journal of Performance of Constructed Facilities,2011,25(6):534-544.
    [83]Pan Y, Thomas M U. Repair and replacement decisions for warranted products under markov deterioration[J]. IEEE Transactions on Reliability,2010,59(2):368-373.
    [84]Yung C, Bonnett A H. Repair or replace[J]? IEEE Industry Applications Magazine,2004, 10(5):48-58.
    [85]Mackie K R, Wong J M, Stojadinovic Bozidar. Post-earthquake bridge repair cost and repair time estimation methodology[J]. Earthquake Engineering and Structural Dynamics, 2010,39(3):281-301.
    [86]Rao B M. A decision support model for warranty servicing of repairable items[J]. Computers & Operations Research,2011,38(1):112-130.
    [87]Higgins A. Scheduling of railway track maintenance activities and crews[J]. Journal of the Operational Research Society,1998,49(10):1026-1033.
    [88]EI-Amin I, Dufluaa S, Abbas M. Tabu search algorithm for maintenance scheduling of generating units[J]. Electric Power Systems Research,2000,54(2):91-99.
    [89]Chattopadhyay D. A practical maintenance scheduling program:mathematical model and case study. IEEE Transactions on Power Systems,1998,13(4):1475-1480.
    [90]Sriram C, Haghani A. An optimization model for aircraft maintenance scheduling and re-assignment[J]. Transportation Research Part A:Policy and Practice,2003,37(1):29-48.
    [91]Tsai Y T, Wang K S, Tsai L C. A study of availability-centered preventive maintenance for multi-component systems. Reliability Engineering and System Safety,2004,84(3): 261-270.
    [92]于毅,刘红,阮继华.基于层次分析法优化船舶维修计划[J].江苏船舶,2001,18(4):14-16.
    [93]姜国,胡飞,覃刚.多状态退化系统最优故障维修策略[J].江苏大学学报:自然科学版,2010,31(4):492-496.
    [94]王莹,刘军,苗建瑞.基于列生成算法的动车组检修计划优化[J].中国铁道科学,2010,31(2):115-120.
    [95]蔡猛,张大发,张宇声,等.基于故障树分析的核动力装置实时智能故障诊断专家系统设计[J].原子能科学技术,2010,44(增刊):373-377.
    [96]沈仁发,郑海起,金海微,等.MMAS与粗糙集在齿轮箱故障诊断中的应用[J].振动与冲击,2010,29(11):190-194.
    [97]张喜,杜旭升,刘朝英.车站信号控制设备故障诊断专家系统的研究与实现[J].铁道学报,2009,31(3):43-49.
    [98]刘永建,朱剑英,夏洪山,等.飞机复杂系统故障诊断的灰色粗集推理方法[J].南京航空航天大学学报,2009,41(2):227-231.
    [99]陈雪峰,李继猛,程航,等.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52.
    [100]黄采伦,樊晓平,张剑,等.机车走行部故障在线诊断的特征分析方法研究[J].仪器仪表学报,2007,28(6):1007-1011.
    [101]唐凯,刘瑞兰,苏宏业,等.基于多元统计过程控制的故障识别方法[J].浙江大学学报:工学版,2005,39(5):663-667.
    [102]黄景德,郝学良,黄义.基于改进HMM的潜在电子故障状态识别模型[J].仪器仪表学报,2011,32(11):2481-2486.
    [103]Jota P, Islam S M, Wu T, et al. A class of hybrid intelligent system for fault diagnosis in electric power systems[J]. Neurocomputing,1998,23(1-3):207-224.
    [104]Fong A C M, Hui S C. An intelligent online machine fault diagnosis system[J]. Computing and Control Engineering Journal,2001,12(5):217-223.
    [105]Fenton W G, McGinnity T M, Maguire L P. Fault diagnosis of electronic systems using intelligent techniques:A review[J]. IEEE Transactions on Systems,2001,31(3):269-281.
    [106]乔辉.地铁列车的结构及构造原理[J].科技信息,2012(4):337-338.
    [107]朱士友,胡文伟.广州地铁车辆车门结构、控制原理及改进意见[J].铁道车辆,2000,38(增刊):60-63.
    [108]湛耀斌,王保坚,梁洪.广州地铁1号线车辆车门系统的改进[J].铁道车辆,2004,42(7):20-21,30.
    [109]胡今强,梁洪.广州地铁车门故障分析及改进[J].铁道车辆,2000,38(9):38-39.
    [110]黄捷.广州地铁车辆空调系统简介[J].铁道车辆,1997,35(9):24-28.
    [111]刘国良.广州地铁列车空调系统的设计差异分析[J].机车电传动,2007(3):53-54.
    [112]薛敏,侯峰.广州地铁一号线列车空调控制板国产化研究[J].铁道机车车辆上人,2009(6):24-28.
    [113]宁韶安,邓景山.广州地铁1号线列车辅助系统低压电源控制系统国产化[J].现代城市轨道交通,2009(1):46.
    [114]陈志宏.广州地铁1号线车辆DC/AC状态显示板的维修[J].机车电传动.2005(5):35-38.
    [115]Chen Y, Du L, Li Y F, et al. FMECA for aircraft system[C].//ICQR2MSE.Xi'an, China, IEEE Computer Society,2011:122-125.
    [116]Zhang, Shu Z, Zeng, et al. A new approach for prioritization of failure mode in FMECA using encouragement variable weight AHP[C].//2nd International Forum on Micro Manufacturing. Guangzhou, China, Trans Tech Publications,2013:93-98.
    [117]Carmignani, Gionata. An intergrated structural framework to cost-based FMECA:The priority-cost FMECA[J]. Reliability Engineering and System Safty,2009,94(4):861-871.
    [118]Moore D A. Use of ranking matrix and recommendation prioritization system for process hazrd analysis studies[J]. Process Safety Progress,1997,16(2):83-85.
    [119]Wang Y M, Chin K S, Poon GaryKaKwai, et al. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean[J]. Expert Systems with Applications,2009,26(1):1195-1207.
    [120]Gargama H, CHaturvedi S K. Criticality assessment models for fail-ure mode effects and criticality analysis using fuzzy logic[J]. IEEE Transactions on Reliability,2011,60(1): 102-110.
    [121]Bhat C R. Generalized multiple durations proportional hazard model with an application to activity behavior during the evening work-to-home commute[J]. Transportation Research Part B:Methodological,1996,30(6):465-480.
    [122]李国正,谭南林,张建斌.基于改进型AHP的地铁列车设备重要度分析[J].电子测量与仪器学报,2012,26(6):503-507.
    [123]赵金楼,李根,苏屹.改进AHP-FCE的造船企业节能减排评价[J].哈尔滨工程大学学报,2012,33(12):1570-1576.
    [124]高萍,吴甦.基于蒙特卡罗方法的设备维修决策模型[J].系统仿真学报,2007,19(22):5112-5114.
    [125]董锡明.高速列车的维修[J].中国铁路,1999(5):42-47.
    [126]李雪,吴俊勇,杨媛,等.高速铁路接触网悬挂系统维修计划的优化研究[J].铁道学报,2010,32(2):24-30.
    [127]陈琦,赵涛.工业企业设备维护策略优化及仿真研究[J].组合机床与自动化加工技术,2008(4):98-102.
    [128]王庆峰,高金吉.过程工业动态的以可靠性为中心的维修研究及应用[J].机械工程学报,2012,48(8):135-143.
    [129]Marvin R.系统可靠性理论:模型、统计方法及应用[M],郭强,王秋芳,刘树林,译.北京:国防工业出版社,2011.
    [130]金星,洪延姬,等.工程系统可靠性数值分析方法[M].北京:国防工业出版社,2002.
    [131]Ladani L.J.Estimating fatigue damage model constants with maximum likelihood method [J]. International Journal of Materials and Structural Integrity,2008,2(1-2):164-172.
    [132]郭荣华,吴玉生,陈庆荣.定时截尾试验中故障数为零装备的平均无故障间隔时间评估方法研究[J].兵工学报,2011,32(8):1036-1040.
    [133]Bull C R, Bull R M, Rastin B C. On the sensitivity of the chi-square test and its consequences[J]. Measurement Science and Technology,1992,3(9):789-795.
    [134]Drew J H, Glen A G, Leemis L M. Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic[J]. Computational Statistics and Data Analysis,2000,34(1): 1-15.
    [135]Kay S M, Gabriel J R. An Invariance Property of the Generalized Likelihood Ratio Test[J]. IEEE Signal Processing Letters,2003,10(12):352-355.
    [136]王华胜.机车车辆区间故障数据置信限近似估计方法[J].铁道学报,2012,34(5):15-19.
    [137]罗吉庭,罗强.串联系统可靠性评估方法的综合述评[J].宇航学报,1996,17(2):36-39.
    [138]董锡明.近代铁路可靠性与安全性的几个问题[J].中国铁道科学,2000,21(1):94-100.
    [139]Yang C S, Liu H, Huang G Z, et al. Study on hazard source evaluation in construction sites with modified LEC method [C].//20112nd International Conference on Mechanic Automation and Control Engineering. Inner Mongolia, China:IEEE Computer Society, 2011:3508-3510.
    [140]龚伟,杜阳光,张绮.MES评价方法在建设项目职业病危害风险评价中的应用探讨[J].现代预防医学,2010,37(9):1612-1613,1635.
    [141]刘云,王保民.MLS评价法在安全评价中的应用[J].安防科技,2011(9):56-58.
    [142]Caruso M A, Cheok M C, Cunningham M A. Approach for using risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[J]. Reliability Engineering and System Safety,1999,63(3):231-242.
    [143]李永华,兆文忠.铁路货车故障模式危害性分析方法[J].中国铁道科学,2009,30(3):103-108.
    [144]樊虎,宋笔锋,韩斐.航空维修安全性评价的一种新模型[J].科学技术与工程,2008,8(13):3664-3667.
    [145]王艳辉,孙倩,李静,等.铁路货运车辆运行状态安全评估方法及应用研究[J].铁道学报,2011,33(4):38-45.
    [146]梁晓锋,张裕芳,易宏,等.水下管道维修干式舱系统可靠性及安全性分析[J].船舶工程,2008,30(2):67-71.
    [147]Hakobyan A, Aldemir T, Denning R, et al. Dynamic generation of accident progression event trees[J]. Nuclear Engineering and Design,2008,238(12):3457-3467.
    [148]Bladon K, Hudd R.Wayside monitoring of metro lines[C].//IET Seminar Digest, Derby, United kingdom, Institution of Engineering and Technology,2008:33-34.
    [149]刘亚宁.香港地铁检修模式在北京地铁4号线车辆基地设计中应用的可行性研究[J].铁道标准设计,2006(6):97-99.
    [150]陈文芳.地铁车辆检修制度改革的探讨[J].铁道机车车辆工人,2007(3):25-29.
    [151]温清.关于地铁车辆检修制度[J].城市轨道交通研究,2004,7(4):58-60.
    [152]Stalder O. The life cycle costs (LCC) of entire rail networks:An international comparision[J]. International Railway Congress Association,2001,32(4):26-31.
    [153]乔三保,耿俊豹,孙林凯,等.基于LCC的舰船RMS的权衡技术分析[J].装备制造技术,2012(1):90-92.
    [154]金玉兰,蒋祖华,侯文瑞.以可靠性为中心的多部件设备预防性维修策略的优化[J].上海交通大学学报,2006,40(12):2051-2056.
    [155]Cai J, Zuo H F, Lu D F. Availability simulation of multi-component system based on opportunistic maintenance policy[J]. Transaction of Nanjing university of aeronautics & astronautics,2009,26(3):219-223.
    [156]侯斌,成艾国.特种设备维修策略研究[J].机电产品开发与创新,2005,18(3):47-49.
    [157]李明志,陈桂明,马永胜.基于安全性的维修管理研究[J].中国修船,2005(增刊):59-62.
    [158]张怀亮,卜英勇.基于安全性的特种设备维修策略研究[J].工业安全与环保,2002,28(4):19-22.
    [159]刘云,赵玮,刘淑.系统最佳维修策略研究[J].运筹与管理,2004,13(2):58-61.
    [160]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社.2009.
    [161]Deb K, Tiwari S. Omni-optimizer:A generic evolutionary algorithm for single and multi-objective optimization[J]. European Journal of Operational Research,2008,185(3): 1062-1087.
    [162]Taboada H, Espiritu J F, Coit D W. MOMS-GA:A multi-objective multi-state genetic algorithm for system reliability optimization design problems[J]. IEEE Transactions on Reliability,2008:182-191.
    [163]Watson R A, Ficici S, Pollack J. Embodied Evolution:Distributing an evolutionary algorithm in a population of robots[J]. Robotics and Autonomous Systems,2002,39(1): 1-18.
    [164]Pothiya S, Ngamroo I, Kongprawechnon W. Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints[J]. Energy Conversion and Management,2008,49(4):506-516.
    [165]Alrefaei M H, Andradottir S. Simulated annealing algorithm with constant temperature for discrete stochastic optimization[J]. Management Science,1999,45(5):748-764.
    [166]Wang L F, Singh C. Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm[J]. Electric Power Systems Research,2007,77(12):1654-1664.
    [167]岳金彩,郑世清,韩方煜.多目标遗传算法及在过程优化综合中的应用[J].计算机与应用化学,2006,23(8),748-752.
    [168]边晶梅,朱浮声,陈耕野,等.基于小生境Pareto遗传算法的混凝土桥面板维修优化[J]. 东北大学学报:自然科学版,2008(1):125-129.
    [169]Kannan S, Baskar S, McCalley J D, et al. Application of NSGA-Ⅱ algorithm to generation expansion planning[J]. IEEE Transactions on Power Systems,2009,24(1): 454-461.
    [170]Rabiee M, Zandieh M, Ramezani P. Bi-objective partial flexible job shop scheduling problem:NSGA-Ⅱ, NRGA, MOGA and PAES approaches[J]. International Journal of Production Research,2012,50(24):7327-7342.
    [171]Liu C A, Wan Y P. Evolutionary algorithm for dynamic multi-objective optimization problems and its convergence[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica,2007,35(6): 1118-1121.
    [172]陈婕,熊盛武,林婉如.NSGA-Ⅱ算法的改进策略研究[J].计算机工程与应用,2011,47(19),42-45.
    [173]Yen G, Lu H. Dynamic multiobjective evolutionary algorithm:Adaptive cell-based rank and density estimation[J]. IEEE Transactions on Evolutionary Computation,2003,7(3): 253-274.
    [174]胡建军,唐常杰,段磊,等.基因表达式编程初始种群的多样化策略[J].计算机学报,2007,30(2):305-310.
    [175]张红宇,高阳,马华.基于可变长工序编码的再制造生产调度优化方法[J].计算机应用研究,2010,27(3):871-873,882.
    [176]吴海燕,王遵彤.基于CBR的遗传算法初始种群设计与研究[J].机电一体化,2010,1(10):13-18,32.
    [177]何大阔,王福利,贾明兴.遗传算法初始种群与操作参数的均匀设计[J].东北大学学报:自然科学版,2005,26(9):828-831.
    [178]王福林,吴昌友,杨辉.用遗传算法求解约束优化问题时初始种群产生方法的探讨[J].东北农业大学学报,2004,35(5):608-611.
    [179]王鹏玲,林轩,李跃宗,等.自适应遗传算法在列车节能优化中的应用[J].计算机仿真,2012,29(11):350-354.
    [180]邹丽丽.蚁群优化自适应遗传算法物流车辆调度实现[J].计算机测量与控制,2012,20(5):1423-1425,1441.
    [181]Yen G, Lu H. Dynamic multiobjective evolutionary algorithm:Adaptive cell-based rank and density estimation[J]. IEEE Transactions on Evolutionary Computation,2003,7(3): 253-274.
    [182]Raquel C R, Naval J, Prospero C. An effective use of crowding distance in multiobjective particle swarm optimization[C].//GECCO 2005, Washington, D.C., United states,Association for Computing Machinery,2005:257-264.
    [183]Moon J, Linninger, Andreas A. A hybrid sequential niche algorithm for optimal engineering design with solution multiplicity [J]. Computers and Chemical Engineering, 2009,33(7):1261-1271.
    [184]代才莉,包万宇.Logistic映射控制的安全算术编码及其在图像加密中的应用[J].重庆大学学报:自然科学版,2012,25(8):87-91.
    [185]程志刚,张立庆,李小林,等.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,29(1):103-106.
    [186]贺德强,刘旗扬,邱福,等.列车通信网络技术专利发展研究[J].装备制造技术,2012(8):127-130,138.
    [187]梅樱,刘志刚,王磊,等CANopen作为轨道交通车辆总线的可行性研究[J].铁道学报,2011,33(2):38-44.
    [188]Tovar E, Vasques F. Distributed computing for the factory-floor:A real-time approach using WorldFIP networks[J]. Computers in Industry,2001,44(1):11-31.
    [189]Moreno J C, Laloya E, Navarro J. A link-layer slave device design of the MVB-TCN bus (IEC 61375 and IEEE 1473-T)[J]. IEEE Transactions on Vehicular Technology,2007, 56(6):3457-3468.
    [190]Katzel J, Hoske M T. Industrial ethernet protocols[J]. Control Engineering,2006,53(12): 58-63.
    [191]McEntee M. ARCnet for embedded control [J]. InTech,1996,43(11):36-37.
    [192]Hoske M T. Lonworks expands, positions as universal network solution[J]. Control Engineering,1996,43(7):77-78.
    [193]李国正,谭南林,王山石.地铁列车车载故障诊断系统设计与开发[J].电子测量与仪器学报,2012,26(10):904-910.
    [194]任章,李清东,董磊,等.基于案例推理和等价空间的定性/量混合故障诊断方法[J].南京航空航天大学学报,2011,43(增刊):87-90.
    [195]吴建军,郭坚毅,廖捷.一种基于案例推理的装备故障诊断技术[J].解放军理工大学学报:自然科学版,2009,10(增刊):43-46.
    [196]张代胜,王悦,陈朝阳.融事实例与规则推理的车辆故障诊断专家系统[J].机械工程学报,2002,38(7):91-95.
    [197]张晓阳,孙宇,张荣涛,等.基于实例的故障诊断方法研究与应用[J].南京理工大学学报:自然科学版,2003,27(1):64-67.
    [198]夏虹,刘群.基于范例推理的机械故障诊断方法与系统[J].哈尔滨工程大学学报,1999,20(5):43-50.
    [199]王东,刘怀亮,徐国华.基于案例推理的故障诊断系统关联度计算[J].西安电子科技大学学报,2003,30(2):264-266.
    [200]刘景宁,刘涛,贺晓.基于CBR的故障诊断系统案例检索策略[J].华中科技大学学报:自然科学版,2008,36(3):16-19.
    [201]郭坚毅,张琦,凌海风,等.基于CBR的工程车辆故障诊断系统[J].解放军理工大学学报:自然科学版,2002,3(6):64-67.
    [202]张岐山,邓聚龙.灰关联熵分析方法[J].系统工程理论与实践,1996,16(8):7-11.
    [203]裴玲玲,王正新,沈春光.灰色距离关联度模型及其性质研究[J].统计与决策,2010(16):11-13.
    [204]Marukatat S, Methasate I. Fast nearest neighbor retrieval using randomized binary codes and approximate Euclidean distance[J]. Pattern Recognition Letters,2013,34(9): 1101-1107.
    [205]魏晨,杨孝洪.南京地铁一号线列车产生紧急制动的原因分析及预防措施[J].电力机车与城轨车辆,2008,31(6):53-55.
    [206]胡活力,段永魁.深圳地铁1号线列车紧急制动故障的原因分析及电路改进[J].电力机车与城轨车辆,2011,34(2):66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700