用户名: 密码: 验证码:
基于复杂系统理论的连锁故障大停电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来国内外发生了多起由连锁故障导致的大停电,给社会和经济带来了巨大的损失。因此迫切需要对连锁故障大停电的内在机理进行分析,提出预防大停电的措施。传统的电力系统安全分析方法在分析连锁反应事故和大停电机理上存在局限性,基于复杂系统理论的连锁故障大停电研究已经成为电力系统可靠性研究的热点问题。
     本论文结合复杂系统理论,从复杂网络拓扑演化、自组织临界性以及电网和通信网络的交互影响这3个方面对电力系统连锁故障大停电进行了分析,并提出预防大停电的相关措施。本文的具体工作如下:
     改进了OPA模型慢动态过程的电网拓扑演化方式。通过调节该模型的演化参数可以控制电网拓扑特征参数演变过程,从而研究各个网络特征参数的变化趋势对大停电分布的长期影响。仿真结果表明,单独地调节任意一种网络特征参数都可以减小大规模停电发生概率。但是在多数情况下,各个网络特征参数之间相互影响,往往同时发生变化,并且每个网络特征参数的变化对大停电分布的影响可能不同,甚至出现相反作用。在实际电网规划中,随着新输电线路的建设,电网的拓扑特性也在逐渐变化。在仿真中我们发现,将新建变电站节点或者发电厂节点连接到度数较低的节点时更有利于降低大规模停电的发生概率。
     引入复杂系统理论中同配性的概念,将线路的负载率和其脆弱性进行匹配,提出了一种新型的量化线路潮流分布特性的指标一一线路同配性指标,并应用该指标对系统的自组织临界性进行了识别。仿真结果表明,结合系统的平均负载率和潮流熵,该指标可以在多个系统的不同运行状态下有效地辨识系统的自组织临界状态,并且在系统平均负载率较低时仍具有较好的辨识能力。在预防大停电方面,线路同配性指标是现有指标的重要补充。
     以信息网络中输电线路的开断状态信息传输为例,结合隐性故障模型研究了电力信息网络节点故障对于电力系统连锁故障大停电的影响,并提出了对连锁故障大停电产生重要影响的关键信息节点的辨识指标。该指标可以在不同的状态下有效地辨识出对电力系统大停电产生重要影响的信息节点。仿真结果表明,信息系统的故障对于电力系统连锁故障起到了推波助澜的作用,且信息网络的高度数和高介数节点并不是对连锁故障传播产生重要影响的关键信息节点。信息节点对应的电力线路的脆弱性与信息节点在自身网络中的拓扑特征相比,前者更能表征信息节点在电力系统连锁故障大停电中的重要性。
     建立了较为符合电力系统运行实际的电力网络和通信网络交互作用模型,并通过调节相关参数设置了不同的路由策略来研究电力通信网络的传输特性对于电力系统连锁故障大停电的影响。最后,结合复杂网络的理论讨论了2个网络之间的内在相似策略对大停电的影响,并在此基础上提出了内在相似度指标。仿真结果表明,通过调整通信网络参数来设置恰当的路由策略,可以降低大停电发生的概率。在不同电力系统下仿真发现,网络间最优相似策略是相同的,采用该相似策略可以有效地降低大停电发生的概率。并且,内在相似度指标能很好地度量电网和通信网络的关联关系对大停电的影响,提高网络间的相似度可以有效抑制大停电的发生。
In recent years, a number of large blackouts caused by cascading failures have taken place all over the world. Therefore, it is important to analyze the mechanism of cascading blackouts and propose preventive strategies for large blackouts. However, conventional security analysis strategies for electric power system confront the limitation in studying cascading failures and the mechanisms of large blackouts. And the research on cascading blackouts based on complex system theory has become a hot topic in the power system reliability research.
     This dissertation focuses on employing complex system theories to analyze cascading blackouts of power system from the aspects of complex network evolution, self-organized criticality and interactions between power grid and communication network, and propose some preventive strategies for large blackouts. This dissertation is organized as follows:
     The way of power grid topology evolution in slow dynamics of OPA model is improved to investigate the long-term effect of topology characteristics of a power grid on the probability distribution of blackout by adjusting the parameters of the novel model. Simulation results show that the probability of large blackouts in a power grid can be reduced by separately changing any one of these topological parameters. But in most cases, the variation of one topological parameter may cause simultaneous deviations on the others, which might have opposite effects on the distribution of blackout probability. Also in realistic power systems, the topology varies with the construction of transmission lines. From the simulation we found that linking a new substation or power plant to a low-degree bus is a better choice to mitigate large-scale blackouts than linking to a well-connected one.
     Inspired by the concept of assortativity in complex system theory, a novel index, called line assortativity, is proposed to quantify the distribution characteristic of lines power flows by matching load rate and vulnerability of lines. Line assortativity is used to identify the self-organized criticality of the power system. The simulation results indicate that the index is effective in identifying the self-organized criticality in various power systems operating in some states, by combining it with other indices, such as the average load rate and the power flow entropy. Moreover, the index proposed in this paper is still effective for the power system with a lower load rate, which is an important complement to the existing indices for mitigating large blackouts.
     Taking the transmission of line-outage-state information as an example, the information network is integrated with the hidden failure model to investigate the impact of node failures in the information network on the cascading failures in power systems. A new index is proposed to identify the key-buses which exert vital influence on blackouts, and it is very effective in power systems operating in various states. Simulation results show that the failures of information network might make the situation even worse and lead to large blackouts. Moreover, the nodes with high-degree or high-betweenness in the information network are not the key information nodes that have important influence in the spread of cascading failures. Rather, compared with the topological characteristics of information nodes in their own network, the vulnerability of the information nodes corresponding transmission lines are better able to characterize the importance of information nodes in the cascading failures of the power system.
     The model of interaction between a power grid and its communication network in accord with practical power system is proposed. And various route strategies could be generated by adjusting corresponding communication network parameters, by which the impact of transmission characteristics of electrical power communication on cascading blackouts is investigated. Moreover, the inter-similarity between coupled networks is discussed based on complex network theory. And an index is presented to assess the level of inter-similarity between interdependent networks. Simulative results indicate that, with proper routing strategy of communication network, the probability of large blackouts of power system can be reduced and the optimal inter-similarity strategy between coupled networks of different power systems is same, which can be adopted to effectively decrease the probability of large-scale blackout. The inter-similarity index is useful to assess the effect of interdependency between coupled networks on blackouts. And improving the inter-similarity between coupled networks is effective to mitigate large blackouts.
引文
[1]刘振亚.中国电力与能源[M].北京市:中国电力出版社,2012.
    [2]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [3]Xu T., Chen R., He Y., et al. Complex network properties of chinese power grid[J]. International Journal of Modern Physics B,2004,18(17-19): 2599-2603.
    [4]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
    [5]王梅义等.大电网系统技术[M].北京市:中国电力出版社,1995.
    [6]袁季修.防御大停电的广域保护和紧急控制[M].北京市:中国电力出版社,2007.
    [7]Interim report of the investigation committee on the 28 September 2003 blackout in Italy[R]. Union for the Coordination of Electricity Transmission (UCTE),2003.
    [8]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174.
    [9]林伟芳,汤涌,孙华东,等.巴西“2·4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5.
    [10]林伟芳,孙华东,汤涌,等.巴西“11·10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5.
    [11]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [12]毛安家,张戈力,吕跃春,等.2011年9月8日美墨大停电事故的分析及其对我国电力调度运行管理的启示[J].电网技术,2012,36(4):74-78.
    [13]鲁顺,高立群,王坷,等.莫斯科大停电分析及启示[J].继电器,2006,34(16):27-31.
    [14]国家电力调度通信中心.电网典型事故分析(1999-2007年)[M].北京市:中国电力出版社.2008.
    [15]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化.2004,28(3):1-4.
    [16]North American Electric Reliability Council. NERC planning standards. http://www.nerc.com.
    [17]电力工业部.电力系统安全稳定导则[M].北京:电力工业出版社,1981.
    [18]曹一家,王光增.电力系统复杂性及其相关问题研究[J].电力自动化设备,2010,30(2):5-10.
    [19]沈剑飞,张文泉.复杂性科学及电力系统复杂性[J].华北电力大学学报:社会科学版,2005,(2):32-35.
    [20]曹一家,陈彦如,曹丽华,等.复杂系统理论在电力系统中的应用研究展望[J].中国电机工程学报,2012,32(19):1-9.
    [21]黄欣荣.复杂性科学与哲学[M].北京市:中央编译出版社,2006.
    [22]贝塔朗菲.一般系统论[M].北京市:高等教育出版社,2007.
    [23]成思危.复杂科学与系统工程[J].管理科学学报,1999,2(2):1-7.
    [24]Bak P., Tang C., Wiesenfeld K. Self-organized criticality-an explanation of 1/f noise[J]. Physical Review Letters,1987,59(4):381-384.
    [25]Bak P., Tang C., Wiesenfeld K. Self-organized criticality[J]. Physical Review A, 1988,38(1):364-374.
    [26]Held G. A., Solina D. H., Solina H., et al. Experimental study of critical-mass fluctuations in an evolving sandpile[J]. Physical Review Letters,1990,65(9): 1120-1123.
    [27]Jeong H., Mason S. P., Barabasi A. L., et al. Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42.
    [28]Anderson J. A. Neural models. Networks for fun and profit[J]. Nature,1986, 322(6078):406.
    [29]Guimer R., Amaral L. Modeling the world-wide airport network[J]. The European Physical Journal B-Condensed Matter,2004,38(2):381-385.
    [30]Kinney R., Crucitti P., Albert R., et al. Modeling cascading failures in the North American power grid[J]. The European Physical Journal B,2005,46(1): 101-107.
    [31]吴彤.复杂网络研究及其意义[J].哲学研究,2004,(8):58-63.
    [32]郑金连,狄增如.复杂网络研究与复杂现象[J].系统辩证学学报,2005,13(4):8-13.
    [33]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京市:清华大学出版社,2006.
    [34]Newman M. Mixing patterns in networks[J]. Physical Review E,2003,67(2): 26126.
    [35]Erdos P., Renyi A. On the evolution of random graphs[J]. Publ. Math. Inst. Hung. Acad. Sci,1960,5:17-61.
    [36]周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理,2005,34(1):31-36.
    [37]Watts D. J., Strogatz S. H. Collective dynamics of 'small-world' networks[J]. Nature,1998,393(6684):440-442.
    [38]Newman M., Watts D. J. Renormalization group analysis of the small-world network model [J]. Physics Letters A,1999,263:341-346.
    [39]Barabasi A. L., Albert R. Emergence of scaling in random networks[J]. Science, 1999,286(5439):509-512.
    [40]Zhao L., Park K., Lai Y. C. Attack vulnerability of scale-free networks due to cascading breakdown[J]. Physical Review E,2004,70(3):35101.
    [41]Baldick R., Chowdhury B., Dobson I., et al. Initial review of methods for cascading failure analysis in electric power transmission systems[M] 2008 IEEE Power & Energy Society General Meeting, Vols 1-11, New York: IEEE,2008, 52-59.
    [42]Carreras B. A., Newman D. E., Dobson I., et al. Evidence for self-organized criticality in a time series of electric power system blackouts[J]. IEEE Transactions on Circuits and Systems I-Regular Papers,2004,51(9): 1733-1740.
    [43]Carreras B. A., Newman D. E., Dobson I., et al. Initial evidence for self-organized criticality in electric power system blackouts[C].2000.
    [44]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统 自动化,2006,30(2):16-21.
    [45]于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6):1-5.
    [46]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [47]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型[J].中国电机工程学报,2005,25(18):13-19.
    [48]哈肯.信息与自组织[M].成都市:四川教育出版社,1998.
    [49]邓慧琼,艾欣,赵亮,等.大停电自组织临界特征的若干问题探讨[J].电网技术,2007,31(8):42-46.
    [50]于群,曹娜,郭剑波.基于元胞自动机的电力系统自组织临界特性仿真模型[J].电力系统自动化,2011,35(21):1-5.
    [51]Dobson I., Carreras B., Lynch V., et al. An initial model for complex dynamics in electric power system blackouts[C]. Maui, HI, United states:Institute of Electrical and Electronics Engineers Computer Society,2001.
    [52]柳进,张世杰,李来福,等.类比沙堆模型的电网危害性事件序列展示模型[J].继电器,2007,35(1):354-358.
    [53]贺庆,郭剑波.基于沙堆模型的控制规则[J].电力系统自动化,2010,34(3):1-5.
    [54]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5.
    [55]王刚,梅生伟,胡伟.计及无功/电压特性的停电模型及自组织临界性分析[J].电力系统自动化,2007,31(1):9-13.
    [56]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2007,31(12):12-18.
    [57]梅生伟,何飞,张雪敏,等.一种改进的OPA模型及大停电风险评估[J].电力系统自动化,2008,32(13):1-5.
    [58]Ren H., Dobson I., Carreras B. A. Long-term effect of the n-1 criterion on cascading line outages in an evolving power transmission grid[J]. IEEE Transactions on Power Systems.2008.23(3):1217-1225.
    [59]丁雪阳,刘新东.基于最优风险指标的连锁故障模型和薄弱线路辨识[J].电力系统自动化,2011,35(18):7-10.
    [60]曹一家,王光增,韩祯祥,等.考虑电网拓扑演化的连锁故障模型[J].电力系统自动化,2009,33(9):5-10.
    [61]曹一家,丁理杰,王光增,等.考虑网络演化的直流潮流停电模型与自组织临界性分析[J].电力系统自动化,2009,33(5):1-6.
    [62]王韶,祝金锋,董光德,等.基于输电网扩展规划的OPA模型[J].电力系统自动化,2011,35(20):7-12.
    [63]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
    [64]Chen J., Thorp J. S., Dobson I. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[J]. International Journal of Electrical Power & Energy Systems,2005,27(4):318-326.
    [65]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型[J].电力系统自动化,2006,30(14):1-5.
    [66]易俊,周孝信,肖逾男.用连锁故障搜索算法判别系统的自组织临界状态[J].中国电机工程学报,2007,27(25):1-5.
    [67]梁才,刘文颖,温志伟,等.电网组织结构对其自组织临界性的影响[J].电力系统保护与控制,2010,38(20):6-11.
    [68]丁理杰.复杂电网连锁故障大停电分析与预防研究[D].浙江大学,2008.
    [69]曹一家,王光增,曹丽华,等.基于潮流熵的复杂电网自组织临界态判断模型[J].电力系统自动化,2011,35(7):1-6.
    [70]于群,曹娜,郭剑波.负载率对电力系统自组织临界状态的影响分析[J].电力系统自动化,2012,36(1):24-27.
    [71]刘文颖,杨楠,张建立,等.计及恶劣天气因素的复杂电网连锁故障事故链模型[J].中国电机工程学报,2012,32(7):53-59.
    [72]屠竞哲,甘德强,于洋,等.直流输电对交直流互联系统自组织临界性的影响分析[J].电力系统自动化,2012,36(11):7-13.
    [73]屠竞哲,于洋,史济全,等.基于系统SOC理论的直流运行方式及控制参数 分析[J].浙江大学学报:工学版,2012,46(10):1831-1838.
    [74]苏盛,李银红,段献忠.电网故障自组织临界性及其在应对极端天气中的应用[J].科学通报,2009,54(3):387-394.
    [75]Surdutovich G., Cortez C., Vitilina R., et al. Dynamics of "small world" networks and vulnerability of the electric power grid[C]. Brasilia, Brasil: Proceedings of VIII Symposium of Specialists in Electric Operational and Expansion Planning,2002.
    [76]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24.
    [77]Albert R., Albert I., Nakarado G. L. Structural vulnerability of the North American power grid[J]. Physical Review E,2004,69(2):025103.
    [78]Chassin D. P.和. P. Evaluating north american electric grid reliability using the Barabasi-Albert network model[J]. Physica A:Statistical Mechanics and its Applications,2005,355(2):667-677.
    [79]陈洁,许田,何大韧.中国电力网的复杂网络共性[J].科技导报,2004,(4):11-14.
    [80]Hines P., Blumsack S. A centrality measure for electrical networks[C].2008.
    [81]Carreras B. A., Lynch V. E., Sachtjen M. L., et al. Modeling blackout dynamics in power transmission networks with simple structure[C].2001.
    [82]卢明富,梅生伟.小世界电网生长演化模型及其潮流特性分析[J].电工电能新技术,2010,29(1):25-29.
    [83]王光增,曹一家,包哲静,等.一种新型电力网络局域世界演化模型[J].物理学报,2009,58(6):3597-3602.
    [84]Li X., Chen G. R. A local-world evolving network model[J]. Physica A,2003, 328(1-2):274-286.
    [85]曹一家,王光增,包哲静,等.一种复杂电力网络的时空演化模型[J].电力自动化设备,2009,29(1):1-5.
    [86]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(8):7-10.
    [87]Xiaogang C., Quanyuan J., Yijia C. Impact of characteristic path length on cascading failure of power grid[C].2006.
    [88]丁明,韩平平.加权拓扑模型下的小世界电网脆弱性评估[J].中国电机工程学报,2008,28(10):20-25.
    [89]郑阳,刘文颖,温志伟,等.基于小世界网络的电网连锁故障实时搜索系统[J].电网技术,2010,34(7):58-63.
    [90]Motter A. E. Cascade control and defense in complex networks[J]. Physical Review Letters,2004,93(9):98701.
    [91]Bao Z. J., Cao Y. J., Ding L. J., et al. Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks[J]. Physica A,2009,388(20):4491-4498.
    [92]曹一家,刘美君,丁理杰,等.大电网安全性评估的系统复杂性理论研究[J].电力系统及其自动化学报,2007,19(1):1-8.
    [93]陈晓刚,孙可,曹一家.基于复杂网络理论的大电网结构脆弱性分析[J].电工技术学报,2007,22(10):138-144.
    [94]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):1-5.
    [95]倪向萍,梅生伟,张雪敏.基于复杂网络理论的输电线路脆弱度评估方法[J].电力系统自动化,2008,32(4):1-5.
    [96]丁剑,白晓民,赵伟,等.基于二维平面拟合的电网脆弱性分析[J].电力系统自动化,2008,32(8):1-4.
    [97]魏震波,刘俊勇,朱国俊,等.基于电网状态与结构的综合脆弱评估模型[J].电力系统自动化,2009,33(8):11-14.
    [98]邵莹,于继来.采用源流路径电气剖分信息的电网脆弱性评估[J].中国电机工程学报,2009,29(31):34-39.
    [99]徐林,王秀丽,王锡凡.电气介数及其在电力系统关键线路识别中的应用[J].中国电机工程学报,2010,30(1):33-39.
    [100]徐林,王秀丽,王锡凡.使用等值导纳进行电力系统小世界特性识别[J].中国电机工程学报,2009,29(19):20-26.
    [101]徐林,王秀丽,王锡凡.基于电气介数的电网连锁故障传播机制与积极防 御[J].中国电机工程学报,2010,30(13):6]-68.
    [102]薛飞,雷宪章,Ettorebompard.电网的结构性安全分析[J].电力系统自动化,2011,35(19):1-5.
    [103]Vespignani A. Complex networks the fragility of interdependency[J]. Nature, 2010,464(7291):984-985.
    [104]Schneider K., Chen-Ching L., Paul J. P. Assessment of interactions between power and telecommunications infrastructures [J]. IEEE Transactions on Power Systems,2006,21(3):1123-1130.
    [105]Laprie J., Kanoun K., Kaaniche M. Modelling interdependencies between the electricity and information infrastructures[Z]. Springer Berlin Heidelberg,2007: 4680,54-67.
    [106]Rosato V., Issacharoff L., Tiriticco F., et al. Modelling interdependent infrastructures using interacting dynamical models [J]. International journal of critical infrastructures,2008,4(1):63-79.
    [107]Cyber attack in a two-area power system: impact identification using reachability [Z].
    [108]Stamp J., Mcintyre A., Ricardson B. Reliability impacts from cyber attack on electric power systems[C].2009.
    [109]赵俊华,文福拴,薛禹胜,等.电力CPS的架构及其实现技术与挑战[J].电力系统自动化,2010,34(16):1-7.
    [110]赵俊华,文福拴,薛禹胜,等.电力信息物理融合系统的建模分析与控制研究框架[J].电力系统自动化,2011,35(16):1-8.
    [111]Hua L., Veda S. S., Shukla S. S., et al. Geco:global event-driven co-simulation framework for interconnected power system and communication network[J]. IEEE Transactions on Smart Grid,2012,3(3):1444-1456.
    [112]王凯.基于复杂网络理论的电网结构复杂性和脆弱性研究[D].华中科技大学,2011.
    [113]Rosas-Casals M., Valverde S., Sole R. V. Topological vulnerability of the european power grid under errors and attacks [J]. International Journal of Bifurcation and Chaos.2007.17(7):2465-2475.
    [114]Sole R. V., Rosas-Casals M, Corominas-Murtra B., et al. Robustness of the european power grids under intentional attack[J]. Physical Review E,2008,77: 26102.
    [115]丁理杰,曹一家,刘美君.复杂电力网络的连锁故障动态模型与分析[J].浙江大学学报(工学版),2008,42(4):641-646.
    [116]Dobson I., Carreras B. A., Lynch V. E., et al. Complex systems analysis of series of blackouts:cascading failure, critical points, and self-organization[J]. Chaos,2007,17(2):26103.
    [117]金华征,程浩忠,翟海保.电网规划中最小切负荷费用计算方法[J].电力系统及其自动化学报,2005,17(6):5-9.
    [118]Guo Q., Zhou T., Liu J. G., et al. Growing scale-free small-world networks with tunable assortative coefficient[J]. Physica A-Statistical Mechanics and Its Applications,2006,371(2):814-822.
    [119]Phadke A. G., Thorp J. S. Expose hidden failures to prevent cascading outages[J]. IEEE Computer Applications in Power,1996,9(3):20-23.
    [120]丁理杰,刘美君,曹一家,等.基于隐性故障模型和风险理论的关键线路辨识[J].电力系统自动化,2007,31(6):1-5.
    [121]李莎,任建文.基于有功增加因子的潮流转移快速搜索[J].电网技术,2012,36(12):176-181.
    [122]张伯明,陈寿孙.高等电力网络分析[M].北京市:清华大学出版社,1996.
    [123]Newman M. Assortative mixing in networks[J]. Physical Review Letters,2002, 89(20):208701.
    [124]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展:国家重点实验室通讯,2000,10(10):870-876.
    [125]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [126]鞠平,秦川,黄桦,等.面向智能电网的建模研究展望[J].电力系统自动化,2012,36(11):1-6.
    [127]孙可.复杂网络理论在电力网中的若干应用研究[D].浙江大学,2008.
    [128]胡娟,李智欢,段献忠.电力调度数据网结构特性分析[J].中国电机工程学报,2009,29(4):53-59.
    [129]李高望,鞠文云,段献忠,等.电力调度数据网传输特性分析[J].中国电机工程学报,2012,32(22):141-148.
    [130]Thorp J. S., Phadke A. G., Horowitz S. H., et al. Anatomy of power system disturbances:importance sampling[J]. International Journal of Electrical Power & Energy Systems,1998,20(2):147-152.
    [131]王安斯,罗毅,涂光瑜,等.基于事故链风险指标的输电脆弱度在线评估方法[J].中国电机工程学报,2010,30(25):44-50.
    [132]Rinaldi S. A., Peerenboom J. P., Kelly T. K. Identifying, understanding, and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems Magazine,2001,21(6):11-25.
    [133]Buldyrev S. V., Parshani R., Paul G., et al. Catastrophic cascade of failures in interdependent networks[J]. Nature,2010,464(7291):1025-1028.
    [134]Albert R., Jeong H., Barabasi A. L. Error and attack tolerance of complex networks[J]. Nature,2000,406(6794):378-382.
    [135]Parshani R., Rozenblat C., Ietri D., et al. Inter-similarity between coupled networks[J]. EPL,2010,92(6):68002.
    [136]Echenique P., Gomez-Gardenes J., Moreno Y. Improved routing strategies for internet traffic delivery[J]. Physical Review E,2004,70(5):56105.
    [137]汪秉宏.通讯网络上信息传输的最佳路由策略研究[C].中国湖北武汉:2006.
    [138]庄勇.无标度网络上的信息路由策略[D].中国科学技术大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700