用户名: 密码: 验证码:
基于电子舌和几种神经网络模型的金鱼养殖水检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由于水产业的迅猛发展,寻求一种能够快速、准确的对养殖水进行定性和定量检测的方法具有重要的意义。电子舌作为一种能够模拟人类味觉对液体样品特性进行分析检测的新型仪器,其在食品、医药以及环境工程等方面对液体综合信息进行定性和定量检测的能力不断得到了证实。模式识别在电子舌系统中起着至关重要的作用,而人工神经网络作为模式识别的一种,在电子舌领域有着广泛的应用前景;目前在电子舌系统中应用最广的是BP神经网络。然而,电子舌系统在养殖水中的应用前景尚未得到证实;而对多种神经网络对电子舌信号的分析能力的研究也少有涉及。因此,本文使用法国Alpha.MOS公司的α-ASTREE电子舌结合六种人工神经网络模型:BP神经网络、径向基神经网络(RBFNN)、广义回归神经网络(GRNN)、粒子群优化BP神网络(PSOBP)、遗传算法优化BP神经网络(GABP)和模糊神经网络(TSFNN),以不同养殖条件(养殖密度、养殖温度、喂食条件、增氧条件和酸碱度条件)下的金鱼养殖水为研究对象,分别建立了养殖水水质定性评价体系和定量评价体系;揭示了电子舌传感器与不同养殖条件以及电子舌传感器与金鱼养殖水的四项主要理化指标的内在关系,并在此基础上对传感器阵列进行了优化;分别考察了原始传感器阵列和优化传感器阵列对不同金鱼养殖水的定性和定量区分能力;分别考察了基于原始传感器阵列和基于优化传感器阵列的电子舌系统结合六种神经网络模型对不同金鱼养殖水的定性和定量检测能力。主要结论如下:
     (1)电子舌响应与养殖条件及四个主要理化指标均有显著关系:并将方差分析中各因素的F值相对较大的几根传感器挑选出来可用于不同金鱼养殖水的定性检测和定量检测的优化传感器阵列(BA、BB、CA、HA和JB)。
     (2)分别基于原始传感器阵列的电子舌响应信号和基于优化传感器阵列对不同养殖条件金鱼养殖水的电子舌响应信号进行主成分分析的结果表明:该电子舌系统对同一养殖条件不同养殖水平的金鱼养殖水有着良好的区分能力,且传感器阵列的优化提高了其区分能力。
     (3)分别基于原始传感器阵列和优化传感器阵列使用主成分分析对同一理化指标不同含量区间的养殖水样品进行区分的结果表明:电子舌响应和各理化指标之间呈现复杂且非线性的关系;该电子舌系统对同一理化指标不同含量区间的养殖水样品有良好的区分能力,优化后的传感器阵列能够提高其区分效果。
     (4)根据所建立的养殖水水质定性预测评价体系对六种神经网络的评价结果表明:BP网络可以全面、快速且准确的对金鱼养殖水的不同养殖条件进行定性预测。
     (5)根据所建立的养殖水水质定量预测评价体系对六种神经网络的评价结果表明:GRNN网络和RBFNN网络最适宜用于快速准确的对金鱼养殖水的理化指标进行定量预测。
Nowadays, with the rapid development of aquaculture, it is crucial to find a fast and accurate method to detect aquacultural water quality qualitatively and quantitatively. Electronic tongue is a novel instrument, which can mimic human taste to analyze the characterization of liquid samples. It has been established that the electronic tongue was capable of obtain the comprehensive information of liquid both qualitatively and quantitatively in many fields, such as food area, medical area as well as environmental engineering area and so on. Pattern recognition plays an important role in electronic tongue system. The BP neural network, as a kind of artificial neural network, has been used widely with electronic tongue for liquid analysis. However, there was no literature on the application of detection of aquacultural water quality with electronic tongue, as well as the capability of other artificial neural networks with electronic tongue for aquacultural water quality. In this work, a α-ASTREE electronic tongue by Alpha.MOS (France) was employed with six kinds of artificial neural network, which was BP neural network (BP), Radial basis function neural network(RBFNN), Generalized regression neural network(GRNN), Particle swarm optimization BP neural network(PSOBP), Genetic algorithm to optimize BP neural network(GABP) and Takagi-Sugeno Fuzzy neural network (TSFNN), to detect goldfish water from different cultivation conditions (cultivation densities, cultivation temperatures, food supply, aerating conditions and pH conditions) qualitatively and quantitatively. Both the qualitative and quantitative evaluation systems for aquacultural water quality were established. Both the internal relations between the sensors and different cultivation conditions and the internal relations between the sensors and four main chemical parameters were revealed, and the sensors array was optimized. Both the classified capability and prediction capabiltiy based on original sensors array and optimal sensors array for different goldfish water was evaluated qualitatively and quantitatively. The main conclusions are as follows.
     (1) Significant differences between samples from different cultivation conditions and all sensors were significant to four main chemical parameters (content of nitrate, ammonia and dissolve oxygen and pH value). And the optimal sensors array (BA、BB、CA、HA and JB) was obtained for both qualitative and quantitative detection of different goldfish water.
     (2) Samples from different levels of same cultivation condition could be classified by PCA based on response of original sensors array. And the classification result was improved when sensors array was optimized.
     (3) The relation between sensors response and chemical contents was complex and nonlinear. Samples with one of four chemical parameters belong to different value range from same cultiviation conditions could be classified by PCA based on response of original sensors array. And the classification result was improved when sensors array was optimized.
     (4) According to the developed qualitative evaluation system for aquacultural water, the developed BP network was most suitable for comprehensive and qualitative detection of cultivation conditions of goldfish water fast and accurately.
     (4) According to the developed quantitative evaluation system for aquacultural water, the developed GRNN and RBFNN networks were most suitable for quantitative detection of goldfish water fast and accurately.
引文
[I]Englehaupt E. Farming the deep blue sea. Environmental Science & Technology,2007,41(7): 4188-4191.
    [2]FAO (Food and Agriculture Organization of the United Nations).2006. State of World Aquaculture 2006. FAO Fisheries Technical Paper, No.500. Rome, FAO 2006, Available at: http://www.fao.org/docrep/009/a0874e/a0874e00.htm (accessed November 30,2007).
    [3]FAO (Food and Agriculture Organization of the United Nations).2007a Fishery and Aquaculture Country Profile, United States of America. Available at:http://www.fao. org/fi/website/FIRetrieveAction.do?dom=countrysector& xml=FI-CP_US.xml&lang=en (accessed November 30,2007).
    [4]McGinn A. P. Rocking the boat:conserving fisheries and protecting jobs. In:Worldwatch Paper, Worldwatch Institute, Washington, DC, USA.,1998,142(1):23-26.
    [5]朱杏冬,涂金珠,崔绍荣,王凯雄.养殖水中总有机碳与化学需氧量和生化需氧量相关性的研究.农业工程学报,1999,15(3):196-198.
    [6]John A. H. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture,1998, 166(3-4):181-212.
    [7]Szumski D. S., Barton D. A., Putnam H. D., Polta R.C. Evaluation of EPA un-ionized ammonia toxicity criteria. Water Polled Control Fed,1982,54(2):281-291.
    [8]Claude A, Boyd E. Pond water aeration systems[J]. Aquacultural Engineering,1998, 18(1):9-40.
    [9]Keigo N., Yukihiro S. A basic study on comprehensive water indices using glass fiber filters and a spectrophotometer. Water Science and Technology,1996,34(7-8),163-168.
    [10]国家环境保护局.GB7489-87.水质-溶解氧的测定-碘量法.1987-03-14.
    [11]Balon E.K. About the oldest domesticates among fishes. Journal of fish biology,2004, 65(1):1-27.
    [12]Yu Y., Chang J. P. Involvement of protein kinase C and intracellular Ca2+ in goldfish brain somatostatin-28 inhibitory action on growth hormone release in goldfish. General and Comparative Endocrinology,2010,168(1):71-81.
    [13]Soh H. Suppression of electrical synapses between retinal amacrine cells of goldfish by intracellular cyclic-AMP. Brain Research,2012(17):1449,1-14.
    [14]Carlos M., Christa N. Neuropharmacology of vision in goldfish:A review. Vision Research, 2009,49(9):960-969.
    [15]SASKIA D., CHRISTA N. Simultaneous Color Contrast in Goldfish—a Quantitative Study. Vision Research,1997,37(12):1581-1593.
    [16]Zupanc G.K.H., Sirbulescu R.F., Ilies I. Radial glia in the cerebellum of adult teleost fish: implications for the guidance of migrating new neurons. Neuroscience,2012,210(17):416-430.
    [17]Matsuda K., Wada K., Azuma M., Leprince J., Tonon M.C., Sakashita A., Maruyama K., Uchiyama M., Vaudry. H. The octadecaneuropeptide exerts an anxiogenic-like action in goldfish. Neuroscience,2011,181(5):100-108.
    [18]Patrick K. Influence of feed supply, temperature and body size on the growth of goldfish Carassius auratus larvae. Aquaculture,1995,136(3-4):341-349.
    [19]Rie G.,Yukiko A., Kiyoharu M., Etsuro Y., Shinji A., Kohei Y. Temperature-dependent sex differentiation in goldfish:Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculuture,2006,254(1-4):617-624.
    [20]Luz R.K., Martinez-Alvarez R.M., Pedro N. D., Delgado M.J. Growth, food intake regulation and metabolic adaptations in goldfish (Carassius auratus) exposed to different salinities. Aquaculture, 2008,276(1-4):171-178.
    [21]Boyd C. E. Chemical budgets for channel catfish ponds. Transaction of American Fishery Society,1985,114(291):8.
    [22]Ghaly A. E., Kamal M., Mahmoud N. S. Phytoremediation of aquaculture wastewater for water recycling and production of fish feed. Environment International,2005,31(1):1-13.
    [23]Tian S. Multifrequency Large Amplitude Pulse Voltammetry:A Novel Electrochemical Method for Electronic Tongue. Sensors and Actuators B:Chemical,2007,123(2):1049-1056.
    [24]Vlasov Y G., Legin A V, Rudnitskaya A M, D'Amico A, Di Natale C. Electronic Tongue—New Analytical Tool for Liquid Analysis on the Basis of Non-Specific Sensors and Methods of Pattern Recognition. Sensors and Actuators B:Chemical,2000,65(1-3):235-236.
    [25]Ciosek P., Wroblew S. Performance of Selective and Partially Selective Sensors in the Recognition of Beverages. Talanta,2007,71(2):738-746.
    [26]Di Natale C. Multicomponent analysis on polluted waters by means of an electronic tongue. Sensors and Actuators B:Chemical,1997,44(1-3):423-428.
    [27]Riul Jr. A. An electronic tongue using polypyrrole and polyaniline. Synthetic Metals,2003, 132(2):109-116.
    [28]Moreno, L. Multi-sensor array used as an "electronic tongue" for mineral water analysis. Sensors and Actuators B:Chemical,2006,116(1-2):130-134.
    [29]Ipatov, A. Integrated multisensor chip with sequential injection technique as a base for "electronic tongue" devices. Sensors and Actuators B:Chemical,2008,131 (1):48-52.
    [30]Martinez-Manez, R. An "electronic tongue" design for the qualitative analysis of natural waters. Sensors and Actuators B:Chemical,2005,104(2):302-307.
    [31]葛宗年,仿生电子舌系统及其应用研究:[硕士学位论文].吉林:东北电力大学,2010.
    [32]Valdes-Ramirez G. Automated resolution of dichlorvos and methylparaoxon pesticide mixtures employing a Flow Injection system with an inhibition electronic tongue. Biosensors and Bioelectronics,2009,24(5):1103-1108.
    [33]Larisa L. Clinical analysis of human urine by means of potentiometric Electronic tongue. Talanta,2009,77(3):1097-1104.
    [34]Zhenbo W., Jun W. Technique potential for classification of honey by electronic tongue. Journal of Food Engineering,2009,94(3-4):260-266.
    [35]胡洁.人工味觉系统:[硕士学位论文].杭州:浙江大学,2002.
    [36]丁春晖,多脉冲电子舌对昌黎原产地干红葡萄酒的检测:[硕士学位论文],杨凌:西北农林科技大学,2008.
    [37]Wei H., Xiaosong H., Lei Z., Xiaojun L., Yan Z., Mingwei Z., Jihong W. Evaluation of Chinese tea by the electronic tongue:Correlation with sensory properties and classification according to geographical origin and grade level. Food Research International,2009,42(10):1462-1467.
    [38]田师一,多脉冲电子舌系统构建及应用:[硕士学位论文],杭州:浙江工商大学,2007.
    [39]邓少平,田师一.电子舌技术背景与研究进展.食品与生物技术学报,2007,26(4):110-116.
    [40]Hayashi K., Yamanaka M., Toko K., Yamafuji K. Multichannel taste sensor using lipid membranes. Sensors and Actuators B:Chemical,1990,2(3):205-213.
    [41]Legin A.V., Bychkov E.A., Seleznev B.L., Vlasov Y.G. Development and analytical evaluation of a multisensor system for water quality monitoring. Sensors and Actuators B:Chemical,1995, 27(1-3):377-379.
    [42]Winquist F., Lundstrom I., Wide P. The combination of an electronic tongue and an electronic nose. Sensors and Actuators B:Chemical,1999,58(1-3):512-517.
    [43]Soderstrom C., Boren H., Krantz-Rulcker C. Use of an electronic tongue and HPLC with electrochemical detection to differentiate molds in culture media. International Journal of Food Microbiology,2005,97(3):247-257.
    [44]Saja J.A.D., Rodriguez-Mendez M.L. Sensors based on double-decker rare earth phthalocyanines. Advances in Colloid and Interface Science,2005,116(1-3):1-11.
    [45]Apetrei C., Apetrei I.M., Nevares I., del Alamo M., Parra V., Rodriguez-Mendez M.L., De Saja J.A. Using an e-tongue based on voltammetric electrodes to discriminate among red wines aged in oak barrels or aged using alternative methods:Correlation between electrochemical signals and analytical parameters. Electrochimica Acta,2007,52(7):2588-2594.
    [46]Riul Jr. A., Gallardo S.A.M., Mello S.V., Bone S. S., Taylor D.M., Mattoso L.H.C. An electronic tongue using polypyrrole and polyaniline. Synthetic Metals,2003,132(2):109-116.
    [47]Riul Jr A., Malmegrim R.R., Fonseca F.J., Mattoso L.H.C. An artificial taste sensor based on conducting polymers. Biosensors and Bioelectronics,2003,18(11):1365-1369.
    [48]Ferreira M., Constantino C.J.L., Riul Jr A., Mattoso L.H.C. Preparation, characterization and taste sensing properties of Langmuir-Blodgett Films from mixtures of polyaniline and a ruthenium complex. Polymer,2003,44(15):4205-4211.
    [49]Sasaki Y, Kanai Y., Uchida H., Katsube T. Highly sensitive taste sensor with a new differential LAPS method. Sensors and Actuators B:Chemical,1995,25(1-3):819-822.
    [50]程秀娟,朱虹,郑林敏等,电子舌技术在饮料识别中的应用,食品科技,2006,31(8):163-167.
    [51]Christina K., Maria S., Fredrik W., Ingemar L. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition:a review. Analytica Chimica Acta,2001, 426(2):217-226.
    [52]Thete A.R., Henkel T., Gockeritz R., Endlich M., Kohler J.M., Groβ G.A. A hydrogel based fluorescent micro array used for the characterization of liquid analytes. Analytica Chimica Acta,2009, 633(1):81-89.
    [53]Engin A., Emine Y., Erol A. An inhibition type amperometric biosensor based on tyrosinase enzyme for fluoride determination. Talanta,2009,78(2):553-556.
    [54]Keith V.W., Monika G.G. Transduction in microbial biosensors using muliplexed bioluminescence. Biosensors and Bioelectronics,1996,11(3):207-214.
    [55]Despina P.K., Theodora K., Theodore K.C., Penelope C. I. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosensors and Bioelectronics,2006,21(7): 1069-1076.
    [56]Yan L., Zonghui Q., Xingfa W. Hong J. Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal,2006,32(3): 211-217.
    [57]Laura E., Miguel P. Review:Highlights in recent applications of electronic tongues in food analysis, Analytica Chimica Acta,2010,665(1):15-25.
    [58]Winquist, F., Bjorklund, R., Krantz-Rulcker, C., Lundstrom I., Ostergren K., Skoglund T. An electronic tongue in the dairy industry. Sensors and Actuators B:Chemical,2005,111-112(11): 299-304.
    [59]Vicente P., Alvaro A. A., Jose A. Montserrat 1., Jose Antonio d. S., Maria L. Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongue. Analytica Chimica Acta, 2006,563(1-2):229-237.
    [60]Agnieszka B., Emilia W., Lukasz G., Anna Za., Krzysztof W. S., Wojciech W., Patrycja Ci. The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes. Talanta,2010,81(4-5):1387-1392.
    [61]Luis G., Jose M. B., Eduardo G., Javier I., Ramon M., Juan S., Eduard L., Jesus B., M.-Concepcion. Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B:Chemical,2008,131(2):362-370.
    [62]Hruskar M., Major N., Krpan M. Application of a potentiometric sensor array as a technique in sensory analysis. Talanta,2010,81(1-2):398-403.
    [63]Rodriguez-Mendez M.L., Gay M., Apetrei C., De Saja J.A. Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochimica Acta,2009,54(27):7033-7041.
    [64]Winquist F., Holmin S., Krantz-Riilcker C., P Wide, I Lundstrom. A hybrid electronic tongue. Analytica Chimica Acta,2000,406(2):147-157.
    [65]Zhenbo W., Jun W., Wenyan L. Technique potential for classification of honey by electronic tongue. Journal of Food Engineering,2009,94(3-4):260-266.
    [66]Dias L.A., Peres A.M., Veloso A.C.A., Reis, F.S. Vilas-Boas, M. Machado A.A.S.C. An electronic tongue taste evaluation:Identification of goat milk adulteration with bovine milk. Sensors and Actuators B:Chemical,2009,136(1):209-217.
    [67]Thiago R.L.C., Paixao, Mauro B. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sensors and Actuators B:Chemical,2009,137(1):266-273.
    [68]Di Natale C., Paolesse R., Macagnano A. Alessandro M., Arnaldo D., Mario U., Andrei L., Larisa L., Alisa R., Yuri V. Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sensors and Actuators B:Chemical,2000,69(3); 342-347.
    [69]Legin A., Rudnitskaya A., Lvova L. Vlasov, Y. Di Natale C., D'Amico A. Evaluation of Italian wine by the electronic tongue:recognition, quantitative analysis and correlation with human sensory perception. Analytica Chimica Acta,2003,484(1):33-44.
    [70]Thi U. T., Keitaro S., Hiroshi O., Seiichi H., Ken'ichi O. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chemistry,2004,88(4): 557-566.
    [71]Alisa R., Evgeny P., Dmitry K., Jeroen L., Bart N., Daan S., Freddy R. D., Filip D., Andrey L. Instrumental measurement of beer taste attributes using an electronic tongue. Analytica Chimica Acta, 2009,646(1-2):111-118.
    [72]Manuel G., Carme D., Jordi V. Andrey I., Fina C., Stefanie D., Stephanus B., Andreu L., Cecilia J. Hybrid electronic tongue for the characterization and quantification of grape variety in red wines. Sensors and Actuators B:Chemical,2011,156(2):695-702.
    [73]Toby M., Alisa R., Andrey L., Julie L. F., P. David E. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk. Biosensors and Bioelectronics,2007,22(11): 2689-2693.
    [74]Larisa L., Eugenio M., Francesca D. Alberto B., Roberto P., Corrado Di N., Arnaldo D. Clinical analysis of human urine by means of potentiometric Electronic tongue. Talanta,2009,77(3): 1097-1104.
    [75]Inmaculada C., Luis G., Ramon M., Juan S., Jose-Luis V. Use of a voltammetric electronic tongue for predicting levels of nerve agent mimics. Procedia Chemistry,2009,1(1):325-328.
    [76]Katharina W., Corinna T., Peter K., Joerg B. Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis,2010,51(3):497-506.
    [77]Yu G., Mourzina J., Schubert W., Legin A., Vlasov Yu.G., Luth H., Schoning M.J. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis ofmetal ions in complex solutions. Electrochimica Acta,2001, 47(1-2):251-258.
    [78]Soderstrom C., Boren H., Winquist F., Krantz-Rulcker C. Use of an electronic tongue to analyze mold growth in liquid media. International Journal of Food Microbiology,2003,83(3): 253-261.
    [79]Gallardo J., Salvador A., Manuel d. V. A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride. Sensors and Actuators B:Chemical,2004,101(1-2):72-80.
    [80]Cortina M., Gutes A., Alegret S., Manuel d. V. Sequential injection system with higher dimensional electrochemical sensor signals:Part 2. Potentiometric e-tongue for the determination of alkaline ions. Talanta,2005,66(5):1197-1206.
    [81]Jorge Y. H., Diego P., Fernando B. Electronic tongue for simultaneous detection of endotoxins and other contaminants of microbiological origin. Biosensors and Bioelectronics,2010,25(11): 2470-2476.
    [82]Mimendia A., Legin A., Merkoci A., Manel d. V. Use of Sequential Injection Analysis to construct a potentiometric electronic tongue:Application to the multidetermination of heavy metals. Sensors and Actuators B:Chemical,2010,146(2):420-426.
    [83]Jorge Y. H., Silvio D. R., Martin N. R., Fernando B. Chelating electrodes as taste sensor for the trace assessment of metal ions. Sensors and Actuators B:Chemical,2010,145(2):726-733.
    [84]Di Natale C., Macagnano A., Davide F., D'Amico A., Legin A., Vlasov Y, Rudnitskaya A., Selezenev B. Multicomponent analysis on polluted waters by means of an electronic tongue. Sensors and Actuators B:Chemical,1997,44(1-3):423-428.
    [85]Riul Jr. A., Gallardo S., Mello A.M., Bone S., Taylor D.M., Mattoso L.H.C. An electronic tongue using polypyrrole and polyaniline. Synthetic Metals,2003,132 (2):109-116.
    [86]Ram6n M., Juan S., Eduardo G. An "electronic tongue" design for the qualitative analysis of natural waters. Sensors and Actuators B:Chemical,2005,104(2):302-307.
    [87]Gutes A., Cespedes F., del Valle M., Louthander D., Krantz-Rulcker C., Winquist F. A flow injection voltammetric electronic tongue applied to paper mill industrial waters. Sensors and Actuators B:Chemical,2006,115(1-23):390-395.
    [88]Iliev B., Lindquist M., Robertsson L., Peter W. A fuzzy technique for food- and water quality assessment with an electronic tongue. Fuzzy Sets and System,2006,157(9,1):1155-1168.
    [89]Moreno L., Merlos A., Abramova N., Jimenez C., Bratov A. Multi-sensor array used as an "electronic tongue" for mineral water analysis. Sensors and Actuators B:Chemical,2006,116(1-2): 130-134.
    [90]Olsson J., Ivarsson P., Winquist F. Determination of detergents in washing machine wastewater with a voltammetric electronic tongue. Talanta,2008,76(1):91-95.
    [91]Ipatov A., Abramova N., Bratov A., Carlos D. Integrated multisensor chip with sequential injection technique as a base for "electronic tongue" devices. Sensors and Actuators B:Chemical,2008, 131(1):48-52.
    [92]Eduardo G., John A., Luis G. Rafael M., Javier I., Jose G., Monika G., Nicolas L., Cristian O. A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and Actuators A:Physical,2011,172(2): 570-582.
    [93]Inmaculada C., Miguel A., Daniel A., Ram6n B., Jose F., Luis G., Mouna M., Ram6n M., Juan S., Jose-Luis V. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Research,2012,46(8):2605-2614.
    [94]Laszlo S., Zoltan K., Virag S. Tfmea C., Zoltan K., Andras F., Karoly H. Discrimination of mineral waters by electronic tongue, sensory evaluation and chemical analysis. Food Chemistry,2012, 135(4):2947-2953.
    [95]Fredrik W., John O., Mats E. Multicomponent analysis of drinking water by a voltammetric electronic tongue. Analytica Chimica Acta,2011,683(2):192-197.
    [96]Dmitry K., Olesia Z., Anatoly K. Natalia K., Alexander P., Andrey L. Water toxicity evaluation in terms of bioassay with an Electronic Tongue. Sensors and Actuators B:Chemical,2013, 179(31):282-286.
    [97]吴从元,基于电子舌的牛奶品质研究,[硕士学位论文],2010,杭州:浙江大学.
    [98]国家环境保护总局.GB7493-87.水质-亚硝酸盐氮的测定-分光光度法.1987-03-14.
    [99]国家环境保护总局.GB7481-87.水质-铵的测定-水杨酸分光光度法.1987-03-14.
    [100]唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002,5-15.
    [101]许禄,邵学广.化学计量学方法.北京:科学出版社,2004,9-25
    [102]吴景社,康绍忠,王景雷.基于主成分分析和模糊聚类方法的全国节水灌溉分区研究.农业工程学报,2004,20(4):64-68.
    [103]李孟涛.主成分分析在城市物流绩效评价中的应用.科技与管理,2007,42(2):28-31.
    [104]MATLAB中文论坛.MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社,2010,1-228.
    [105]Park J., Sandberg I. Universal approximation using radial-basis function networks. Neural Computer,1991,3(1):246-257.
    [106]Montazer G.A., Sabzevari R., Ghorbani F. Three-phase strategy for the OSD learning method in RBF neural networks. Neurocomputing,2009,72(7-9):1797-1802.
    [107]Bipan T., Arun J., Animesh M, Devdulal G., Nabarun B., Rajib B. Electronic nose for black tea quality evaluation by an incremental RBF network. Sensors and Actuators B:Chemical,2009, 138(1):90-95.
    [108]Li K., Peng J. Neural input selection—a fastmodel-basedapproach. Neurocomputing,2007, 70(4-6):762-769.
    [109]Specht D. F. A general regression neural network. IEEE Transactions on Neural Networks, 1991,2(7):568-576.
    [110]Tien-Chi C, Chih-Hsien Y. Motion control with deadzone estimation and compensation using GRNN for TWUSM drive system. Expert Systems with Applications,2009,36(8):10931-10941.
    [111]Chehreh C.S., Jorjani E. Microwave irradiation pretreatment and peroxyacetic acid desulfurization of coal and application of GRNN. Simultaneous Predictor,2011,90(11):3156-3163.
    [112]Padmavathi G., Mandan M.G., Mitra S.P., Chaudhuri K.K. Neural modelling of Mooney viscosity of polybutadiene rubber. Computers & Chemical Engineering,2005,29(7):1677-1685.
    [113]David S., Jin W.P., Erin B., Chaudhuri K.K. GRNN Ensemble Classifier for Lung Cancer Prognosis Using Only Demographic and TNM features. Procedia Computer Science,2012,12(7): 450-455.
    [114]Zheng H., Jun W. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B:Chemical,2006,119(2):449-455.
    [115]Leu Y.G., Wang W.Y., Lee T.T. Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems. Ieee Transation on Robotics and Automation,1999,15(5):805-817.
    [116]Yen J., Wang L., Gillespie C.W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. Ieee Tranaction on Fuzzy System,1998,6(4):530-537.
    [117]Wang W.Y., Chien Y.H., Leu Y.G., Tsu-Tian L. Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws. Automatica,2010,46(5):852-863.
    [118]Wang X., Li X., Li F. Analysis on oscillation in electro-hydraulic regulating system of steam turbine and fault diagnosis based on PSOBP. Expert System with Application,2010,37(5):3887-3892.
    [119]Jing-Ru Z., Jun Z., Tat-Ming L., Michael R. L. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation,2007,185(2):1026-1037.
    [120]Hui L., Cai-xia H., Ying L. Application of the Purification of Materials Based on GA-BP. Energy Procedia,2012,17(1):762-769.
    [121]Yang M., Yun-jia W., Yuan-ping C. An incorporate genetic algorithm based back propagation neural network model for coal and gas outburst intensity prediction. Procedia Earth and Planetary Science,2009,1(1):1285-1292.
    [122]Liu K., Guo W., Shen X., Tan Z. Research on the Forecast Model of Electricity Power Industry Loan Based on GA-BP Neural Network. Energy Procedia,2012,14,1918-1924.
    [123]Li-po Y., Bing-qiang Y, Hua-xin Y. Online Shape Dynamic Wrapping Angle Compensation Model of Cold Strip. Journal of Iron and Steel Research,2011,18(7):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700