用户名: 密码: 验证码:
含型钢边缘构件高层混合连肢墙结构的抗震性能及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合连肢墙结构是采用钢连梁代替混凝土连梁的一种新型结构体系,它结合了钢梁塑性变形能力强、混凝土剪力墙抗侧刚度大的优点,相比于传统的钢筋混凝土连肢墙具有更优良的耗能能力,更加适用于高抗震设防烈度地区,美国已制定相关规范并应用于实际工程。但国内对这种体系的研究目前尚停留在节点承载力及破坏形式的研究方面,针对混合连肢墙体系在地震作用下的整体性能研究资料很少。本课题组采用在剪力墙边缘设置型钢暗柱的方法将钢连梁与剪力墙连接,在上述研究基础上提出了含型钢边缘构件混合连肢墙体系的概念,通过试验和理论两方面研究该新型体系在循环荷载作用下的破坏机理,提出抗震设计对策和方法。
     已有研究表明,耦连比是反映连肢剪力墙整体工作性能的一个重要参数,为研究耦连比对含型钢边缘构件混合连肢墙结构滞回性能的影响,进行了两个耦连比分别为30%和45%的5层含型钢边缘构件混合连肢墙结构1/3缩尺模型拟静力试验。基于试验结果,从结构的承载能力、刚度退化、位移延性、耗能能力及破坏模式等方面评价了结构抗震性能。研究表明:该结构体系通过钢连梁的剪切变形和墙肢底部的塑性铰变形来耗散能量,能够明显改善钢筋混凝土双肢剪力墙的抗震性能。耦连比为30%时,墙肢混凝土裂缝较为集中,破坏主要出现在底部两层;耦连比为45%的混合连肢墙体系在一定程度上降低了墙肢底部弯矩,钢梁的变形能力较强,各层连梁成为沿墙体全高设置的一种耗能构件,扩大了能量耗散的范围,是一种典型的多重抗震设防体系,满足抗震设计中对于延性的要求,得到的滞回曲线为稳定的梭形。
     基于含型钢边缘构件混合连肢墙结构试验结果,采用大型有限元程序ABAQUS对该结构体系进行了循环加载分析,引入Python源程序编制了给定荷载模式下基于位移控制的加载程序。在对有限元分析结果和试验结果进行对比验证后,本文对5个系列14个结构模型进行了参数分析,主要研究了耦连比、墙肢宽厚比、楼层总高度、钢连梁的破坏形式和型钢暗柱的设置等参数对结构体系滞回性能、破坏形式和内力分布规律的影响。
     根据试验和有限元结果详细分析了新型混合连肢墙体系的受力机理,建立了混合连肢墙体系的极限承载力力学模型,将混合连肢墙的破坏过程分为墙肢初裂、钢连梁屈服、剪力墙破坏三个阶段。在普通剪力墙破坏形式基础上考虑了型钢暗柱的影响,分别给出了连梁两种破坏形式和剪力墙五种破坏形式下结构的极限承载力计算公式。有限元分析结果与公式计算结果对比表明两者吻合较好,可以用来计算结构的极限承载力。最后依据理论分析结果,结合我国规范提出了含型钢边缘构件混合连肢墙结构的设计承载力计算方法和抗震设计建议。
Hybrid coupled wall system is a new structural system with steel coupling beaminstead of concrete coupling beam. It combines the advantages of both good plasticdeformability of steel beam and large lateral rigidity of concrete shear wall. Comparedwith the traditional reinforced concrete coupled wall, this new kind of system has betterenergy dissipation capacity, so it is more applicable in high seismic intensity area. Thestandard of this structure has been developed in US, and the structure was applied topractical engineering. But the domestic study on this new system still remains on thebearing capacity of joint and its failure mechanism, the research data of hybrid coupledwall system under seismic performance is very rare. Based on this kind of new structuresystem, the research group has put forward the concept of hybrid coupled wall systemwith steel boundary elements with arranging the steel column at the edge of wall, andcarried out the experimental and theoretical study on the seismic behavior of thissystem.
     Previous studies have shown that CR is an important parameter and a reflection ofshear wall integral working performance. In order to study the effect of coupling ratio(CR) on hysteretic behavior of innovative hybrid coupled wall systems with shape steelboundary elements, two1/3scale5storey model with CR=30%and CR=45%have beentested under cyclic loading. Based on the test results, the seismic behavior is evaluatedin terms of bearing capacity, rigidity degeneration, ductility, energy dissipation, and thefailure mode. Test result reveals that the new system dissipates energy by sheardeformation of steel beams and plastic hinge deformation at the bottom of wall, so theseismic behavior of shear walls can be significantly improved. When CR is equal to30%, the cracks in the concrete wall concentrated mainly in the bottom two storeys. When CR is equal to45%, the moment at the bottom of the wall has been reduced to alarge extent, and the steel beam has good deformability. Coupling beams at each layerbecome energy dissipating member setting along the full height of the wall andexpanding the scope of the energy dissipation, the hysteretic curve appears typicalstable "shuttle" form, and the structure is a multiple seismic system, satisfied thedemand of seismic ductility design.
     Based on the experimental results of hybrid coupled wall system with steelboundary elements, nonlinear finite element analysis was performed to simulate theoverall process under cyclic loading with FEM program ABAQUS. By adopting Pythonlanguage, a displacement-controlled loading program is put forward with the givenlateral force pattern. More than14examples of5series are analyzed after verification ofFEM. The major factors include CR, dimensions of wall, failure mode of steel beam,and the steel column settings and so on.
     According to the testing and FEM analysis results, the bearing mechanism ofstructure is analyzed, and a hybrid coupled wall system mechanical model of ultimatebearing capacity is suggested. The damage process include three stages: wall crack,steel coupling beams yielding, and shear wall failure. Based on the failure mode ofshear wall considering the effect of concealed column, the calculation formula of theultimate bearing capacity is derived under two kinds of failure form of coupling beamsand five kinds of failure form of shear wall, respectively. The test results and thecalculation results are in good agreement, it can be used to estimate the ultimate load ofstructure. Suggestions for seismic design based on the theoretical analysis and ChineseCode are presented at last.
引文
[1]丁大钧.高层建筑结构体系[J].工业建筑,1998,28(1):5-8.
    [2]胡世德.我国住宅建设和住宅体系发展[J].建筑技术,1999,10(1):15-20.
    [3]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2005.
    [4]郭峰,苏明周.高层建筑混合连肢墙体系的抗震性能[J].建筑钢结构进展,2009,1(2):5-10.
    [5] Mohammad Hassan. Inelastic dynamic behavior and design of hybrid coupledwall systems [D]. Florida: University of Central Florida,2004.
    [6]曹万林,杨兴民,张建伟等.带不同类型组合暗支撑剪力墙抗震性能试验研究[J].建筑结构学报,2007, S1:33-40.
    [7]赵才其.高层建筑中新型结构体系的研究[J].东南大学学报,1999,29(4):29-31.
    [8] Mohamed Hassan, Sherif EI-Tawil. Inelastic dynamic behavior of hybrid coupledwalls [J]. Journal of Structural Engineering,2004,130(2):285-296.
    [9] Sherif EI-Tawil, Kent A. Harries. Recommendations for seimic design of hybridcoupled wall systems [M]. Reston, VA, USA: American Society of CivilEngineers,2010.
    [10]龚炳年,方鄂华.反复荷载下连肢剪力墙结构连系梁的性能[J].建筑结构学报,1988(1):34-41.
    [11]方鄂华.高层建筑钢筋混凝土结构概念设计[M].北京:机械工业出版社,2004.
    [12] Ahmet E. Aktan. Seismic response of R/C frame-wall structures [J]. Journal ofStructural Engineering,1984,110(8):1803-1821.
    [13]陈云涛,吕西林.连肢剪力墙抗震性能研究-试验和理论分析[J].建筑结构学报,2003,24(4):25-34.
    [14]龚炳年,方鄂华.钢筋混凝土联系梁试验研究及位移全过程分析[C].高层抗震设计方法讨论会论文集,广州:1987.
    [15]曹征良.双功能钢筋混凝土连梁的试验研究[D].南京:南京工学院,1987.
    [16]曹征良,丁大均,程文攘.剪力墙结构自控连梁的试验研究[J].东南大学学报(土木工程专辑),1991,21(4):45-52.
    [17] DingDajun, Cao Zheng liang and ZhangShuan1. Experimental studies of newductile coupling beams and multi-storey shear walls [J]. Materials&Structures1997(11):566-573.
    [18]张双记.钢筋混凝土双肢剪力墙结构抗震性能试验研究和钢筋混凝土结构破坏准则及破坏度模糊综合评判[D].南京:东南大学,1990.
    [19] Paulay T. Coupling beams of reinforced conerete shear walls [J]. Proeeedings,ASCE,1971:97(ST3):843-856.
    [20]孙占国,林宗凡,戴瑞同.菱形配筋剪力墙连梁的受力性能[J].建筑结构学报,1994,15(5):14-23.
    [21]傅剑平,皮天祥等.钢筋混凝土连肢墙小跨高比复合斜筋连梁抗震性能试验研究[J].土木工程学报,2011,44(2):57-64.
    [22]刘岩,邓志恒,谭宇胜.几种连梁结构体系的比较研究[J].混凝土与水泥制品.2007.2(l):57-66.
    [23]于庆荣等.轻混凝土高层剪力墙结构斜配筋连梁的抗震性能[D].天津:天津大学,1985.
    [24]董红英.带暗支撑双肢剪力墙抗震性能试验及设计理论研究[D].北京:北京工业大学,2002.
    [25]黄选明.带暗支撑短肢剪力墙及筒体结构抗震性能试验及理论研究[D].北京:北京工业大学,2002.
    [26]张云鹏,曹万林等.内藏钢桁架深连梁联肢剪力墙抗震性能试验研究[J].世界地震工程,2010,26(2):19-24.
    [27]曹万林,董红英.不同暗支撑形式的带暗支撑双肢剪力墙抗震性能试验研究[J].土木工程学报,2005,38(8):18-25.
    [28]曹万林,董红英.钢筋混凝土带支撑框架与带暗支撑剪力墙性能比较[J].北京工业大学学报,2001,27(1):43-45.
    [29] B.S.Choo, A.Coull. Stiffening of laterally loaded coupled shear walls on elasticfoundations [J]. Building and Environment,1984,4(19):22-31.
    [30]韩小雷.带刚性连梁的双肢剪力墙及结构控制性能的研究[D].广州:华南理工大学,1991.
    [31]韩小雷,梁启智.带刚性连梁的双肢剪力墙结构的试验研究[J].土木工程学报,1994,27(1):21-28.
    [32]梁启智,韩小雷.低周反复荷载作用下刚性连梁及普通连梁性能[J].华南理工大学学报,1995,23(l):27-33.
    [33]黄萍.刚梁对双肢剪力墙结构弹塑性性能影响的研究[D].广州:华南理工大学,1990.
    [34] Teng J.G., Chen J.F., Lee Y.C. Concrete-filled steel tubes as coupling beams forRC shear walls [C]. Proceedings of Second International Conference onAdvances in Steel Structures,1999(12):15-17.
    [35] Bahram M. Shahrooz, Patrick J.Fortney, Gian Andrea Rassati. Seismicperformance of hybrid corewall buildings [D]. Proceedings of the InternationalWorkshop on Steel and Concrete Composite Construction. Taipei:2003.
    [36] Bingnian Gong, Bahram M. Shahrooz. Concrete-steel composite coupling beamsI: component testing [J]. Struct. Engrg,2001,127(6):625-631.
    [37] Bingnian Gong, Bahram M. Shahrooz. Concrete-steel composite coupling beamsII: subassembly testing and design verification [J]. Journal of StructuralEngineering, Struct. Engrg,2001,127(6):625-631.
    [38] Bahram M.Shahrooz, Mark E. Remmetter and Fei Qin. Seismic design andperformance of composite coupled walls [J]. Journal of Structural Engineering,1993,119(11):3291-3309.
    [39] Gong Bingnian, Shahrooz, Bahram M. Seismic behavior of composed coupledwall systems [R]. Ohio: University of Cincinati,1998.
    [40] Mattock, A. H., Gaafar, G. H. Strength of embedded steel sections as brackets [J].ACI J.,1982,79(2),83-93.
    [41] Kent A. Harries, J. Dan’l Moulton and Robert L. Clemson. Parametric study ofcoupled wall behavior-implications for the design of coupling beams [J]. Journalof Structural Engineering,2004,130(3):480-488.
    [42] Kent A. Harries, Denis Mitchell, William D. Cook etc. Seismic response of steelbeams coupling concrete walls [J]. Journal of Structural Engineering,1993,119(12):3611-3629.
    [43] Kent A. Harries, Denis Mitchell, William D.Cook and Richard G. Redwood.Seismic design of coupled walls a case for mixed construction [J]. CanadaJournal of Civil Engineering,1997,24:448-459.
    [44] Kent A. Harries, Denis M itchell, Richard G.Redwood, William D.Cook.Nonlinear seismic response predictions of walls coupled with steel and concretebeams [J]. Journal of Structural Engineering,1997,12:148-149.
    [45] Kent A. Harries, David S. mcneice. Performance-base design of high-risecoupled wall systems [J]. Struct. Design tall Spec Build,2006,15:289-306.
    [46] Kent A. Harries, M.eeri, Bingnian Gong, Bahram M.Sharooz. Behavior anddesign of reinforced concrete, steel, and steel-concrete coupling beams [J].Canada Journal of Civil Engineering,1999,24:448-459.
    [47] Sherif EI-Tawil, Christopher M. Kuenzli and Mohamed Hassan. Pushover ofhybrid coupled walls. I: design and modeling [J]. Journal of StructuralEngineering,2002,128(10):1272-1281.
    [48] Sherif EI-Tawil and Christopher M.Kuenzli. Pushover of hybrid coupled walls. II:analysis and behavior [J]. Journal of Structural Engineering,2002,128(10):1282-1289.
    [49] Mohamed Hassan and Sherif EI-Tawil. Inelastic dynamic behavior of hybridcoupled walls [J]. Journal of Structural Engineering,2004,130(2):285-296.
    [50] El-Tawil, Sherif M., Deierlein, Gregory G. Fiber element analysis of compositebeam-column cross-sections [R]. New York: Cornell University,1996.
    [51] Wan-Shin Park, Hyun-Do Yun. Seismic behavior of coupling beams in a hybridcoupled shear walls [J]. Journal of Constructional Steel Research,2005,61:1492-1524.
    [52] Wan-Shin Park, Hyun-Do Yun. Seismic behavior of steel coupling beams linkingreinforced concrete shear walls [J]. Engineering Structures,2005,27:1024-1039.
    [53] Wan-Shin Park, Hyun-Do Yun, Sun-Kyoung Hwang, Byung-Chan Han, SeungYang. Shear strength of the connection between a steel coupling beam and areinforced concrete shear wall in a hybrid wall system [J]. Journal ofConstructional Steel Research,2005,61:912-941.
    [54] Wan-Shin Park,Hyun-Do Yun. The bearing strength of steel couplingbeam-reinforced concrete shear wall connections [J]. Nuclear Engineering andDesign,2006,236:77-93.
    [55] Wan-Shin Park, Hyun-Do Yun. Seismic behaviour and design of steel couplingbeams in a hybrid coupled shear wall systems [J]. Nuclear Engineering andDesign2006,236:2474-2484.
    [56] Wan-Shin Park, Hyun-Do Yun.Bearing strength of steel coupling beamconnections embedded reinforced concrete shear walls [J]. EngineeringStructures,2006,28:1319-1334.
    [57] Wan-Shin Park, Hyun-Do Yun. Seismic performance of steel couplingbeam–wall connections in panel shear failure [J]. Journal of Constructional SteelResearch,2006,62:1016-1025.
    [58] Wan-Shin Park, Hyun-Do Yun. Panel shear strength of steel coupling beam–wallconnections in a hybrid wall system [J]. Journal of Constructional Steel Research,2006,62:1026–1038.
    [59]詹永旗.带钢连梁混合双肢剪力墙结构抗震性能实验与设计研究[D].长沙:中南大学,2009.
    [60]炎小欢.带组合连梁混合双肢剪力墙结构抗震性能实验与设计研究[D].长沙:中南大学,2009.
    [61]武建辉.带钢连梁混合连肢墙结构抗震性能非线性有限元分析[D].长沙:中南大学,2010.
    [62]管民生,杜宏彪等.不同连梁形式连肢剪力墙的静力弹塑性分析[J].深圳大学学报理工版,2009,26(4):376-381.
    [63]潘志明.高层建筑剪力墙钢组合桁架连梁抗震性能的试验研究[D].南宁:广西大学,2007.
    [64]徐冬晓.钢桁架连梁抗震性能试验研究[D].南宁:广西大学,2008.
    [65]郭峰.含型钢边缘构件的混合连肢墙体系钢梁与剪力墙的连接性能[D].西安:西安建筑科技大学,2007.
    [66]王丽.钢连梁剪切屈服型混合连肢墙体系节点抗震性能试验研究[D].西安:西安建筑科技大学,2011.
    [67]王丽,苏明周等.钢连梁剪切屈服型混合连肢墙体系节点滞回性能有限元分析[J].水利与建筑工程学报,2011,9(2):11-14.
    [68]徐明,苏明周,王丽,李旭东.型钢边缘构件-钢连梁焊接型混合连肢墙节点滞回性能有限元分析[J].水利与建筑工程学报,2011,10(1):49-52.
    [69]侯学谦,王丽,宋安良.钢连梁弯曲屈服型混合连肢墙体系节点滞回性能[J].水利与建筑工程学报,2012,1(1):9-12.
    [70]苏明周,李旭东,宋安良.含型钢边缘构件混合连肢墙弱节点受力性能有限元分析[J].广西大学学报(自然科学版),2012,4(1):18-21.
    [71] Chitty, L. On the cantilever composed of a number of parallel beamsinterconnected by cross bars [J]. Edinburgh and Dublin Philosophical Magazineand Journal of Science,1947,38:685-699.
    [72] Chitty, L., Wan, W., J. Tall building structures under wind load [C].7thInternational Conference for Applied Mechanics,1948,1:254-268.
    [73]梁启智.高层建筑结构的连续-离散化分析方法[J].华南工学院学报,1984,12(4):72-84.
    [74] MacLeod, I., A. Lateral stiffness of shear walls with openings in tall buildings[M]. Oxford: Pergamon Press,1967:223-244.
    [75] Oesterle, R. G., Aristizabal-Ochoa J. D., Sihu K, N., Corley W.G. Web crushingof reinforced concrete structural walls [J]. ACI Structural Journal,1984,84(3):231-241.
    [76] Okamoto, S., Nakata, S., Kitagawa, Y., Yoshimura. A progress report on the fullscale seismic experiment of a seven-story reonforced concrete building-part ofthe US-Japan cooperative program [R]. Japan: Building Research Institute,Ministry of Constructio,1985.
    [77]陆新征,江见鲸.用等效有限元法对钢筋混凝土剪力墙结构进行弹塑性分析[C].第七届全国混凝土结构基本理论及工程应用学术会议,南京:2002.
    [78]包世华.结构力学[M].北京:科学出版社,2006.
    [79]梁启智.高层建筑结构的连续-离散化分析方法[J].华南工学院学报,1984,12(4):72-84.
    [80]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2003.
    [81]常为华,张相勇等.高层剪力墙结构连梁的设计与分析[J].建筑结构增刊,2009(39):68-71.
    [82] Sherif EI-Tawil, Kent A. Harries. Recommendations for seimic design of hybridcoupled wall systems [M]. Reston, VA, USA: American Society of CivilEngineers,2010.
    [83] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [84] ASCE7-05Minimum design loads for buildings and other structures [S].Washington DC, USA: Building Seismic Safety Council,2003.
    [85] JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [86] JGJ99-98.高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
    [87] AISC341-05Seismic provisions for structural steel buildings [S]. Chicago,Illinois, USA: American Institute of Steel Construction,2005.
    [88]陈绍蕃.钢结构下册[M].北京:中国建筑工业出版社,2003.
    [89]姚谦峰,陈平.土木工程结构试验[M].北京:建筑工业出版社,2001.
    [90]50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [91] GB50009-2012建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
    [92] JGJ01-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1996.
    [93] GB/T228.1-2010金属材料拉伸试验[S].北京:中国建筑工业出版社,2010.
    [94] GB50152-92混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [95] GB/T50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2002.
    [96]李俊华.低周反复荷载下型钢高强混凝土柱受力性能试验研究[D].西安:西安建筑科技大学,2005..
    [97]徐绩青.延性系数确定方法的探讨[J].水运工程,2004,368(9):14-17..
    [98]周志祥.高等钢筋混凝土结构[M].北京:人民交通出版社,2002.
    [99]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2000.
    [100]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [101]王春玲.塑性力学[M].北京:中国建材工业出版社,2006.
    [102]庄茁,陈帆,岑松. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [103]黄羽立,陆新征,叶列平,施伟.基于多点位移控制的推覆分析算法[J].工程力学,2011,28(2):18-23.
    [104]曹金凤,王旭春,孔亮. Python语言在Abaqus中的应用[M].北京:机械工业出版社,2011.
    [105]叶英华,叼波.钢筋混凝土结构非线性理论综述[J].哈尔滨工程建筑学院学报.1995,28(1):127-131.
    [106]张劲,王庆杨. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
    [107]朱杰江.混凝土结构非线性分析研究以及实例工程应用[D].上海:同济大学,2005.
    [108]陈江涛,吕西林.连肢剪力墙抗震性能研究-试验和理论分析[J].建筑结构学报,2003,4(4):25-34.
    [109]江见鲸,陆新征等.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [110]吕西林,金国芳.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [111]尚晓江.高层建筑混合结构弹塑性分析方法及抗震性能试验研究[M].北京:中国建筑科学研究院,2008.
    [112]顾祥林,孙飞飞.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002.
    [113]潘建荣,王湛,张吉.框架组合梁柱节点的非线性有限元分析[J].西安建筑科技大学学报(自然科学版),2009,21(5):655-662.
    [114] GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [115]蔡正咏.正交设计在混凝土中的应用[M].北京:中国建筑工业出版社,1995.
    [116]陈仁恩,黄良文.统计学原理(相关分析)[M].北京:中国广播电视大学出版社,1986.
    [117]北京大学数学力学系数学专业概率统计组编.正交设计-一种安排多因素试验的教学方法[M].北京:人民教育出版社,1996.
    [118]石韵,苏明周,梅许江,蒋春云.高耦连比新型混合连肢墙结构拟静力试验研究[J].土木工程学报,2013,46(1):52-60.
    [119]史庆轩,梁兴文.高层建筑结构设计[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700