用户名: 密码: 验证码:
地铁车站关键结合部位火灾烟气流动特性与控制模式优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的不断发展,地铁应运而生。地铁的出现极大的解决了城市的交通拥堵问题,然而自地铁出现以来,地铁火灾便不可避免。研究表明地铁发生火灾时,火灾烟气是威胁人员安全的主要原因。地铁火灾可发生在站厅层、站台层和行驶中的列车上。站厅层发生火灾时,由于站厅层直接与地面相连,因此,人员疏散和火灾救援相比站台层火灾和列车火灾相对容易一些。站台层发生火灾时,站台层的人员往往通过站厅与站台之间连通的楼梯或自动扶梯疏散至站厅层,因此,站台火灾时站台与站厅关键结合部位的烟气流动与控制研究非常重要。行驶中的地铁列车发生火灾时,由于在隧道内不利于火灾扑救和人员疏散,因此应尽量行驶至前方车站停靠站台进行火灾扑救和人员疏散。着火列车停靠车站时,列车车门和站台屏蔽门均处于打开状态,隧道轨行区和站台区处于连通状态,火灾烟气会由隧道轨行区向站台区蔓延,因此,研究此火灾场景下烟气在隧道和站台关键结合部位的流动特性具有重要意义。对于地铁列车火灾的扑救,越来越多的研究者想把细水雾系统应用于地铁火灾扑救中,细水雾在火灾扑救中将受隧道纵向风的影响,因此,细水雾和纵向风都会对烟气流动产生影响。现阶段地铁车站往往设有多套烟气控制系统,那么列车火灾停靠车站时,车站多套烟气控制系统的协同优化工作模式也需要进一步深入研究。
     本文针对地铁车站火灾时车站关键结合部位烟气流动特性与控制模式优化采用实验研究、理论分析和数值模拟的方法开展研究。建立了1:10模拟尺度的地铁车站烟气控制实验台和全尺寸列车火灾模拟实验台,通过对火灾时烟气流动的特征参数温度、有毒气体浓度等参数的测量,揭示了地铁站火灾时烟气在关键结合部位的流动特性,并提出了优化的烟气控制模式。具体工作包括:
     研究了站台火灾时,站台到站厅关键结合部位挡烟垂壁的设置对站台顶棚烟气温度分布的影响。通过理论分析,建立了站台火灾时顶棚温度衰减指数与火源功率和挡烟垂壁高度之间的耦合关系模型,并通过开展小尺寸实验对该模型进行了验证。
     研究了列车火灾停靠车站时,火灾烟气在隧道和站台关键结合部位的流动特性。通过在小尺寸实验台开展实验,揭示了车站烟气控制系统失效情况下,隧道区烟气温度衰减规律,以及火源位置和火源功率对站台区温度分布的影响。
     研究了列车火灾停靠车站时,在细水雾和纵向风耦合作用下,火灾烟气在隧道和站台关键结合部位的蔓延特性。通过在全尺寸实验台开展实验,揭示了火源位于不同位置时,细水雾和纵向风的耦合作用下,隧道区和站台区的能见度、温度场以及CO有毒气体浓度的分布特性。
     研究了列车火灾停靠地铁车站时,车站多套烟气控制系统的协同优化工作模式。通过数值模拟的方法,对全封闭式屏蔽门和半高安全门两种设置形式的地铁车站多套烟气控制系统组合模式下的烟气控制效果进行对比分析,提出了优化的烟气控制模式。模拟还对车站关键结合部位辅助烟气控制设施的设置形式优化开展了研究。
With the continuous development of cities, subway emerged as the times. The traffic problem in cities has been solved greatly since the appearance of subway. However, since subway come into being, subway fire has been inevitable. Studies have shown that in case of a fire at subway, the main threat to personnel safety is smoke. Fires at subway station might occur at the lobby floor, at the platform floor or in the moving train. In case of a fire at the lobby floor, because the lobby floor and the ground are directly connected, personnel evacuation and fire rescue might be easier in comparison with fires at the platform floor or in the travelling train. When a fire happens at the platform floor, passengers there usually go through the stairs or escalators to the lobby floor. Therefore, studies on the smoke movement and its corresponding control at conjunction areas between the platform floor and the lobby floor are very important. When a travelling train is on fire, as it is not convenient to carry out fire-fighting and personnel evacuation in the tunnel, the train should better move to the subway station in front and stops for fire rescue. When a train stops at the subway station, doors of the train and the platform screen doors are all open, so the tunnel rail track space and the platform area are connected in space. Smoke can spill out of the train carriage and propagates in the tunnel and the platform area, so, it is of great importance to investigate the smoke flowing characteristics at key conjunction areas between tunnel and platform. As for the fire fighting for train fire, more and more researchers try to employ the water mist system in fire-fighting at subway station. The performance of the water mist system is also affected by the longitudinal ventilation during its fire suppression in tunnels; as a result, smoke flowing can be influenced both by water mist and longitudinal ventilation. At present, multiple smoke control systems are set at subway station, so for train on fire stopping at subway station, the optimization of the multiple smoke control modes also needs to be further investigated.
     In this paper, the smoke flowing characteristics and its corresponding smoke control mode optimization at conjunction areas of subway station are studied based on experimental research, theoretical analysis and numerical simulation methods. A1:10scale model experimental facility for smoke controlling at subway station and a full scale experimental facility for train fire simulation are established. Based on the measurement of smoke flowing characteristic parameters, such as temperature, toxic gas concentration, et.al, the smoke flowing characteristics at key conjunction areas of subway station are revealed, and optimized smoke control mode is proposed. The specific work is as follows:
     For platform fire, the influence of the installation of smoke screen at the key conjunction areas between platform floor and lobby floor on the platform ceiling temperature distribution is studied. A scaling correlation is proposed to characterize the smoke temperature decay index by heat release rate and smoke screen height. A series of small-scale experiments are carried out to verify this model.
     The smoke flowing characteristics between key conjunction areas between the tunnel and the platform is studied in case of a train on fire stopping at subway station. Experiments are conducted in the scale model facility as to study the smoke distribution in the tunnel and at the platform floor when the smoke control systems are all deactivated. The smoke temperature decay law in the tunnel is revealed, and the effects of fire position and fire heat release rate on the temperature distribution at the platform floor are also presented.
     The smoke flowing characteristics at key conjunction areas between tunnel and platform are also studied under the coupling effects of water mist and longitudinal ventilation when a train on fire stopping at subway station. Based on full-scale experiments, the visibility, temperature distribution, and CO distribution characteristics are revealed when fires are placed at different positions.
     When a train on fire stops at subway station, the optimization of the smoke control mode is investigated. Based on numerical simulation, comparative analysis are carried out to study the smoke control effects when multiple smoke control modes are employed at subway stations with full-seal platform screen door or half-height safety door. Optimized smoke control modes are put forward respectively for subway stations with full-seal platform screen door or half-height safety door. Numerical simulation is also carried out to study the optimization of the installation of the auxiliary smoke control facilities at conjunction areas at subway station.
引文
[1]田鸿宾,孙兆荃.世界城市地铁发展综述[J].土木工程学报,1995,23(1):73-78.
    [2]曹炳坤.世界地铁发展令人瞩目[J].城市公共交通,2003,(5):33.
    [3]闫长安.世界地铁发展趋势和运营安全的保障[J].现代城市轨道交通,2011,(5):100-104.
    [4]曹小曙,林强.世界城市地铁发展历程与规律[J],地理学报,2008,63(12):1257-1267.
    [5]小燕.伦敦地铁今昔[J].交通与运输,1997,(4):32.
    [6]顾尚华.世界七大城市各具特色的地铁[J].交通与运输,2010,(5):20-22.
    [7]康宁.美国的地下空间开发和利用[J].浙江地质,2001,11(1):11-13.
    [8]于春华.日本的地下铁道[J].铁道标准设计,1994,(4):6-10.
    [9]木下贤.东京地铁的安全对策[J].都市快轨交通,2007,20(6):20-23.
    [10]梁宁慧,刘新荣,曹学山,钟正君,廖靖.中国城市地铁建设的现状和发展战略[J].重庆建筑大学学报,2008,30(6):81-85.
    [11]吴晓红,张琦.上海地铁发展与世博服务[J].现代城市轨道交通,2010,(3):2-5.
    [12]张国碧,李家稳,郭建波.我国地铁的发展现状及展望[J].山西建筑,2011,36(33):13-15.
    [13]朱军.我国城市轨道交通发展问题探讨[J].城市交通,2002,(2):30-32.
    [14]白延辉.上海地铁的规划与建设[J].地下空间(增刊),1998,18(5):395-340.
    [15]郭春丽,闫胜利,柏利军.延伸的轨迹辉煌的未来——北京地铁发展36年掠影[J].北京档案,2006,(9):9-11.
    [16]陆静,熊燕舞.北京地铁驶过四十年[J].运输经理世界,2009,(10):20-21.
    [17]张卓凡.香港地铁与都市交通轨道化战略的启示[J].港澳经济,1995,(1):34-37.
    [18]易晓英.香港地铁的现有规模及最新发展[J].都市快轨交通,2004,17(6):38-43.
    [19]孟正夫,任运贵.伦敦地铁君王十字车站重大火灾情况及其主要教训[J].消防科技,1992,(3):34-37.
    [20]鲁文斋.伦敦地铁大火灾[J].山东消防,1999,(4):16-17.
    [21]魏平安.巴库地铁火灾的教训[J].消防技术与产品信息,1996,(8):33-33.
    [22]何建红.阿塞拜疆地铁火灾[J].上海消防,1999,(11):40-41.
    [23]金康锡.谁来保障地铁安全—韩国大邱地铁火灾的教训和启示[J].中国减灾,2005,(9):42-43.
    [24]孙爽.从韩国大邱市地铁火灾谈地铁的防火安全[J].消防技术与产品信息,2004,(S1):109-110.
    [25]Park H.J. An investigation into mysterious questions arising from the Daegu underground railway arson case through fire simulation and small-scale fire test[C]. Proceedings of the 6th asia-oceania symposium on fire science and technology, Daegu. Korea.2004,16-27.
    [26]Hong W.H. The progress and controlling situation of Daegu subway fire disaster[C]. Proceedings of the 6th asia-oceania symposium on fire science and technology, Daegu. Korea. 2004,28-46.
    [27]刘铁民,钟茂华,王金安等.地下工程安全评价[M].北京:科学出版社,2005.
    [28]杜宝玲.国外地铁火灾事故案例统计分析[J].消防科学与技术,2007,26(2):214-217.
    [29]王睿,康辰,张臻.地铁火灾起因及预防研究[J].山西建筑,2010,36(24):203-204.
    [30]蒋雅君,杨其新.地铁火灾特点分析及应对措施探讨[J].城市轨道交通研究,2007,(1):4-6.
    [31]杨立中,邹兰.地铁火灾研究综述[J].工程建设与设计,2005,(11):8-12.
    [32]杨立中,邹兰.地铁火灾研究综述(续)[J].工程建设与设计,2005,(12):32-35.
    [33]邓艳丽,谭志光.地铁火灾研究综述[J].安防科技,2008,(12):6-8.
    [34]钟委,霍然,王浩波.地铁火灾场景设计的初步研究[J].安全与环境学报,2006,6(3):32-34.
    [35]杨昀,曹丽英.地铁火灾场景设计探讨[J].自然灾害学报,2006,15(4):121-125.
    [36]刘浩江.地铁火灾的成因、预防和处理[J].现代城市轨道交通,2006,(5):48-50.
    [37]许志豪.地铁火灾的防火分析[J].消防技术与产品信息,2007,(3):26-33.
    [38]崔泽艳.地铁火灾的特点及防护[J].中国减灾,2007,(6):20-21.
    [39]苗慧燕.地铁火灾的特点及扑救对策[J].安全,2008,(9):49-50.
    [40]张天巍.地铁火灾的特点及原因分析[J].中国科技信息,2007,(17):96-98.
    [41]蒋雅君,杨其新.地铁火灾的预防对策[J].城市轨道交通研究,2006,(9):18-21.
    [42]赵显,赵云胜.浅议地铁火灾事故的特点与预防对策[J].河北工程技术高等专科学校学报,2005,(1):16-19.
    [43]Drysdale D.D., Macmillan A.J.R., Shilitto D. King's cross fire:Experimental verification of the 'trench effect'[J]. Fire Safety Journal,1992,18(1):75-82.
    [44]Moodie K. The king's cross fire:damage assessment and overview of the technical investigation[J]. Fire Safety Journal,1992,18(1):13-33.
    [45]Moodie K., Jagger S. F. The king's cross fire:result and analysis from the scale model tests[J]. Fire Safety Journal,1992,18(1):83-103.
    [46]Rie D.H., Hwang M.W., Kim S.J., Yoon S.W., Ko J.W., Kim H.Y. A study of optimal vent mode for the smoke control of subway station fire[J]. Tunnelling and Underground Space Technology,2006,21(3/4):300-301.
    [47]Kim J.Y., Kim K.Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway[J]. Tunnelling and Underground Space Technology Technology,2007,22(2): 166-172.
    [48]那艳玲.地铁车站通风与火灾的CFD仿真模拟与实验研究[D].天津:天津大学,2003.
    [49]那艳玲,涂光备,黄桂兴.地铁火灾的盐水实验与计算机数值模拟[J].天津大学学报,2006,39(4):480-485.
    [50]钟茂华,史聪灵,涂旭炜.深埋地铁岛式站点火灾模型实验研究(1)—实验设计[J].中国安全生产科学技术,2006,2(1):3-9.
    [51]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(2)—列车火灾[J].中国安全生产科学技术,2006,2(2):14-18.
    [52]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(3)—站台火灾[J].中国安全生产科学技术,2006,2(3):33-38.
    [53]钟委.地铁车站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学,2007.
    [54]纪杰.地铁站火灾烟气流动及通风控制模式研究[D].合肥:中国科学技术大学,2008.
    [55]赵明桥.地下铁道火灾烟气分区控制及人员疏散模式研究[D].长沙:中南大学,2010.
    [56]赵明桥,彭立敏,彭锦志,蔡铖.地铁车站火灾烟气分区控制试验研究[J].铁道科学与工程学报[J],2011,8(1):91-96.
    [57]杨英霞,陈超,许磊,康国青.全高安全门地铁车站火灾时烟气流动特性的模型实验[J].天津大学学报,2010,43(12):1060-1066.
    [58]朱伟,卢平,廖光煊等.地铁车站出入口火灾烟气特性的模拟研究[J].中国工程科学,2005,7(2):91-96.
    [59]陈阳寿.地铁列车火灾烟气运动规律探讨[J].消防科学与技术,2013,32(1):36-40.
    [60]史聪灵,钟茂华,汪良旗,何理,石杰红,胥旋.地铁车站及隧道全尺寸火灾实验研究(3)—车站隧道火灾[J].中国安全生产科学技术,2013.9(3):26-33.
    [61]鲁嘉华,张志英.地铁火灾数值模拟研究综述[J].上海理工大学学报,2008,30(5):501-506.
    [62]Simcox S., Wilkes N.S., Jones I.P. Computer simulation of the flows of hot gases from the fire at King's cross underground station[J]. Fire Safety Journal,1992,18(1):49-73.
    [63]蔡波,李辉亮,廖光煊.地铁火灾中强制通风烟控系统作用的模拟[J].中国工程科学,2005,7(8):80-83.
    [64]Chen F.L., Guo S.C., Chuay H.Y., Chien, S.W. Smoke control of fires in subway station[J]. Theoretical and Computational Fluid Dynamics,2003,16(5):349-368.
    [65]Chen F., Chien S.W., Jang H.M., Chang W.J. Stack effects on smoke propagation in subway stations[J]. Continuum Mechanics and Thermodynamics,2003,15(5):425-440.
    [66]Choi B.I., Oh C.B., Kim M.B., Han Y.S., Choi J.S. A new design criterion of fire ventilation for the transversely ventilated tunnels[J]. Tunnelling and Underground Space Technology, 2006,21(3/4):277-278.
    [67]Yuan F.D., You S.J. CFD simulation and optimization of the ventilation for subway side-platform[J]. Tunnelling and Underground Space Technology,2007,22(4):474-^*82.
    [68]Gao R., Li A.G., Hao X.P., Lei W.J., Zhao Y.J., Deng B.S. Fire-induced smoke control via hybrid ventilation in a huge transit terminal subway station[J]. Energy and Buildings,2012, (45):280-289.
    [69]田娟荣,周孝清,郑志敏等.屏蔽门对地铁火灾烟气的影响分析[J].暖通空调,2006,36(1):101-105.
    [70]张培红,张帅,于谨.屏蔽门对岛式站台隧道火灾烟气扩散的影响[J].沈阳建筑大学学报(自然科学版),2007,23(5):794-797.
    [71]童艳,何嘉鹏,尤朝阳.双层地铁车站防排烟的数值模拟研究[J].暖通空调,2005,35(12):47-49.
    [72]高海林.屏蔽门对地铁火灾烟气流动的影响分析[J].消防科学与技术,2011,(3):214-216.
    [73]何开远,樊洪明,赵耀华,王峰.岛侧地铁站台火灾烟气运动的数值模拟[J].工程热物理学报,2010,31(2):317-320.
    [74]樊洪明,尹志芳,张丹,李炎锋.地铁车站挡烟垂壁对火灾烟气流动的影响分析[J],防灾减灾工程学报,2011,31(1):80-84.
    [75]Meng N., Hu L.H.2012.A numerical study on the effect of fire shutter and smoke curtain on smoke ventilation in fire disaster of a subway station[C]. International Conference on Civil, Transportation and Environmental Engineering, Nanjing. China. 2012,183-188.
    [76]周汝,何嘉鹏,谢娟.地铁站火灾时空气幕防烟的数值模拟与分析[J].中国安全科学学报,2006,16(3):27-31.
    [77]钟茂华,史聪灵,邓云峰.地铁浅埋岛式站台列车火灾烟气蔓延的数值模拟研究[J].中国安全科学学报,2005,5(11):10-15.
    [78]顾正洪,程远平,周世宁.地铁车站站台与站厅间临界通风速度的研究[J].中国矿业大学学报,2006,35(1):7-10.
    [79]杨晖,贾力,杨立新.活塞风对地铁隧道内烟气扩散特性影响的数值模拟[J].中国安全科学学报,2008,18(11):36-40.
    [80]邵荃,杨锐,陈涛等.活塞风影响下地铁火灾烟气运动规律的数值模拟研究[J].火灾科学,2006,15(3):123-127.
    [81]荣莉,姚杨,姜益强,马最良,刘文胜,郑晋丽.侧式站台和岛式站台活塞风特性分析比较[J].建筑热能通风空调,2007,26(4):86-89.
    [82]史聪灵,钟茂华,涂旭炜,邓云峰,符泰然,何理.深埋岛式地铁车站站台火灾时烟气蔓延数值分析[J].中国安全科学学报,2006,16(3):17-22.
    [83]赵兰英,王圣翔.地铁换乘站火灾烟气蔓延数值模拟与分析[J].消防科学与技术,2013,32(4):373-376.
    [84]王峰,赵耀华,何开远.地铁十字换乘站火灾烟气控制的数值模拟[J].铁道建筑,2012,(12):61-62.
    [85]李炎锋,杜修力,李俊梅,王鲁鹏,王超.地铁换乘站火灾中烟气控制及疏散研究[J].地下空间与工程学报,2011,7(3):587-592.
    [86]张茜,曹建华,王文倩.典型地铁火灾场景中烟气蔓延与控制研究[J].中国安全生产科学技术,2011.7(7):20-25.
    [87]高俊霞,史聪灵,钟茂华.深埋地铁防排烟设计研究[J].中国安全生产科学技术,2006,2(6): 39-44.
    [88]Meng N., Hu L.H., Yang L.Z., et al. Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station[J]. Tunnelling and Underground Space Technology,2014. (40):151-159.
    [89]Meng N., Hu L.H., Yang L.Z., et al. Numerical Study on the Influence of Air Supply Mode on the Efficiency of Mechanical Smoke Extraction System for Platform Fire at Subway Station[C].9th Asia-Pacific Conference on Combustion, Gyeongju.Korea.2013,277.
    [1]Quintiere J.G. Scaling Applications in Fire Research[J]. Fire Safety Journal,1989,15(1):3-29.
    [2]Heshestad G. Physical Modeling of Fire[J]. Journal of Fire and Flammability,1975, (6): 253-273.
    [3]James A. Milke. Smoke management in covered malls and atria [M]. SFPE Handbook of Fire Protection Engineering, Quincy:Society of Fire Protection Engineers and National Fire Protection Association. Section 4. Chapter 13.3rd ed.1995.4-294-295.
    [4]Drysdale D.D., Macmillan A.J.R., Shilitto D. King's cross fire:Experimental verification of the trench effect'[J]. Fire Safety Journal,1992,18(1):75-82.
    [5]Rie D.H., Hwang M.W., Kim S.J., Yoon S.W., Ko J.W., Kim H.Y. A study of sptimal vent mode for the smoke control of subway station fire[J]. Tunnelling and Underground Space Technology,2006,21(3/4):300-301.
    [6]Kim J.Y., Kim K.Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway[J]. Tunnelling and Underground Space Technology Technology,2007,22(2): 166-172.
    [7]那艳玲.地铁车站通风与火灾的CFD仿真模拟与实验研究[D].天津:天津大学,2003.
    [8]钟茂华,史聪灵,涂旭炜.深埋地铁岛式站点火灾模型实验研究(1)—实验设计[J].中国安全生产科学技术,2006,2(1):3-9.
    [9]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(2)—列车火灾[J].中国安全生产科学技术,2006,2(2):14-18.
    [10]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(3)—站台火灾[J].中国安全生产科学技术,2006,2(3):33-38.
    [11]钟委.地铁车站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学,2007.
    [12]杨英霞,陈超,许磊,康国青.全高安全门地铁车站火灾时烟气流动特性的模型实验[J].天津大学学报,2010,43(12):1060-1066.
    [1]钟委.地铁站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学,2007.
    [2]Jones W.W., Forney G.P., Peacock, R.D., Reneke P.A.2000.A technical reference for CFAST: An engineering tool for estimating fire and smoke transport. Building and Fire Research Laboratory, National Institute of Standards and Technology (NIST).
    [3]Quintiere J.G. Compartment Fire Modeling[M]. SFPE Handbook of Fire Protection Engineering, Quincy:Society of Fire Protection Engineers and National Fire Protection Association. Section 3. Chapter 5.3rd ed.2002,3-162-165.
    [4]Kim M.B., Han Y.S., Yoon M.O. Laser-assisted visualization and measurement of corridor smoke spread[J]. Fire Safety Journal,1998,31(3):239-251.
    [5]Hu L. H., Fong N. K., Yang L. Z., Chow W. K., Li Y. Z., Huo R. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire Dynamics Simulator comparisons with measured data[J]. Journal of Hazardous Materials,2007, 140(1/2):293-298.
    [6]Oka Y., Atkinson G.T. Control of Smoke Flow in Tunnel Fires[J]. Fire Safety Journal,1995, 25(4):305-322.
    [7]Kunsch J.P. Simple model for control of fire gases in a ventilated tunnel[J]. Fire Safety Journal, 2002,37(1):67-81.
    [8]Wu Y., Bakar M.Z.A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2002,35(4):363-390.
    [9]Atkinson G. T., Wu Y. Smoke Control in Sloping Tunnels (Short Communication)[J]. Fire Safety Journal,2006,27(4):335-341.
    [10]Hu L.H., Peng W., Huo R. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel[J]. Journal of Hazardous Materials, 2008,150(1):68-75.
    [11]Li L.M., Cheng X.D., Cui Y., Li S., Zhang H.P. Effect of blockage ratio on critical velocity in tunnel fires[J], Journal of Fire Sciences,2012,30(5):413-427.
    [12]Kunsch J.P. Critical velocity and range of a fire-gas plume in a ventilated tunnel [J]. Atmospheric Environment,1999,33(1):13-24.
    [13]Hu L.H., Huo R., Wang H. B., Yang R. X. Experimental and numerical studies on longitudinal smoke temperature distribution upstream and downstream from the fire in a road tunnel[J]. Journal of Fire Sciences,2007,25(1):23-43.
    [14]Delichatsios M.A. The flow of fire gases under a beamed ceiling[J]. Combustion and Flame, 1981, (43):1-10.
    [15]He Y.P. Smoke temperature and velocity decays along Corridors [J]. Fire Safety Journal,1999, 33(1):71-74.
    [16]Hu L.H., Huo R., Li Y.Z., Wang H.B., Chow W.K. Full-scale burning tests on studying smoke temperature and velocity along a corridor [J]. Tunnelling and Underground Space Technology,2005,20(3):223-229.
    [17]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学,2006.
    [18]Hu L.H., Huo R., Wang H.B., Li Y.Z., Yang R.X. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling [J]. Building and Environment, 2007,42(11):3905-3915.
    [19]Hu L.H., Huo R., Chow W.K. Studies on buoyancy-driven back-layering flow in tunnel fires[J]. Experimental Thermal and Fluid Science,2008,32(8):1468-1483.
    [20]Li L.M., Cheng X.D., Wang X.G., Zhang H.P. Temperature distribution of fire-induced flow along tunnels under natural ventilation[J]. Journal of Fire Sciences,2012,30(2):122-137.
    [21]李立明.隧道火灾烟气的温度特征与纵向通风控制研究[D].合肥:中国科学技术大学,2012.
    [22]Morton B.R., Taylor G.I., Turner J.S. Turbulent gravitational convection from maintained and instantaneous sources[C]. Proceedings of the Royal Society (London), A234.1956,1-23.
    [23]Zukoski E.E., Kubota T., Cetegen B. Entrainment in Fire Plumes[J]. Fire Safety Journal, 1980,3(3):107-121.
    [24]Heskestad G. Engineering relations for fire plumes[J]. Fire Safety Journal,1984,7(1):25-32.
    [25]Heskestad G. Virtual Origins of Fire Plumes[J]. Fire Safety Journal,1983,5(2):174-185.
    [26]Heskestad G. Fire Plumes, Flame Height, and Air Entrainment[M]. SFPE Handbook of Fire Protection Engineering, Quincy:Society of Fire Protection Engineers and National Fire Protection Association. Section 2. Chapter 1.3rd ed.2002,2-1-15.
    [27]McCaffrey B.J. Momentum implications for buoyant diffusion flames[J]. Combustion and Flame,1983,52(2):149-167.
    [28]McCaffrey B.J. Purely Buoyant Diffusion Flames:Some Experimental Results, National Bureau of Standards. NBSIR 79-1910, Washington D.C.1979.
    [29]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [1]Drysdale D.D., Macmillan A.J.R., Shilitto D. King's cross fire:Experimental verification of the 'trench effect'[J]. Fire Safety Journal,1992,18(1):75-82.
    [2]钟委.地铁车站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学,2007.
    [3]纪杰.地铁站火灾烟气流动及通风控制模式研究[D].合肥:中国科学技术大学,2008.
    [4]赵明桥.地下铁道火灾烟气分区控制及人员疏散模式研究[D].长沙:中南大学,2010.
    [5]顾正洪,程远平,周世宁.地铁车站站台与站厅间临界通风速度的研究[J].中国矿业大学学报,2006,35(1):7-10.
    [6]Kurioka H., Okab Y., Satoha H., Sugawa O. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal,2003,38(4):319-340.
    [7]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学,2006.
    [8]李立明.隧道火灾烟气的温度特征与纵向通风控制研究[D].合肥:中国科学技术大学,2012.
    [9]Thomas P.H. The movement of smoke in horizontal passenger against an air flow. Fire Research Station Note No.723, Fire Research Station. UK.1968, September.
    [10]Heselden AJ.M. Studies of fire and smoke behavior relevant to tunnels[C]. Proceedings of the Second International Symposium of Aerodynamic and Ventilation of Vehicle Tunnels, Cambridge. UK. BHRA Fluid Engineering.1976,23-25.
    [11]Danziger N.H., Kenney W.D. Longitudinal ventilation analysis for the Glenwood canyon tunnels[C]. Proceedings of the Fourth International Symposium of Aerodynamic and Ventilation of Vehicle Tunnels, BHRA Fluid Engineering.1982,169-186.
    [12]Atkinson G.T., Wu Y. Smoke control in sloping tunnels[J]. Fire Safety Journal,1996,27(4): 335-341.
    [13]Wu Y, Barkar M.Z.A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,35(4):363-390.
    [1]王莉萍,译.公路隧道的自动喷水灭火系统和火灾探测系统[J].消防技术与产品信息,2012,(12):56-58.
    [2]方正,邓艳丽.自动喷水灭火系统在地铁隧道工程应用的可行性[J].消防科学与技术,2005,24(2):192-196.
    [3]Grant G., Brenton J., Drysdale, D. Fire suppression by water sprays[J]. Progress in Energy and Combustion Science,2000, (26):79-130.
    [4]Liu Z.G., Kim A.K. A Review of water mist fire suppression systems-fundamental studies[J]. Journal of Fire Protection Engineering,2000,10(3):32-50.
    [5]Mawhinney, J.R., Richardson, J.K. A Review of Water Mist Fire Suppression Research and Development,1996[J]. Fire Technology,1997,33(1):54-90.
    [6]Liu Z.G., Kim A.K. A Review of water mist fire suppression technology. Part Ⅱ-Application studies[J]. Journal of Fire Protection Engineering,2001,11(1):16-42.
    [7]Kim S.C., Ryou H.S. An experimental and numerical study on fire suppression using a water mist in an enclosure[J]. Building and Environment,2003,38(11):1309-1316.
    [8]Liu Z.G., Carpenter D., Kim A.K. Cooling characteristics of hot oil pool by water mist during fire suppression[J]. Fire Safety Journal,2008,43(4):269-281.
    [9]王旭红,刘学志.细水雾灭火系统在地铁中的应用[J].铁路工程造价管理,2006,21(5):36-38.
    [10]甘世新,成武发,宋晓雪.高压细水雾灭火系统在地铁中应用探讨[J],甘肃科技,2011,27(8):75-77.
    [11]Lemaire T., Kenyon Y. Large Scale Fire Tests in the Second Benelux Tunnel [J]. Fire Technology,2006,42(4):329-350.
    [12]Carsten Palle. Full scale tunnel fire tests of VID Fire-Kill Low Pressure Water Mist Tunnel Fire Protection System in Runehamar test tunnel, spring 2009 [C]. Fourth International Symposium on Tunnel Safety and Security, Frankfurt am Main. Germany.2010,585-589.
    [13]Kratzmeir Stefan. Road tunnel protection by Water mist Systems-Implementation of full scale fire test results into a real project[C]. World Tunnel Congress 2008-Underground Facilities for Better Environment and Safety, India.2008,1942-1948.
    [14]Guigas X. Wetzig V., Bouteloup C. Dynamic fire spreading and water mist tests for the A86 East Tunnel[C]. Proceedings of the 5th International Conference on Tunnel Fires, London. UK.2004,261-270.
    [15]Markku Vuorisalo. Tunnel fire protection water mist concept for road and railway tunnels[EB/OL]. Web:www.marioff.com.
    [16]Horst Starke Fire Suppression in Road Tunnel Fires by a Water Mist System-Results of the SOLIT Project[C]. Forth International Symposium on Tunnel Safety and Security, Germany, 2010,311-321.
    [17]Stahl P. Customized Fire Safety Concept for underground Transportation Facilities[C],5th Conference of Fire Safety Concept for Tunnels, Dublin. Ireland.2006.
    [18]Stahl P. A thermodynamic examination of the extinguishing properties of water spray and water mist[C].6th Asia-Oceania Symposium on Fire Science and Technology, Daegu. Korea. 2004,1038-1053.
    [19]Amano R., Izushi Y, Kurioka H., et al. Water screen fire disaster prevention system in underground space[C].6th Asia-Oceania Symposium on Fire Science and Technology, Daegu. Korea.2004,937-979.
    [20]Amano R., Izushi Y., Kurioka H., et al. Fire experiments for a road tunnel-water screen as partitioning technology[C].8th International Symposium on Fire Safety Science, Beijing. China.2005,18-23.
    [21]Ingason H. Model scale tunnel tests with water spray[J]. Fire Safety Journal,2008, (43): 512-528.
    [22]朱伟.狭长空间纵向通风条件下细水雾抑制火灾的模拟研究[D].合肥:中国科学技术大学,2006.
    [23]李权威.狭长空间纵向通风条件下细水雾抑制油池火的实验研究[D].合肥:中国科学技术大学,2010.
    [24]Hu L.H, Huo R., Wang H.B Experimental and Numerical Studies on Longitudinal Smoke Temperature Distribution Upstream and Downstream from the Fire in a Road Tunnel [J]. Journal of Fire Sciences,2007,25(1):23-43.
    [25]Yang X.H., Lu G.J., Liu S.L. Study on the relationship between the exposed area of wood crib and its heat release rate[J]. Fire science and technology,2010,29(1):13-15.
    [1]地铁设计规范.GB 50157-2003.北京:中国计划出版社.2003.
    [2]Rie D.H., Hwang M.W., Kim S.J., Yoon S.W., Ko J.W., Kim H.Y. A Study of Optimal Vent Mode for the Smoke Control of Subway Station Fire[J]. Tunnelling and Underground Space Technology,2006,21(3/4):300-301.
    [3]那艳玲.地铁车站通风与火灾的CFD仿真模拟与实验研究[D].天津:天津大学,2003.
    [4]那艳玲,涂光备,黄桂兴.地铁火灾的盐水实验与计算机数值模拟[J].天津大学学报,2006,39(4):480-485.
    [5]钟茂华,史聪灵,涂旭炜.深埋地铁岛式站点火灾模型实验研究(1)—实验设计[J].中国安全生产科学技术,2006,2(1):3-9.
    [6]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(2)—列车火灾[J].中国安全生产科学技术,2006,2(2):14-18.
    [7]史聪灵,钟茂华,涂旭炜.深埋地铁岛式站点火灾模型实验研究(3)—站台火灾[J].中国安全生产科学技术,2006,2(3):33-38.
    [8]钟委.地铁车站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学,2007.
    [9]Ji J., Li K.Y., Zhong W., Huo R. Experimental investigation on influence of smoke venting velocity and vent height on mechanical smoke exhaust efficiency. Journal of Hazardous Materials,2010,177(1/3):209-215.
    [10]Chen F.L., Guo S.C., Chuay H.Y., Chien S.W. Smoke control of fires in subway station[J]. Theoretical and Computational Fluid Dynamics,2003,16(5):349-368.
    [11]Choi B.I., Oh C.B., Kim M.B., Han Y.S., Choi J.S. A new design criterion of fire ventilation for the transversely ventilated tunnels[J]. Tunnelling and Underground Space Technology, 2006,21(3/4):277-278.
    [12]Yuan F.D., You S.J. CFD simulation and optimization of the ventilation for subway side-platform[J]. Tunnelling and Underground Space Technology,2007,22(4):474-482.
    [13]Gao R., Li A.G., Hao X.P., Lei W.J., Zhao Y.J., Deng B.S. Fire-induced smoke control via hybrid ventilation in a huge transit terminal subway station[J]. Energy and Buildings,2012, (45):280-289.
    [14]Park W.H., Kim D.H., Chang H.C. Numerical predictions of smoke movement in a subway station under ventilation[J]. Tunnelling and Underground Space Technology,2006,21(3/4): 304.
    [15]鲁嘉华,张志英.地铁火灾数值模拟研究综述[J].上海理工大学学报,2008,30(5):501-506.
    [16]McGrattan K. B., Baum H. R., Rehm R. G. Large eddy simulations of smoke movement[J]. Fire Safety Journal,1998,30(2):161-178.
    [17]McGrattan K., McDermott R., Hostikka S., Floyd J. Fire Dynamics Simulator (Version 5) User's Guide, National Institute of Standards and Technology.2010.
    [18]McGrattan K., Hostikka S., Floyd J., Baum H., Rehm R., Mell W., McDermott R. Fire Dynamics Simulator (Version 5) Technical Reference Guide. National Institute of Standards and Technology.2010.
    [19]Zhang W., Hamer A., Klassen M., Carpenter D., Roby R. Turbulence statistics in a fire room model by large eddy simulation[J]. Fire Safety Journal,2002,37(8):721-752.
    [20]Hu L.H., Fong N.K., Yang L.Z., Chow W.K., Li Y.Z., Huo, R. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire Dynamics Simulator comparisons with measured data[J]. Journal of Hazardous Materials,2007,140(1/2): 293-298.
    [21]Hu L.H., Tang F., Yang D., Liu S., Huo R. Longitudinal distributions of CO concentration and difference with temperature field in a tunnel fire smoke flow[J]. International Journal of Heat and Mass Transfer,2010,53(13/14):2844-2855.
    [22]Lin C.J., Chuah Y.K. A study on long tunnel smoke extraction strategies by numerical simulation[J]. Tunnelling and Underground Space Technology,2008,23(5):522-530.
    [23]Roh, J.S., Ryou, H.S., Park, W.H., Jang, Y. J. CFD simulation and assessment of life safety in a subway train fire[J]. Tunnelling and Underground Space Technology,2009,24(4):447-453.
    [24]Purser D.A. Toxicity assessment of combustion products[M]. SFPE Handbook of Fire Protection Engineering, Quincy:Society of Fire Protection Engineers and National Fire Protection Association. Section 2. Chapter 6.3rd ed.2002,2-83-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700