用户名: 密码: 验证码:
固化疏浚淤泥—磷石膏混合土工程性质及膨胀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固化疏浚淤泥-磷石膏混合土是以疏浚淤泥/磷石膏混合物为基质土,通过添加水泥(石灰)将基质土固化为填土材料的一项新技术,以期实现疏浚淤泥、磷石膏两种废弃物的资源化利用。作为一项新型的废弃物资源化处理技术,需要对固化混合土的工程性质进行系统研究,以发展和完善混合料固化处理技术。
     本文通过无侧限抗压强度试验、直剪试验、固结试验、渗透试验、线性膨胀率检测等一系列室内试验,主要研究了基质土中疏浚淤泥/磷石膏的合理混合比、疏浚淤泥初始含水率、养护龄期、不同固化剂及其掺量等不同因素对固化混合土工程性质的影响;探讨了固化土重塑土工程性质、重塑时机、及其强度折减、恢复机理;初步揭示了膨胀性变化规律及其对固化混合土固化效果的影响,并对固化混合土的膨胀机理进行了分析。
     固化混合土工程性质研究:(1)影响固化混合土的强度、压缩特性、含水率以及渗透系数的主要因素有:基质土中疏浚淤泥磷石膏混合比、疏浚淤泥初始含水率、养护龄期、固化剂及其掺量。在此基础上提出了固化混合土强度变化与磷石膏掺量的关系模型,该模型把强度随磷石膏掺量的变化分为三个阶段:强度增长阶段;强度降低阶段;强度稳定阶段。(2)相比单一疏浚淤泥固化,固化混合土具有更好的固化效果,可以节省固化剂的掺量;其破坏应变大于单一固化淤泥土,具有较好的韧性和工程适用性。(3)固化疏浚淤泥磷石膏混合土技术是可行的,可以实现同时大量消纳疏浚淤泥、磷石膏两种固体废弃物,且固化成本不高。
     固化土的重塑特性研究:(1)固化淤泥土、固化混合土的重塑土重塑时强度会发生显著的折减,养护后强度会得到一定程度的恢复。重塑时机是影响强度折减、恢复的最重要因素,其它影响因素还有基质土疏浚淤泥与磷石膏配比、固化剂及其掺量、重塑后养护龄期等。(2)从机理上看,重塑土强度折减主要由于破碎过程对粘聚力的破坏,强度恢复则来源于粘聚力和内摩擦角的增长。固化淤泥重塑土的强度恢复是颗粒摩擦咬合力的增加、凝胶的修复两者共同作用的结果,重塑时机是影响重塑后凝胶修复作用大小的重要因素;而固化混合土重塑土的强度恢复是颗粒摩擦咬合力的增加、凝胶的修复以及胀损三者协同作用的结果,重塑时机是影响三者协调性的重要因素。(3)相比原固化混合土,其重塑土具有更好的压缩特性、更小的渗透系数。(4)重塑土具有较好的工程性质,采用固化土的重塑土作为土方填料是可行的,并分别探讨了固化淤泥土以及固化混合土的最佳重塑时机。
     固化混合土的膨胀特性研究:(1)固化混合土基本上都具有一定的膨胀性,整体来看膨胀性提高了固化混合土的密实度,对固化混合土是有益的。实验结果表明,线性膨胀率与疏浚淤泥初始含水率、固化剂掺量、疏浚淤泥与磷石膏的配比,养护时间等因素有关,并给出了线性膨胀率随各因素变化规律。(2)机理分析发现,固化混合土水分转化分为三步,水分转化对固化混合土自生体积稳定性,强度影响较大;固化混合土的宏观体积是收缩和膨胀共同作用的结果,宏观强度是膨胀损伤和凝胶修复共同作用的结果。(3)提出了对固化混合土膨胀性设定判断标准,根据前人标准判断,固化混合土的膨胀程度基本上属于微膨胀或中度膨胀,具有较好的工程适用性。
It's a new technology of filling materials use cement (lime) to solidify the mixture of dredged sludge and phosphogypsum. The technology can effectively change two kinds of waste into soil resources. As a new waste treatment technology, it's valuable to systematic study the properties of solidified mixed soil, in order to develop the technology of treatment mixed-soil.
     In this paper, A series of laboratory tests has done, such as the unconfined compression test, direct shear test, consolidation test, variable head permeability test and linear expansion ratio test a series of laboratory tests, considering the mixture ratio of the mixed-soil, the moisture content of dredged sludge, curing age, curing agent and dosage. The engineering properties of treated mixed-soil are studied; the remoulded properties of solidified soil are recoveried; the law of expansion of treated mixed-soil is revealed, and the mechanism of treated mixed-soil is analyzed.
     The researches of the engineering properties of solidified mixed-soil have shown:(1) the strength, compressive properties, moisture content and permeability coefficient of treated mixed-soil are found to be mainly affected by the mixing ratio of dredged sluge and phosphogypsum, the initial moisture content of dredged sluge, curing agent and its dosage, curing age. According to the experimental results, the strength model of treated mixed-soil with phosphogypsum content is established; the strength change is divided into three stages:the strength rising stage, the strength transitional stage, the strength stable stage.(2)The treatment of solidified mixed-soil is better than treated dredged sludge, its strength is far higher, so can save the curing agent. And the failure strain more than single solidified dredged sludge. It shows that the solidified mixed-soil has good toughness and engineering applicability.(3) The technology of solidified the mixed-soil is feasible, which can cheaply treat a great amount of dredged sludge and phosphogypsum at the same time.
     The researches of the remoulded properties solidified soil have shown:(1) the strength of solidified dredged sludge and solidified mixed soil will be significantly reduced after being remolded, the strength of the remolded solidifiedly soil will be restored to a certain extent after curing. The remolded timing is the most important factor to affect the remoded strength reduction and recovery, and there are some other factors such as the mixing ratio of dredged sluge and phosphogypsum, curing agent and its dosage, curing time.(2) Remolded soil strength reduction is mainly due to the crushing process for the destruction of cohesion; and strength recovery is derived from the increase of cohesion and internal friction. Remolded soil strength of solidified dredged sluge recovery is the interaction effect of the friction bite force increased of particles and the gel repair, the remolded timing is the most important factor to affect the ablitity of the gel repair. But remolded soil strength of solidified mixed-soil recovery is the synergistic effect of the three factors that the friction bite force increased of particles, the interaction of restoration of soil structure and the expansive damage results; the remoded timing of is important factors to affect their coordination.(3) The remolded soil has better better compression characteristics and smaller permeability coefficient comparing to the original solidified mixed-soil.(4)The Remolded soil has better engineering properties, the remolded solidified soil as fill materials is feasible, and the optimum remolded timing of solidfited dredged sludge and solidified mixed-soil is studied.
     The expansibility and mechanism study shows that the solidified mixed soil has the following characters:(1) solidified mixed soil basically has some swelling, and the swelling increased its strength, which is beneficial to it. Linear expansion is related with the initial moisture content of dredging silt, curing agent content, dredging silt and phosphogypsum ratio, curing time and other factors. The variation patterns of linear expansion under different factors circumstance are given.(2) the mechanism analysis found the hydration conversion process in the solidified mixed soil has three steps, soil moisture conversion has significant impact to the volume stability and strength of solidified mixed soil; the macroscopic volume of solidified mixed soil is the combined action of contraction and expansion, and its macroscopic strength is the combined action of expansion damage and stregth recovery.(3) the criteria of the expansion character of the solidified mixed soil is proposed, based on the relevant information, the solidified mixed soil has small or medium expansion character, and has good engineering applicability.
引文
[1]朱伟,张春雷,刘汉龙,等.疏浚泥处理再生资源技术的现状[J].环境科学与技术.2002(4):39-41.
    [2]G. C. Sigua. Current and Future Outlook of Dredged and Sewage Sludge Materials in Agriculture and Environment[J]. Dredged and Sewage Sludge Materials.2005,5(1):50-52.
    [3]D Q, J Q, Q W, et al. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir Resources[J]. Conservation and Recycling.2010,54(12): 1368-1376.
    [4]W. S. Heinz, Detzner D. Ulrich Doing and Wolfgang Bode. New technology of mechanical treatment of dredged material from Hamburg harbour[J]. Water Science and Technology.1998, 37(6-7):337-343.
    [5]U F, W C. Characterisation of dredged materials[J]. Water Science and Technology.1998, 38(11):149-157.
    [6]廖若博,徐晓燕,纪罗军,等.我国磷石膏资源化应用的现状及前景[J].硫酸工业.2012(3):1-7.
    [7]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述(待续)[J].硫磷设计与粉体工程.2006(5):5-10.
    [8]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述(续完)[J].硫磷设计与粉体工程.2006(6):9-20.
    [9]M S. An improved process for purification of phosphogypsum [J]. Constructions and Building Materials.1996(8):597-601.
    [10]F W. Chang-University Miami, Murrayl. Mantell-University of Miami engineering properties and construction application of phosphogypsum[J]. Florida Institute of Phosphate Reseach.1990(1):68-70.
    [11]JPM, WFS. Biological sulfate removal from industrial effluent in an up flow packed bed reactor[J]. Wat Res.1987,21(2):141-146.
    [12]叶学东.“十二五”磷石膏综合利用任重道远[J].磷肥与复肥.2012,27(1):7-9,15.
    [13]汪顺才,张春雷,黄英豪,等.堆场疏浚淤泥含水率分布规律调查研究[J].岩土力学.2010(9):2823-2828.
    [14]马殿光.淤泥再生废弃泡沫塑料轻质混合土试验研究[硕士学位论文D].南京:河海大学,2005.
    [15]范昭平.有机质对淤泥固化的影响机理及对策研究[硕士学位论文D].南京:河海大学,2004.
    [16]姬凤玲.淤泥泡沫塑料颗粒轻质混合土力学特性研究[博士学位论文D].南京:河海大学,2005.
    [17]桂跃.高含水率疏浚淤泥材料化处理及其击实方法研究[博士学位论文D].南京:河海大学,2010.
    [18]曾科林.腐殖酸对淤泥固化效果的影响及其机理[硕士学位论文D].南京:河海大学,2006.4.
    [19]张春雷.基于水分转化模型的淤泥固化机理研究[博士学位论文D].南京:河海大学,2007.6.
    [20]韩青,罗康碧,李沪萍,等.磷石膏开发利用现状[J].化工科技.2012(1).
    [21]P M R, M J D, R A S. Environmental impacts of phosphogypsum [J]. The Science of the Total Environment.1994,149(1-2):1-38.
    [22]MAT. Influence of thermally treated phosphogypsumon the properties of Portland slag cement [J]. Rsources, Conservation and Recycling.2007,52(1):28-38.
    [23]王辛龙,张志业,杨秀山,等.我国磷石膏利用新途径的分析[J].现代化工.2011(5).
    [24]盛勇,梅胜明,陈明凤.我国磷石膏综合利用技术的现状和发展方向[J].磷肥与复肥.2010(6).
    [25]V K S, T V R, S C. Radiological impact of utilization of phosphogypsum and fly ash in building construction in India[J]. International Congress Series.2005,127(6):339-340.
    [26]R L. Preparation of phosphate acid wastes gypsum for further processing to make building material [J]. Zementkalk-Gips.1995,48(2):98-102.
    [27]J H P, S S H. A plant investigation into the use of treated phosphogypsum as a set-retarder in OPC and an OPC/fly ash blend[J]. Minerals Engineering.2001,14(7):791-795.
    [28]匡国明.我国磷化工产业发展面临的形势及发展策略[J].磷肥与复肥.2008(5).
    [29]匡国明.我国磷化工产业面临的形势及发展策略[J].硫磷设计与粉体工程.2009(2).
    [30]Singh M. Role of phosphogypsum Impurities on strength and microstruction of selenite plaster[J]. Construction and Building Materials.2005(19):480-486.
    [31]S G V. Rehabiltation of a gyasum tailing-embankment[J]. Conl Proc Geotech Pact Disposal Solid Waste Master.1977.
    [32]Manjit S. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster[J]. Cement and Concrete Research.2003,33(9):1363-1369.
    [33]Manjit S, Mridul G. Durability of cementing binders based on fly ash and other wastes[J]. Construction and Building Materials.2007(21):2012-2016.
    [34]Manjit S. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research.2002(32):1033-1038.
    [35]滇池流域水污染防治“十五”计划[R].昆明,2001.
    [36]滇池流域水污染防治“十二五”计划[R].昆明,2010.
    [37]云南新世纪环境保护科学研究院有限公司.滇池外海主要入湖河口及重点区域底泥疏浚工程项目环境影响报告[R].昆明,2010.
    [38]魏鹏.我国磷矿分布特点及主要开采技术[J].武汉工程大学学报.2011(2).
    [39]潘长云.云南磷矿资源及可持续利用对策研究[J].云南地质.2003(3).
    [40]陶俊法.云南磷肥工业展望[J].磷肥与复肥.2004(5).
    [41]李壮阔,段希祥,戴惠新,等.云南磷矿资源开发新技术研究[J].资源开发与市场. 2004(2).
    [42]薛步高.昆明滇池周围磷矿资源现状及开发前景[J].化工矿产地质.2008(3).
    [43]黄仲权.云南磷矿资源优势与深度开发[J].中国地质矿产经济.1995(4).
    [44]Kelly A R, Tingzong G, Roger K S. Stabilization of phosphogypsum using class C fly ash and lime:assessment of the potential for marine applications[J].Journal of Hazardous Materials. 2002,93(2):167-186.
    [45]Ismail D, M S B. Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture[J]. Construction and Building Materials.2008, 22(6):1299-1304.
    [46]Nurhayat D, Arzu O, Ayse T. Application of phosphogypsum in soil stabilization[J]. Building and Environment.2007,42(9):3393-3398.
    [47]黄新,胡同安.水泥-废石膏加固软土的试验研究[J].岩土工程学报.1998(5).
    [48]丁建文,张帅,洪振舜,等.水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J].岩土力学.2010(9).
    [49]骆勇军,周益安,尹吉国.疏浚淤泥处置利用技术研究综述[J].浙江水利科技.2010(3):60-61.
    [50]张和庆,谢健,朱伟,等.疏浚物倾倒现状与转化为再生资源的研究一中国海洋倾废面临的困难和对策[J].海洋通报.2004,23(6):54-60.
    [51]Heinz D D, Wolfgang S, Ulrich D, et al. New technology of mechanical treatment of dredged material from Hamburg harbour [J]. Water Science and Technology.1998,37(6-7):. 337-343.
    [52]杨顺安,刘志欣,深圳南油“314”造地吹填淤泥加固改良浅析[J].中国地质灾害与防治学报.1998,9(4):8-12.
    [53]Min-Jian W. Land application of sewage sludge in China[J]. Science of The Total Environment.1997,197(1-3):149-160.
    [54]尹平,宫晓波.疏浚泥综合利用现状[J].能源研究与管理.2011(4):17-20.
    [55]Caner R, Chaves C, Pomares F. Agricultural use of sediments from the Albufera Lake(eastem Spain)[J]. Agriculture Ecosystems and Environment.2003(95):29-36.
    [56]朱广伟,陈英旭,王凤平.景观水体疏浚底泥的农业利用研究[J].应用生态学报.2002,13(3):335-339.
    [57]C P, S S A. Ioannidou and M. Manolopoulou. The application of phosphogypsum in agriculture and the radiological impact[J]. Journal of Environmental Radioactivity.2006,89(2): 188-198.
    [58]Wakeman T, Dunlop P, Knutson L. Current status and future management of dredging at the Port of New York and New Jersey [J]. Proeeedings of the 1997 1st National Conference of the ASCE Geo-Institute.1997(12).
    [59]Jennifer L D, Kevin H G. Properties of Portland cement made from contaminated sediments[J]. Conservation and Recycling.2004,41(3):227-241.
    [60]Kay H, Volker K. Brick production with dredged harbour sediments. An industrial-scaleexperiment[J]. Waste Management.2002(5):521-530.
    [61]薛世浩,汪竹茂.利用淤泥制砖的半工业性试验[J].砖瓦.1999(03):54-57.
    [62]迟培云,张连栋,钱强.利用淤积海泥烧制超轻陶粒研究[J].新型建筑材料.2002(3).
    [63]Jesse R C. Chemical Fixation and Solidification of Hazardous Wastes[J]. NewYork:Van Nostrand Reinhold.1990.
    [64]Tang Y, Miyazaki Y, Tsuchida T. Practices of reused dredgings by cement treatment[J]. Soils and Foundatuions.2001,41(5):129-143.
    [65]Tao-Wei F, Jia-Yih L, Yi-Jiuan L. Consolidation behavior of a soft mud treated with small cement content[J]. Engineering Geology.2001,59(3-4):327-335.
    [66]郭印.淤泥质土的固化及力学特性的研究[博士学位论文D].杭州:浙江大学,2007.
    [67]M K, N K, G R, et al. The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals[J]. Cement and Concrete Composites.2008,30(10):1013-1019.
    [68]Catherine N M, Raymond N Y, Bernard F G. An evaluation of technologies for the heavy metal remediation of dredged sediments[J]. Journal of Hazardous Materials.2001,85(1-2): 145-163.
    [69]Cheilas A, M K, A G, et al. Impact of hardening conditions on to stabilized/solidified products of cement-sewage sludge-jarosite/alunite[J]. Cement and Concrete Composites.2007, 29(4):263-269.
    [70]P S, C A P, I H. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime[J]. Journal of Hazardous Materials.2008,154(1-3):1052-1059.
    [71]黄新,周国钧.水泥加固土硬化机理初探[J].岩土工程学报.1994(1).
    [72]丁佩民,张其林.水泥处理的沉积淤泥膨胀试验及其矿物机理分析[J].同济大学学报(自然科学版).2002,30(9):1083-1086.
    [73]丁建文,洪振舜,刘松玉.疏浚淤泥流动固化土的压汞试验研究[J].岩土力学.2011(12):3591-3596.
    [74]黄新,宁建国,许晟,等.固化土孔隙液Ca(0H)2饱和度对强度的影响[J].工业建筑.2006(7).
    [75]S H C, A H M K, F H L. Physicochemical and Engineering Behavior of Cement Treated Clays[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING. 2004:696-706.
    [76]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学.2005(8):1327-1330.
    [77]张春雷.固化淤泥力学性质及固化机理研究[硕士学位论文D].南京:河海大学,2003.
    [78]汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报.2000(5):549-554.
    [79]Ogino, T K K, T G, et al. Utilization of stabilized dredged waste for construction material [J]. Proceedings of the First Intemational Congress on Environmental Geotechnies.1994: 49-56.
    [80]朱伟,张春雷,高玉峰,等.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报(工学版).2005(10):103-107.
    [81]刘莹,王清.水泥与生石灰处理吹填土对比试验研究[J].工程地质学报.2006(3):424-429.
    [82]桂跃,高玉峰,宋文智,等.高含水率疏浚淤泥生石灰材料化土闷料期内强度变化规律[J].河海大学学报(自然科学版).2010(2):185-190.
    [83]丁建文,洪振舜,刘松玉.疏浚淤泥流动固化处理与流动性试验研究[J].岩土力学.2011(S1):280-284.
    [84]丁建文,张帅,洪振舜.高含水率疏浚淤泥流动固化处理试验研究[J].水运工程.2009(6):30-34.
    [85]孟庆山,汪稔,陈震.淤泥质软土在冲击荷载作用下孔压增长模式[J].岩土力学.2004(7):1017-1022.
    [86]朱伟,冯志超,张春雷,等.疏浚泥固化处理进行填海工程的现场试验研究[J].中国港湾建设.2005(5):32-35.
    [87]杨敏.杂质对不同相磷石膏性能的影响[博士学位论文D].重庆:重庆大学,2008.
    [88]Manjit S, Mridul G. Study on anhydrite plaster from waste phosphogypsum for use in polymerised flooring composition[J]. Construction and Building Materials.2005,19(1):25-29.
    [89]Kumar S A. Perspective study on the fly ash-lime-gypsum bricks and hollow blocks for cost housing development[J]. Construction and Building Materials.2002(16):519-525.
    [90]Nurhayat D. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials.2008(22):1857-1862.
    [91]K J M, W K H, C W L S Y. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials.2007, 21(6):1342-1350.
    [92]梅毅,段东成,杨亚斌等.磷石膏的综合利用及其竞争力分析[J].无机盐工业.2011,43(8):1-5.
    [93]谭晨曦.磷石膏做混凝土膨胀剂的实验研究[硕士学位论文D]西安:长安大学,2006.
    [94]刘小力,高忠民,唐飞勇.磷石膏充填采矿技术应用及经济环境效益评价[J].武汉工程大学学报.2011(3).
    [95]杜绍伦,刘志祥.磷石膏胶结强度试验研究[J].采矿技术.2010(1).
    [96]徐雪源,徐玉中,陈桂松,等.工业废料磷石膏的工程特性试验研究[J].岩石力学与工程学报.2004(2).
    [97]高洁,赵国彦.粘土-水泥-磷石膏胶结充填技术试验研究[J].煤炭技术.2012(3).
    [98]李相国,陈嘉懿,马保国,等.粒度分布对磷石膏-石灰-粉煤灰胶结材物理性能的影响[J].化工学报.2012(1).
    [99]荀勇,李玉寿.水泥粉煤灰磷石膏加固土室内试验研究[J].吉林化工学院学报.1999(4):29-33.
    [100]Grubb D, Gallagher P, Wartman J, et al. Laboratory evaluation of crushed glass-dredged material blends[J]. Journal of Geotechnical and Geoenvironmental Engineering.2006,132(5): 562-576.
    [101]Grubb D, Davis A. Field evaluation of crushed glass-dredged material blends[J]. Journal of Geotechnical And Geoenvironmental Engineering.2006,132(5):577-590.
    [102]Grubb D, Wartman J, Malasavage N. Aging of crushed glass-dredged material blend embankments[J]. Journal of Geotechnical And Geoenvironmental Engineering.2008,134(11): 1676-1684.
    [103]Grubb D, Cadden A, Miller D. Crushed glass-dredged material (CG-DM) blends:role of organic matter content and DM variability on field compaction[J]. Journal of geotechnical And Geoenvironmental Engineering.2008,134(11):1665-1675.
    [104]Grubb D, Wazne M, Malasavage N. Characterization of slag fines for use as a dredged material amendment[C]. Florida:2010.
    [105]Grubb D, Wazne M, Jagupilla S, et al. Beneficial use of steel slag fines to immobilize arsenite and arsenate:slag characterization and metal thresholding studies[J]. Journal of Hazardous, Toxic, and Radioactive Waste.2011,15(3):130-150.
    [106]Malasavage N, Jagupilla S, Grubb D, et al. Geotechnical performance of dredged material-steel slag fines blends:laboratory and field evaluation[J]. Journal of Geotechnical And Geoenvironmental Engineering.2012,138(8):981-991.
    [107]Baxter C, King J W, Silva A J, et al. Site characterization of dredged sediments and evaluation of beneficial uses[C]. Baltimore, Maryland, United States:American Society of Civil Engineers,2005.
    [108]Degirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction And Building Materials.2008,22(8): 1857-1862.
    [109]高玉峰,桂跃,黎冰,等.一种磷石膏-淤泥联合固化处理方法[P].200910026859.
    [110]王新民,姚建,田冬梅,等.磷石膏作为胶结充填骨料性能的试验研究[J].金属矿山.2005(2).
    [111]王国强,吴涛,项颈松,等.磷石膏对吹填海泥改性的影响[J].安徽农业科学.2011(8).
    [112]沈卫国,周明凯,赵青林,等.粉煤灰磷石膏高早强路面基层材料的研究[J].粉煤灰综合利用.2001(2):31-32.
    [113]D. Hunter. Lime-Induced Heave in Sulfate-Bearing Clay Soils.[J].1988,2(114): 150-167.
    [114]Dermatas D. Ettringite-induced swelling in soils[J]. state-of-the-art. Applied Mechanics Reviews.1995,10(48):221-238.
    [115]A. J. Puppala, P. E., Napat Intharasombat, et al. Experimental studies on ettringite-induced heaving in soils[J]. Journal of geotechnical and geoenvironmental engineering.2005,3(131):325-337.
    [116]董满生,凌天清,徐基立.磷石膏对半刚性基层材料的作用机理[J].中国公路学报.2002,15(2):11-15.
    [117]赵艳,石名磊.磷石膏混合料的再生[J].岩土力学.2007(1).
    [118]黄英豪,朱伟,张春雷,等.固化淤泥重塑土力学性质及其强度来源[J].岩土力学. 2009(5):1352-1356.
    [119]张超,杨春和,余克井等.磷石膏物理力学特性初探[J].岩土力学.2007(3).
    [120]中华人民共和国建设部.土工试验方法标准(GBT 50123-1999)[S],2008.06.
    [121]汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报.2000(05):549-554.
    [122]杨永荻,汤怡新.疏浚土的固化处理技术[J].水运工程.2001(04):12-15.
    [123]Wareham D G, Mackechnie J R. Solidification of New Zealand Harbor Sediments Using Cementitious Materials [J]. Journal of materials in Civil Engineering.2006,18(2):311-315.
    [124]Degirmenci N, Okucu A, Turabi A. Application of phosphogypsum in soil stabilization[J]. Build Environ.2007,42(9):3393-3398.
    [125]Chrysochoou M, Grubb D G, Drengler K L. Stabilized dredged material. Ⅲ: mineralogical perspective[J]. Journal of Geotechnical And Geoenvironmental Engineering. 2010,136(8):1037-1050.
    [126]邓东升,张铁军,张帅,等.南水北调东线工程高含水量疏浚淤泥材料化处理方法[J].河海大学学报(自然科学版).2008(4):559-562.
    [127]侯永峰,龚晓南.水泥土的渗透特性[J].浙江大学学报(工学版).2000(02):77-81.
    [128]张春雷,朱伟,范公俊.水泥固化高含水率淤泥的收缩性质[J].河海大学学报(自然科学版).2010(3):295-299.
    [129]宫本健儿,今林弘,新舍博.泥岩破碎土(?)用ぃ、た事前混合处理工法の施工事例[Z].1999.
    [131]佐藤厚子,西本聪,铃木辉之.固化破碎土の强度特性[J].北海道.2005.
    [132]桂跃,高玉峰,李振山等.高含水率疏浚淤泥材料化土击实时机选择研究[J].地下空间与工程学报.2010,6(5):1072-1076.
    [133]聂良佐.原状土结构损伤重塑后强度、变形和渗透性变化机理研究[J].岩土工程界.2008(7):23-25.
    [134]Little D N, Herbert B, Kunagalli S N. Ettringite formation in lime-treated soils: Establishing thermodynamic foundations for engineering practice[J]. Transp. Res. REC.2005: 51-59.
    [135]Little D N, F. Asce P E, Nair S, et al. Addressing sulfate-induced heave in lime treated soils[J]. Journal of geotechnical and geoenvironmental engineering.2010,1(136):110-118.
    [136]J. K. Mitchell D D. Clay soil heave caused by lime-sulfate reactions Innovations and uses of lime[J]. ASTM STP.1992:41-46.
    [137]范公俊,朱伟,张春雷.固化淤泥收缩性质研究[Z].武汉:2006348-352.
    [138]Parreira A. B. K A R K, Silvestre O. B. E A. Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum[J]. Journal of environmental engineering.2003,10(129):956-960.
    [139]李素昉.水泥微观形貌的图像分析[硕士学位论文D].济南:济南大学,2004.
    [140]李俊才,高国瑞,赵泽三.粉喷法加固软土地基的机理探讨[J].南京建筑工程学院 学报(自然科学版).1994(1):8-14.
    [141]D S. Longtime study of concrete durability in sulfate soil. George verbeck symposium[J]. Sulphate resistance of concrete.1982(77):21-40.
    [142]A. S M. Disintegration of concrete containing sulfate-contaminated aggregates[J]. Magazine of Concrete Research.1976,96(28):130-142.
    [143]J. C N. Examination of mortar bars containing varying percentages of coarsely crystalline gypsum as aggregate[J]. Cement and Concrete Research.1984,2(14):225-230.
    [144]L W, A R, R S. Stabilization of sulfate-containing soil by cementitious mechanical properties[J]. Journal of the Transportation Research Board.2003(32):12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700