用户名: 密码: 验证码:
新型拓扑异构酶抑制剂的发现、优化设计和生物活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA拓扑异构酶(Topoisomerase, Top)是真核细胞体内必需酶,主要功能是负责解决DNA拓扑结构问题,广泛参与DNA复制、转录、重组和染色体组装和分离等生命活动。Top分为Topl和Top2,它们通过DNA切断和连接,维持DNA正常拓扑结构和代谢过程。由于Top在DNA代谢过程的重要作用,干扰Top的催化活性或者诱导产生Top介导的DNA损伤已经成为抗肿瘤治疗的重要策略。Top被誉为最重要抗肿瘤药物靶点之一,临床上有近50%的治疗方法要依赖于使用一种或几种Top抑制剂。
     本论文以开发新型Top抑制剂为主要研究方向,以基于结构的虚拟筛选为手段,着重进行全新结构Top1和Top2抑制剂的发现、优化设计和抗肿瘤机制研究。
     一、新型Top1抑制剂的虚拟筛选和生物活性研究
     通过基于分子对接的虚拟筛选从Specs库中筛选得到23个化合物,14个化合物具有Top1抑制活性,其中化合物A1酶抑制活性与喜树碱相当。体外抗肿瘤活性测试结果表明,A1、A14、A20、A21和A23表现出中等以上的抗肿瘤活性,其中A1活性最好,IC50值为0.50-43μM。化合物A1和A20(吴茱萸碱)适合作为先导化合物进行进一步优化研究。
     二、新型吴茱萸碱衍生物的设计、合成和抗肿瘤作用机制研究
     吴茱萸碱是从传统中药吴茱萸中提取分离得到的一种生物碱,前期研究发现它具有Top1抑制活性和体外抗肿瘤活性,是一个理想的抗肿瘤先导化合物。本研究设计合成了51个全新结构的吴茱萸碱衍生物,发现大部分化合物体外抗肿瘤活性得到明显提高,部分化合物(B4、B5、B38和B39)GI50值小于3nM。细胞凋亡实验显示,高活性化合物(B4、B38、B39、B41和B45)能够诱导A549肿瘤细胞凋亡,使细胞停滞在G2/M期。机制研究和分子模拟表明吴茱萸碱衍生物为Top1和Top2双重抑制剂。体内小鼠移植瘤实验显示,10-羟基吴茱萸碱(B38)和3-氨基-10-羟基吴茱萸碱(B45)在1mg/kg和2mg/kg剂量下抑瘤率分别为44.43%和52.71%,并表现出低毒性和高耐受性的特点,有希望作为候选药物进行开发。
     三、4-取代蒽并[1,2-c][1,2,5]噻二唑-6,11-二酮的设计、合成和抗肿瘤活性研究
     化合物4-(对甲苯磺酰基)蒽并[1,2-c][1,2,5]噻二唑-6,11-二酮(A1)是前期虚拟筛选发现的新型Topl抑制剂。本研究设计合成54个4-取代蒽并[1,2-c][1,2,5]噻二唑-6,11-二酮衍生物,从结构上分为两类:4-含硫侧链衍生物和4-含氮侧链衍生物。前者因其溶解性差,体外抗肿瘤活性表现不佳,仅有部分化合物(D14和D15)表现出较好的肿瘤生长抑制活性;后者在溶解性和体外抗肿瘤活性上均有较大提高,其中化合物E1、E6和E19表现出与喜树碱相当的体外抗肿瘤活性。
     四、新型Top2抑制剂的虚拟筛选和生物活性研究
     研究发现Top2催化性抑制剂毒性较低,并有望克服肿瘤耐药性,而ATPase抑制剂是一类非常重要的Top2催化性抑制剂。本研究通过虚拟筛选,以ATPase为作用位点,筛选得到37个化合物。研究发现,19个化合物具有Top2抑制活性,其中化合物F2、F8、F15、F17、F26和F27对Top2抑制活性强于依托泊苷。体外抗肿瘤活性实验显示,化合物F8对肺癌肿瘤株抑制活性明显超过依托泊苷,F20对三个肿瘤株的抑制活性均超过依托泊苷。机制研究表明,高活性化合物F8和F20能微弱的稳定Top2-DNA复合物。分子对接研究预示两者能够很好结合于ATPase活性腔,为ATPase抑制剂。综上所述,F8和F20适合作为先导化合物进行进一步优化研究。
     综上所述,本研究对抗肿瘤重要药靶Topl和Top2开展了虚拟筛选研究,成功发现多类全新结构的抑制剂(活性化合物的命中率分别为60.9%和51.4%)。在此基础上开展了优化设计研究,设计合成得到了105个新化合物,从中发现多个高活性化合物在分子、细胞和动物水平显示了优秀抗肿瘤活性。首次采用现代药物设计技术对我国传统有效成分吴茱萸碱进行了靶标发现和结构创新,发现吴茱萸碱衍生物是Topl/Top2双重抑制剂,深入探讨了该类化合物作用机制,并获得了高效、低毒和广谱的吴茱萸碱类抗肿瘤新化学实体,为开发具有自主知识产权的抗肿瘤原创药物奠定了基础。
DNA topoisomerases (Tops) are essential enzymes that regulate the cellular processes such as replication, transcription, recombination, chromatin and chromosomal segregation by altering DNA topology. DNA Tops can be classified into two types, topoisomerase Ⅰ (Top1) and topoisomerase Ⅱ (Top2). They catalyze the breakage and religation of DNA, maintaining the topological changes of DNA and various DNA metabolic processes. Due to their important role in DNA metabolism, the ability to interfere with the functions of Tops or generating Top-mediated DNA damage is an effective strategy for cancer chemotherapy. Tops have been considered as the most important targets for tumor chemotherapy. Clinically, approximately50%of the chemotherapy regimens contain at least one Top inhibitor.
     The present dissertation aims to identify novel Top inhibitors as antitumor agents. A series of novel Top1and Top2inhibitors were identified by structure-based virtual screening. The structure-activity relationships, antitumor activity and mechanism of action of evodiamine derivatives and4-substituted anthra[2,1-c][1,2,5]thiadiazole-6,11-dione analogs were investigated, which led to the discovery of highly potent antitumor agents.
     1. Discovery and biological evaluation of novel topoisomerase I inhibitors by structure-based virtual screening
     Structure-based virtual screening was applied to the discovery of structurally diverse Top1inhibitors. From23compounds selected by virtual screening from the Specs database, a total of14compounds were found to be topoisomerase I inhibitors. Five hits (compounds Al, A14, A20, A21, and A23) also showed moderate to good in vitro antitumor activity. Compound Al showed excellent cytotoxicity with IC50values in the range of0.5-25μM. Compounds Al and A20(evodiamine) were considered as good starting points for the development of new antitumor lead compounds.
     2. Design, synthesis and antitumor mechanism of novel evodiamine derivatives
     Evodiamine is a quinazolinocarboline alkaloid isolated from the fruits of traditional Chinese herb Evodiae fructus. Previously, evodiamine was identified as potent topoisomerase I inhibitor by structure-based virtual screening and showed moderate in vitro antitumor activity. It was also considered as a new antitumor lead compound. Herein,51novel evodiamine derivatives bearing various substitutions or modified scaffold were synthesized. Among them, a number of evodiamine derivatives (B4, B5, B38and B39) showed substantial increase of the antitumor activity, with GI50values lower than3nM. Moreover, these highly potent compounds (B4, B38, B39, B41and B45) can effectively induce the apoptosis and G2/M arrest of A549cells. Interestingly, further computational target prediction calculations in combination with biological assays confirmed that the evodiamine derivatives acted by dual inhibition of topoisomerases Ⅰ and Ⅱ. Moreover, several hydroxyl derivatives, such as10-hydroxyl evodiamine (B38) and3-amino-10-hydroxyl evodiamine (B45), also showed good in vivo antitumor efficacy with low toxicity and good tolerance. At the dose of1mg/kg or2mg/kg, B38and B45reduced44.43%and52.71%tumor growth, respectively. They represent promising candidates for the development of novel antitumor agents.
     3.4-Substituted anthra[2,1-c][1,2,5]thiadiazole-6,11-dione derivatives: design, synthesis and antitumor potency.
     Previously,4-tosylanthra[1,2-c][1,2,5]thiadiazole-6,11-dione (Al) was identified as potent topoisomerase I inhibitor by structure-based virtual screening and showed good antitumor activity in vitro. Based on the structure of Al,54novel analogs were designed and synthesized, which can be classed into two types,4-thio and4-amine substituted derivatives. The former series exhibited weak antitumor activity because of their poor solubility. Only few compounds (D14and D15) showed moderate to good in vitro antitumor activity. The latter series were proved to have stronger antitumor activity with better solubility. Three compounds (El, E6and E19) showed high cytotoxicity similar to that of camptothecin.
     4. Discovery and biological evaluation of novel topoisomerase Ⅱ inhibitors by structure-based virtual screening
     Top2catalytic inhibitors have the advantages of modulating the cytotoxic effects of topoisomerase II poisons and overcoming the multidrug resistance (MDR). ATP binding site (ATPase) binders represent an important class of Top2catalytic inhibitors. On the basis of the crystal structures of ATPase, docking-based virtual screening was applied to the discover novel Top2inhibitors. From37compounds selected by virtual screening, a total of19compounds were found to be Top2inhibitors. Six hits (compounds F2, F8, F15, F17, F26and F27) were more active than etoposide at the concentration of100μM. In particular, compound F8exhibited better antitumor activity than etoposide in A549cancer cells. Compound F20showed good antitumor activity against all the three cancer cells. The biological assay indicated that compounds F8and F20could stabilize the Top2-DNA cleaved complex slightly. Molecular docking predicted that compounds F8and F20might bind at the ATP binding site. They were considered as good starting points for the development of new antitumor lead compounds targeting Top2.
     In summary, structure-based virtual screening were successfully used to discover novel Top1and Top2inhibitors with a hit rate of60.9%and51.4%, respectively. On the basis of the identified lead compounds, a total of105new derivatives were designed and synthesized. Among them, several highly active antitumor compounds were identified which showed excellent activity at molecular, cellular and in vivo level. Target identification and structural optimization of traditional Chinese medicine evodiamine were performed for the first time using the modern drug design techonologies. Evodiamine derivatives were proved to be dual Top1/Top2inhibitors and several of them showed excellent antitumor potency with low toxicity, which provided basis for the development of novel antitumor agents.
引文
[1]Pommier, Y.; Barcelo, J. M.; Rao, V. A.; Sordet, O.; Jobson, A. G.; Thibaut, L.; Miao, Z. H.; Seiler, J. A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J. L.; Redon, C. Repair of topoisomerase Ⅰ-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 2006,81,179-229.
    [2]Spano, L.; Lamont, J. A. Dyspareunia:a symptom of female sexual dysfunction. Can Nurse 1975, 71,22-25.
    [3]Pommier, Y. DNA topoisomerase Ⅰ inhibitors:chemistry, biology, and interfacial inhibition. Chem Rev 2009,109,2894-2902.
    [4]Nitiss, J. L. DNA topoisomerase Ⅱ and its growing repertoire of biological functions. Nat Rev Cancer 2009,9,327-337.
    [5]Beretta, G. L.; Perego, P.; Zunino, F. Targeting topoisomerase Ⅰ:molecular mechanisms and cellular determinants of response to topoisomerase Ⅰ inhibitors. Expert Opin Ther Targets 2008,12,1243-1256.
    [6]Nitiss, J. L. Targeting DNA topoisomerase Ⅱ in cancer chemotherapy. Nat Rev Cancer 2009,9, 338-350.
    [7]Meng, L. H.; Liao, Z. Y.; Pommier, Y. Non-camptothecin DNA topoisomerase Ⅰ inhibitors in cancer therapy. Curr Top Med Chem 2003,3,305-320.
    [8]Tse, Y. C.; Kirkegaard, K.; Wang, J. C. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J Biol Chem 1980,255, 5560-5565.
    [9]Yamada, Y.; Tamura, T.; Yamamoto, N.; Shimoyama, T.; Ueda, Y.; Murakami, H.; Kusaba, H.; Kamiya, Y.; Saka, H.; Tanigawara, Y.; McGovren, J. P.; Natsumeda, Y. Phase Ⅰ and pharmacokinetic study of edotecarin, a novel topoisomerase Ⅰ inhibitor, administered once every 3 weeks in patients with solid tumors. Cancer Chemother Pharmacol 2006,58,173-182.
    [10]Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. Plant Antitumor Agents. Ⅰ. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminatal,2. Journal of the American Chemical Society 1966,88, 3888-3890.
    [11]Ganguly, A.; Das, B. B.; Sen, N.; Roy, A.; Dasgupta, S. B.; Majumder, H. K.'LeishMan' topoisomerase Ⅰ:an ideal chimera for unraveling the role of the small subunit of unusual bi-subunit topoisomerase Ⅰ from Leishmania donovani. Nucleic Acids Res 2006,34,6286-6297.
    [12]Hsiang, Y. H.; Hertzberg, R.; Hecht, S.; Liu, L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase Ⅰ. JBiol Chem 1985,260,14873-14878.
    [13]Kerrigan, J. E.; Pilch, D. S. A structural model for the ternary cleavable complex formed between human topoisomerase I, DNA, and camptothecin. Biochemistry 2001,40,9792-9798.
    [14]D'Arpa, P.; Beardmore, C.; Liu, L. F. Involvement of Nucleic Acid Synthesis in Cell Killing Mechanisms of Topoisomerase Poisons. Cancer Res 1990,50,6919-6924.
    [15]Liu, L. F.; Desai, S. D.; Li, T. K.; Mao, Y.; Sun, M.; Sim, S. P. Mechanism of action of camptothecin. Ann N Y Acad Sci 2000,922,1-10.
    [16]Tsao, Y. P.; D'Arpa, P.; Liu, L. F. The involvement of active DNA synthesis in camptothecin-induced G2 arrest:altered regulation of p34cdc2/cyclin B. Cancer Res 1992,52, 1823-1829.
    [17]Li, Q. Y.; Zu, Y. G.; Shi, R. Z.; Yao, L. P. Review camptothecin:current perspectives. Curr Med Chem 2006,13,2021-2039.
    [18]Kingsbury, W. D.; Boehm, J. C.; Jakas, D. R.; Holden, K. G.; Hecht, S. M.; Gallagher, G.; Caranfa, M. J.; McCabe, F. L.; Faucette, L. F.; Johnson, R. K.; et al. Synthesis of water-soluble (aminoalkyl)camptothecin analogues:inhibition of topoisomerase I and antitumor activity. JMed Chem 1991,34,98-107.
    [19]Garcia-Carbonero, R.; Supko, J. G. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 2002,8,641-661.
    [20]Giovanella, B. C.; Stehlin, J. S.; Hinz, H. R.; Kozielski, A. J.; Harris, N. J.; Vardeman, D. M. Preclinical evaluation of the anticancer activity and toxicity of 9-nitro-20(S)-camptothecin (Rubitecan). Int J Oncol 2002,20,81-88.
    [21]Eckhardt, S. G.; Baker, S. D.; Eckardt, J. R.; Burke, T. G.; Warner, D. L.; Kuhn, J. G.; Rodriguez, G.; Fields, S.; Thurman, A.; Smith, L.; Rothenberg, M. L.; White, L.; Wissel, P.; Kunka, R.; DePee, S.; Littlefield, D.; Burris, H. A.; Von Hoff, D. D.; Rowinsky, E. K. Phase I and pharmacokinetic study of GI147211, a water-soluble camptothecin analogue, administered for five consecutive days every three weeks. Clin Cancer Res 1998,4,595-604.
    [22]Minami, H.; Fujii, H.; Igarashi, T.; Itoh, K.; Tamanoi, K.; Oguma, T.; Sasaki, Y. Phase I and pharmacological study of a new camptothecin derivative, exatecan mesylate (DX-8951f), infused over 30 minutes every three weeks. Clin Cancer Res 2001,7,3056-3064.
    [23]Pommier, Y. Camptothecins and topoisomerase I:a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs:importance of DNA replication, repair and cell cycle checkpoints. Curr Med Chem Anticancer Agents 2004,4,429-434.
    [24]Cinelli, M. A.; Cordero, B.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of 14-(aminoalkyl-aminomethyl)aromathecins as topoisomerase I inhibitors:investigating the hypothesis of shared structure-activity relationships. Bioorg Med Chem 2009,17,7145-7155.
    [25]Burke, T. G. Chemistry of the camptothecins in the bloodstream. Drug stabilization and optimization of activity. Ann N YAcad Sci 1996,803,29-31.
    [26]Hsiang, Y. H.; Liu, L. F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 1988,48,1722-1726.
    [27]Brangi, M.; Litman, T.; Ciotti, M.; Nishiyama, K.; Kohlhagen, G.; Takimoto, C.; Robey, R.; Pommier, Y.; Fojo, T.; Bates, S. E. Camptothecin resistance:role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999,59,5938-5946.
    [28]Liao, Z.; Robey, R. W.; Guirouilh-Barbat, J.; To, K. K.; Polgar, O.; Bates, S. E.; Pommier, Y. Reduced expression of DNA topoisomerase I in SF295 human glioblastoma cells selected for resistance to homocamptothecin and diflomotecan. Mol Pharmacol 2008,73,490-497.
    [29]Nakagawa, H.; Saito, H.; Ikegami, Y.; Aida-Hyugaji, S.; Sawada, S.; Ishikawa, T. Molecular modeling of new camptothecin analogues to circumvent ABCG2-mediated drug resistance in cancer. Cancer Lett 2006,234,81-89.
    [30]Khadka, D. B.; Cho, W. J.3-Arylisoquinolines as novel topoisomerase I inhibitors. Bioorg Med Chem 2011,19,724-734.
    [31]Teicher, B. A. Next generation topoisomerase I inhibitors:Rationale and biomarker strategies. Biochem Pharmacol 2008,75,1262-1271.
    [32]Mann, J. Natural products in cancer chemotherapy:past, present and future. Nat Rev Cancer 2002, 2,143-148.
    [33]Oberlies, N. H.; Kroll, D. J. Camptothecin and taxol:historic achievements in natural products research. JNat Prod 2004,67,129-135.
    [34]Kanai, Y.; Ishiyama, D.; Senda, H.; Iwatani, W.; Takahashi, H.; Konno, H.; Tokumasu, S.; Kanazawa, S. Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. I. Producing strain, fermentation, isolation, physico-chemical properties and biological activity. JAntibiot (Tokyo) 2000,53, 863-872.
    [35]Ishiyama, D.; Kanai, Y.; Senda, H.; Iwatani, W.; Konno, H.; Kanazawa, S. Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. II. Structure elucidation. J Antibiot (Tokyo) 2000,53,873-878.
    [36]Prudhomme, M. Rebeccamycin analogues as anti-cancer agents. Eur J Med Chem 2003,38, 123-140.
    [37]Facompre, M.; Goossens, J. F.; Bailly, C. Apoptotic response of HL-60 human leukemia cells to the antitumor drug NB-506, a glycosylated indolocarbazole inhibitor of topoisomerase 1. Biochem Pharmacol 2001,61,299-310.
    [38]Ohkubo, M.; Kojiri, K.; Kondo, H.; Tanaka, S.; Kawamoto, H.; Nishimura, T.; Nishimura, I.; Yoshinari, T.; Arakawa, H.; Suda, H.; Morishima, H.; Nishimura, S. Synthesis and biological activities of topoisomerase I inhibitors,6-N-amino analogues of NB-506. Bioorg Med Chem Lett 1999,9, 1219-1224.
    [39]Ohkubo, M.; Nishimura, T.; Honma, T.; Nishimura, I.; Ito, S.; Yoshinari, T.; Suda, H. A.; Morishima, H.; Nishimura, S. Synthesis and biological activities of NB-506 analogues:Effects of the positions of two hydroxyl groups at the indole rings. Bioorg Med Chem Lett 1999,9,3307-3312.
    [40]Ohkubo, M.; Nishimura, T.; Kawamoto, H.; Nakano, M.; Honma, T.; Yoshinari, T.; Arakawa, H.; Suda, H.; Morishima, H.; Nishimura, S. Synthesis and biological activities of NB-506 analogues modified at the glucose group. Bioorg Med Chem Lett 2000,10,419-422.
    [41]Saif, M. W.; Diasio, R. B. Edotecarin:a novel topoisomerase I inhibitor. Clin Colorectal Cancer 2005,5,27-36.
    [42]Hurwitz, H. I.; Cohen, R. B.; McGovren, J. P.; Hirawat, S.; Petros, W. P.; Natsumeda, Y.; Yoshinari, T. A phase I study of the safety and pharmacokinetics of edotecarin (J-107088), a novel topoisomerase I inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2007,59,139-147.
    [43]Saif, M. W.; Sellers, S.; Diasio, R. B.; Douillard, J. Y. A phase I dose-escalation study of edotecarin (J-107088) combined with infusional 5-fluorouracil and leucovorin in patients with advanced/metastatic solid tumors. Anticancer Drugs 2010,21,716-723.
    [44]Balasubramanian, B. N.; St Laurent, D. R.; Saulnier, M. G.; Long, B. H.; Bachand, C.; Beaulieu, F.; Clarke, W.; Deshpande, M.; Eummer, J.; Fairchild, C. R.; Frennesson, D. B.; Kramer, R.; Lee, F. Y.; Mahler, M.; Martel, A.; Naidu, B. N.; Rose, W. C.; Russell, J.; Ruediger, E.; Solomon, C.; Stoffan, K. M.; Wong, H.; Wright, J. J.; Zimmermann, K.; Vyas, D. M. Design and synthesis of a fluoroindolocarbazole series as selective topoisomerase I active agents. Discovery of water-soluble 3,9-difluoro-12,13-dihydro-13-[6-amino-beta-D-glucopyranosyl]-5H,13H-benzo[b]-thienyl[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione (BMS-251873) with curative antitumor activity against prostate carcinoma xenograft tumor model. J Med Chem 2004,47,1609-1612.
    [45]Saulnier, M. G.; Balasubramanian, B. N.; Long, B. H.; Frennesson, D. B.; Ruediger, E.; Zimmermann, K.; Eummer, J. T.; St Laurent, D. R.; Stoffan, K. M.; Naidu, B. N.; Mahler, M.; Beaulieu, F.; Bachand, C.; Lee, F. Y.; Fairchild, C. R.; Stadnick, L. K.; Rose, W. C.; Solomon, C.; Wong, H.; Martel, A.; Wright, J. J.; Kramer, R.; Langley, D. R.; Vyas, D. M. Discovery of a fluoroindolo[2,3-a]carbazole clinical candidate with broad spectrum antitumor activity in preclinical tumor models superior to the marketed oncology drug, CPT-11. JMed Chem 2005,48,2258-2261.
    [46]Zhang, G.; Shen, J.; Cheng, H.; Zhu, L.; Fang, L.; Luo, S.; Muller, M. T.; Lee, G. E.; Wei, L.; Du, Y,; Sun, D.; Wang, P. G. Syntheses and biological activities of rebeccamycin analogues with uncommon sugars. JMed Chem 2005,48,2600-2611.
    [47]Routier, S.; Peixoto, P.; Merour, J. Y.; Coudert, G.; Dias, N.; Bailly, C.; Pierre, A.; Leonce, S.; Caignard, D. H. Synthesis and biological evaluation of novel naphthocarbazoles as potential anticancer agents. J Med Chem 2005,48,1401-1413.
    [48]Routier, S.; Merour, J. Y.; Dias, N.; Lansiaux, A.; Bailly, C.; Lozach, O.; Meijer, L. Synthesis and biological evaluation of novel phenylcarbazoles as potential anticancer agents. J Med Chem 2006,49, 789-799.
    [49]Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A. B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 2005,48,2336-2345.
    [50]Sunami, S.; Nishimura, T.; Nishimura, I.; Ito, S.; Arakawa, H.; Ohkubo, M. Synthesis and biological activities of topoisomerase I inhibitors,6-arylmethylamino analogues of edotecarin. J Med Chem 2009,52,3225-3237.
    [51]Diana, P.; Martorana, A.; Barraja, P.; Montalbano, A.; Dattolo, G.; Cirrincione, G.; Dall'acqua, F.; Salvador, A.; Vedaldi, D.; Basso, G.; Viola, G. Isoindolo[2,1-a]quinoxaline derivatives, novel potent antitumor agents with dual inhibition of tubulin polymerization and topoisomerase I. J Med Chem 2008, 51,2387-2399.
    [52]Bailly, C. Lamellarins, from A to Z:a family of anticancer marine pyrrole alkaloids. Curr Med Chem Anticancer Agents 2004,4,363-378.
    [53]Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Lamellarin D:a novel potent inhibitor of topoisomerase I. Cancer Res 2003,63,7392-7399.
    [54]Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.; Ishibashi, F.; Bailly, C.; Gago, F. Molecular determinants of topoisomerase I poisoning by lamellarins:comparison with camptothecin and structure-activity relationships. J Med Chem 2005,48,3796-3807.
    [55]Tardy, C.; Facompre, M.; Laine, W.; Baldeyrou, B.; Garcia-Gravalos, D.; Francesch, A.; Mateo, C.; Pastor, A.; Jimenez, J. A.; Manzanares, I.; Cuevas, C.; Bailly, C. Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D:triester derivatives incorporating amino acid residues. Bioorg Med Chem 2004,12,1697-1712.
    [56]Ishibashi, F.; Tanabe, S.; Oda, T.; Iwao, M. Synthesis and structure-activity relationship study of lamellarin derivatives. J Nat Prod 2002,65,500-504.
    [57]Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. Synthesis and structure-activity relationship study of potent cytotoxic analogues of the marine alkaloid Lamellarin D. JMed Chem 2006,49,3257-3268.
    [58]Ohta, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Design and synthesis of lamellarin D analogues targeting topoisomerase I. JOrg Chem 2009,74,8143-8153.
    [59]Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. Cytotoxicities and structure-activity relationships of natural and unnatural lamellarins toward cancer cell lines. ChemMedChem 2009,4,457-465.
    [60]Kokoshka, J. M.; Capson, T. L.; Holden, J. A.; Ireland, C. M.; Barrows, L. R. Differences in the topoisomerase I cleavage complexes formed by camptothecin and wakayin, a DNA-intercalating marine natural product. Anticancer Drugs 1996,7,758-765.
    [61]Hooper, G. J.; Davies-Coleman, M. T.; Kelly-Borges, M.; Coetzee, P. S. New alkaloids from a South African latrunculid sponge. Tetrahedron Lett 1996,37,7135-7138.
    [62]Legentil, L.; Benel, L.; Bertrand, V.; Lesur, B.; Delfourne, E. Synthesis and antitumor characterization of pyrazolic analogues of the marine pyrroloquinoline alkaloids:wakayin and tsitsikammamines. J Med Chem 2006,49,2979-2988.
    [63]Legentil, L.; Lesur, B.; Delfourne, E. Aza-analogues of the marine pyrroloquinoline alkaloids wakayin and tsitsikammamines:synthesis and topoisomerase inhibition. Bioorg Med Chem Lett 2006, 16,427-429.
    [64]Li, T.-K.; Bathory, E.; LaVoie, E. J.; Srinivasan, A. R.; Olson, W. K.; Sauers, R. R.; Liu, L. F.; Pilch, D. S. Human Topoisomerase I Poisoning by Protoberberines:Potential Roles for Both Drug-DNA and Drug-Enzyme Interactions. Biochemistry 2000,39,7107-7116.
    [65]Suzuki, K.; Yahara, S.; Maehata, K.; Uyeda, M. Isoaurostatin, a novel topoisomerase inhibitor produced by Thermomonospora alba. JNat Prod 2001,64,204-207.
    [66]Suzuki, K.; Okawara, T.; Higashijima, T.; Yokomizo, K.; Mizushima, T.; Otsuka, M. Inhibitory activities against topoisomerase Ⅰ and Ⅱ by isoaurostatin derivatives and their structure-activity relationships. Bioorg Med Chem Lett 2005,15,2065-2068.
    [67]Chen, J.; Sun, Z.; Zhang, Y.; Zeng, X.; Qing, C.; Liu, J.; Li, L.; Zhang, H. Synthesis of gibberellin derivatives with anti-tumor bioactivities. Bioorg Med Chem Lett 2009,19,5496-5499.
    [68]Pommier, Y.; Cushman, M. The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives. Mol Cancer Ther 2009,8,1008-1014.
    [69]Cushman, M.; Cheng, L. Stereoselective oxidation by thionyl chloride leading to the indeno[1,2-c]isoquinoline system. JOrg Chem 1978,43,3781-3783.
    [70]Kohlhagen, G; Paull, K. D.; Cushman, M.; Nagafuji, P.; Pommier, Y. Protein-linked DNA strand breaks induced by NSC 314622, a novel noncamptothecin topoisomerase I poison. Mol Pharmacol 1998,54,50-58.
    [71]Nagarajan, M.; Morrell, A.; Fort, B. C.; Meckley, M. R.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J Med Chem 2004,47,5651-5661.
    [72]Morrell, A.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. A systematic study of nitrated indenoisoquinolines reveals a potent topoisomerase I inhibitor. J Med Chem 2006,49,7740-7753.
    [73]Morrell, A.; Placzek, M.; Parmley, S.; Antony, S.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. Nitrated indenoisoquinolines as topoisomerase I inhibitors:a systematic study and optimization. J Med Chem 2007,50,4419-4430.
    [74]Morrell, A.; Placzek, M.; Parmley, S.; Grella, B.; Antony, S.; Pommier, Y.; Cushman, M. Optimization of the indenone ring of indenoisoquinoline topoisomerase I inhibitors. J Med Chem 2007, 50,4388-4404.
    [75]Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles. JMed Chem 2006,49,6283-6289.
    [76]Ioanoviciu, A.; Antony, S.; Pommier, Y.; Staker, B. L.; Stewart, L.; Cushman, M. Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis. J Med Chem 2005,48,4803-4814.
    [77]Song, Y.; Shao, Z.; Dexheimer, T. S.; Scher, E. S.; Pommier, Y.; Cushman, M. Structure-based design, synthesis, and biological studies of new anticancer norindenoisoquinoline topoisomerase I inhibitors. J Med Chem 2010,53,1979-1989.
    [78]Kiselev, E.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. Design, synthesis, and evaluation of dibenzo[c,h][1,6]naphthyridines as topoisomerase I inhibitors and potential anticancer agents. J Med Chem 2010,53,8716-8726.
    [79]Nagarajan, M.; Morrell, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Pommier, Y.; Ragazzon, P. A.; Garbett, N. C.; Chaires, J. B.; Hollingshead, M.; Cushman, M. Synthesis and biological evaluation of bisindenoisoquinolines as topoisomerase I inhibitors. J Med Chem 2006,49,5129-5140.
    [80]Antony, S.; Agama, K. K.; Miao, Z. H.; Hollingshead, M.; Holbeck, S. L.; Wright, M. H.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Bisindenoisoquinoline bis-1,3-{(5,6-dihydro-5,11-diketo-11H-indeno[1,2-c]isoquinoline)-6-propylamino}pr opane bis(trifluoroacetate) (NSC 727357), a DNA intercalator and topoisomerase inhibitor with antitumor activity. Mol Pharmacol 2006,70,1109-1120.
    [81]Nguyen, C. H.; Fan, E.; Riou, J. F.; Bissery, M. C.; Vrignaud, P.; Lavelle, F.; Bisagni, E. Synthesis and biological evaluation of amino-substituted benzo[f]pyrido[4,3-b] and pyrido[3,4-b]quinoxalines:a new class of antineoplastic agents. Anticancer Drug Des 1995,10,277-297.
    [82]Singh, M.; Tandon, V. Synthesis and biological activity of novel inhibitors of topoisomerase T: 2-aryl-substituted 2-bis-lH-benzimidazoles. Eur J Med Chem 2011,46,659-669.
    [83]Pommier, Y.; Pourquier, P.; Fan, Y.; Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1998,1400,83-105.
    [84]Chaudhuri, P.; Majumder, H. K.; Bhattacharya, S. Synthesis, DNA binding, and Leishmania topoisomerase inhibition activities of a novel series of anthra[1,2-d]imidazole-6,11-dione derivatives. J Med Chem 2007,50,2536-2540.
    [85]Cinelli, M. A.; Morrell, A.; Dexheimer, T. S.; Scher, E. S.; Pommier, Y.; Cushman, M. Design, synthesis, and biological evaluation of 14-substituted aromathecins as topoisomerase I inhibitors. J Med Chem 2008,51,4609-4619.
    [86]Cinelli, M. A.; Morrell, A. E.; Dexheimer, T. S.; Agama, K.; Agrawal, S.; Pommier, Y.; Cushman, M. The structure-activity relationships of A-ring-substituted aromathecin topoisomerase I inhibitors strongly support a camptothecin-like binding mode. Bioorg Med Chem 2010,18,5535-5552.
    [87]Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X. H.; Yang, J. M.; Li, T. K.; Liu, A.; Liu, L. F.; LaVoie, E. J.5H-Dibenzo[c,h]1,6-naphthyridin-6-ones:novel topoisomerase I-targeting anticancer agents with potent cytotoxic activity. Bioorg Med Chem 2003,11,2061-2073.
    [88]Ruchelman, A. L.; Singh, S. K.; Wu, X.; Ray, A.; Yang, J. M.; Li, T. K.; Liu, A.; Liu, L. F.; LaVoie, E. J. Diaza-and triazachrysenes:potent topoisomerase-targeting agents with exceptional antitumor activity against the human tumor xenograft, MDA-MB-435. Bioorg Med Chem Lett 2002,12, 3333-3336.
    [89]Li, T. K.; Houghton, P. J.; Desai, S. D.; Daroui, P.; Liu, A. A.; Hars, E. S.; Ruchelman, A. L.; LaVoie, E. J.; Liu, L. F. Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drug. Cancer Res 2003,63,8400-8407.
    [90]Meng, F.; Nguyen, X. T.; Cai, X.; Duan, J.; Matteucci, M.; Hart, C. P. ARC-111 inhibits hypoxia-mediated hypoxia-inducible factor-1 alpha accumulation. Anticancer Drugs 2007,18,435-445.
    [91]Ruchelman, A. L.; Houghton, P. J.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. 5-(2-aminoethyl)dibenzo[c,h][1,6]naphthyridin-6-ones:variation of n-alkyl substituents modulates sensitivity to efflux transporters associated with multidrug resistance. J Med Chem 2005,48,792-804.
    [92]Feng, W.; Satyanarayana, M.; Tsai, Y. C.; Liu, A. A.; Liu, L. F.; LaVoie, E. J. Novel topoisomerase Ⅰ-targeting antitumor agents synthesized from the N,N,N-trimethylammonium derivative of ARC-111, 5H-2,3-dimethoxy-8,9-methylenedioxy-5-[(2-N,N,N-trimethylammonium)ethyl]dibenzo[c,h][1,6]naph thyridin-6-one iodide. Eur JMed Chem 2009,44,3433-3438.
    [93]Satyanarayana, M.; Feng, W.; Cheng, L.; Liu, A. A.; Tsai, Y. C.; Liu, L. F.; LaVoie, E. J. Syntheses and biological evaluation of topoisomerase I-targeting agents related to 11-[2-(N,N-dimethylamino)ethyl]-2,3-dimethoxy-8,9-methylenedioxy-11H-isoquino[4,3-c]cinnolin-12-one (ARC-31). Bioorg Med Chem 2008,16,7824-7831.
    [94]Zhu, S.; Ruchelman, A. L.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J.6-Substituted 6H-dibenzo[c,h][2,6]naphthyridin-5-ones:reversed lactam analogues of ARC-111 with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg Med Chem 2006,14,3131-3143.
    [95]Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X.; Yang, J. M.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. 11H-Isoquino[4,3-c]cinnolin-12-ones; novel anticancer agents with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg Med Chem 2004,12,795-806.
    [96]Feng, W.; Satyanarayana, M.; Tsai, Y. C.; Liu, A. A.; Liu, L. F.; LaVoie, E. J.12-Substituted 2,3-dimethoxy-8,9-methylenedioxybenzo[i]phenanthridines as novel topoisomerase Ⅰ-targeting antitumor agents. Bioorg Med Chem 2009,17,2877-2885.
    [97]Feng, W.; Satyanarayana, M.; Tsai, Y. C.; Liu, A. A.; Liu, L. F.; LaVoie, E. J.11-Substituted 2,3-dimethoxy-8,9-methylenedioxybenzo[i]phenanthridine derivatives as novel topoisomerase I-targeting agents. Bioorg Med Chem 2008,16,8598-8606.
    [98]You, Q. D.; Li, Z. Y.; Huang, C. H.; Yang, Q.; Wang, X. J.; Guo, Q. L.; Chen, X. G.; He, X. G.; Li, T. K.; Chern, J. W. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase I inhibitors by scaffold modification. JMed Chem 2009,52,5649-5661.
    [99]Bailly, C. Contemporary challenges in the design of topoisomerase Ⅱ inhibitors for cancer chemotherapy. Chem Rev 2012,112,3611-3640.
    [100]Classen, S.; Olland, S.; Berger, J. M. Structure of the topoisomerase Ⅱ ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci USA 2003,100, 10629-10634.
    [101]Chene, P.; Rudloff, J.; Schoepfer, J.; Furet, P.; Meier, P.; Qian, Z.; Schlaeppi, J. M.; Schmitz, R.; Radimerski, T. Catalytic inhibition of topoisomerase Ⅱ by a novel rationally designed ATP-competitive purine analogue. BMC Chem Biol 2009,9,1.
    [102]Hande, K. R. Etoposide:four decades of development of a topoisomerase Ⅱ inhibitor. Eur J Cancer 1998,34,1514-1521.
    [103]Osheroff, N. Eukaryotic topoisomerase Ⅱ. Characterization of enzyme turnover. J Biol Chem 1986,261,9944-9950.
    [104]Fujiwara, A.; Hoshino, T.; Westley, J. W. Anthracycline Antibiotics. Critical Reviews in Biotechnology 1985,3,133-157.
    [105]Weiss, R. B. The anthracyclines:will we ever find a better doxorubicin? Semin Oncol 1992,19, 670-686.
    [106]Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines:molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004,56, 185-229.
    [107]Whiting, P. H.; Simpson, J. G. The enhancement of cyclosporin A-induced nephrotoxicity by gentamicin. Biochem Pharmacol 1983,32,2025-2028.
    [108]Parker, C.; Waters, R.; Leighton, C.; Hancock, J.; Sutton, R.; Moorman, A. V.; Ancliff, P.; Morgan, M.; Masurekar, A.; Goulden, N.; Green, N.; Revesz, T.; Darbyshire, P.; Love, S.; Saha, V. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3):an open-label randomised trial. Lancet 2010,376,2009-2017.
    [109]Mazerski, J.; Martelli, S.; Borowski, E. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA:molecular dynamics simulations. Acta Biochim Pol 1998,45, 1-11.
    [110]Liu, Y.; Zhao, C.; Li, H.; Yu, M.; Gao, J.; Wang, L.; Zhai, Y. Cytotoxicity and apoptosis induced by a new podophyllotoxin glucoside in human hepatoma (HepG2) cells. Can J Physiol Pharmacol 2010,88,472-479.
    [111]Kang, K.; Oh, S. H.; Yun, J. H.; Jho, E. H.; Kang, J. H.; Batsuren, D.; Tunsag, J.; Park, K. H.; Kim, M.; Nho, C. W. A novel topoisomerase inhibitor, daurinol, suppresses growth of HCT116 cells with low hematological toxicity compared to etoposide. Neoplasia 2011,13,1043-1057.
    [112]Wu, C. C.; Li, T. K.; Farh, L.; Lin, L. Y.; Lin, T. S.; Yu, Y. J.; Yen, T. J.; Chiang, C. W.; Chan, N. L. Structural basis of type Ⅱ topoisomerase inhibition by the anticancer drug etoposide. Science 2011, 333,459-462.
    [113]Naik, P. K.; Dubey, A.; Soni, K.; Kumar, R.; Singh, H. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase Ilalpha. J Mol Graph Model 2010,29, 546-564.
    [114]Barret, J. M.; Kruczynski, A.; Vispe, S.; Annereau, J. P.; Brel, V.; Guminski, Y.; Delcros, J. G.; Lansiaux, A.; Guilbaud, N.; Imbert, T.; Bailly, C. F14512, a potent antitumor agent targeting topoisomerase Ⅱ vectored into cancer cells via the polyamine transport system. Cancer Res 2008,68, 9845-9853.
    [115]Nitiss, J. L.; Beck, W. T. Antitopoisomerase drug action and resistance. Eur J Cancer 1996,32A, 958-966.
    [116]Auclair, C.; Pierre, A.; Voisin, E.; Pepin, O.; Cros, S.; Colas, C.; Saucier, J. M.;:Verschuere, B.; Gros, P.; Paoletti, C. Physicochemical and pharmacological properties of the antitumor ellipticine derivative 2-(diethylamino-2-ethyl)9-hydroxy ellipticinium-chloride, HC1. Cancer Res 1987,47, 6254-6261.
    [117]Le Mee, S.; Pierre, A.; Markovits, J.; Atassi, G.; Jacquemin-Sablon, A.; Saucier, J. M. S16020-2, a new highly cytotoxic antitumor olivacine derivative:DNA interaction and DNA topoisomerase Ⅱ inhibition. Mol Pharmacol 1998,53,213-220.
    [118]Kraus-Berthier, L.; Guilbaud, N.; Leonce, S.; Parker, T.; Genissel, P.; Guillonneau, C.; Goldstein, S.; Atassi, G.; Pierre, A. Comparison of the pharmacological profile of an olivacine derivative and a potential prodrug. Cancer Chemother Pharmacol 2002,50,95-103.
    [119]Malonne, H.; Farinelle, S.; Decaestecker, C.; Gordower, L.; Fontaine, J.; Chaminade, F.; Saucier, J. M.; Atassi, G.; Kiss, R. In vitro and in vivo pharmacological characterizations of the antitumor properties of two new olivacine derivatives, S16020-2 and S30972-1. Clin Cancer Res 2000,6, 3774-3782.
    [120]Du, L.; Liu, H. C.; Fu, W.; Li, D. H.; Pan, Q. M.; Zhu, T. J.; Geng, M. Y; Gu, Q. Q. Unprecedented citrinin trimer tricitinol B functions as a novel topoisomerase Ilalpha inhibitor. J Med Chem 2011,54,5796-5810.
    [121]Ingrassia, L.; Lefranc, F.; Kiss, R.; Mijatovic, T. Naphthalimides and azonafides as promising anti-cancer agents. Curr Med Chem 2009,16,1192-1213.
    [122]Cheng, M. H.; Yang, Y. C.; Wong, Y. H.; Chen, T. R.; Lee, C. Y.; Yang, C. C.; Chen, S. H.; Yang, I. N.; Yang, Y. S.; Huang, H. S.; Yang, C. Y.; Huang, M. S.; Chiu, H. F. B1, a novel topoisomerase II inhibitor, induces apoptosis and cell cycle Gl arrest in lung adenocarcinoma A549 cells. Anticancer Drugs 2012,23,191-199.
    [123]Chen, Z; Liang, X.; Zhang, H.; Xie, H.; Liu, J.; Xu, Y.; Zhu, W.; Wang, Y.; Wang, X.; Tan, S.; Kuang, D.; Qian, X. A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. JMed Chem 2010,53,2589-2600.
    [124]Xie, S. Q.; Li, Q.; Zhang, Y. H.; Wang, J. H.; Mei, Z. H.; Zhao, J.; Wang, C. J. NPC-16, a novel naphthalimide-polyamine conjugate, induced apoptosis and autophagy in human hepatoma HepG2 cells and Bel-7402 cells. Apoptosis 2011,16,27-34.
    [125]Filosa, R.; Peduto, A.; Micco, S. D.; Caprariis, P.; Festa, M.; Petrella, A.; Capranico, G; Bifulco, G. Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase Ⅱ inhibitors. Bioorg Med Chem 2009,17,13-24.
    [126]Hawtin, R. E.; Stockett, D. E.; Byl, J. A.; McDowell, R. S.; Nguyen, T.; Arkin, M. R.; Conroy, A.; Yang, W; Osheroff, N.; Fox, J. A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase Ⅱ. PLoS One 2010,5, e10186.
    [127]Hoch, U.; Lynch, J.; Sato, Y.; Kashimoto, S.; Kajikawa, F.; Furutani, Y.; Silverman, J. A. Voreloxin, formerly SNS-595, has potent activity against a broad panel of cancer cell lines and in vivo tumor models. Cancer Chemother Pharmacol 2009,64,53-65.
    [128]Guminski, Y.; Grousseaud, M.; Cugnasse, S.; Brel, V; Annereau, J. P.; Vispe, S.; Guilbaud, N.; Barret, J. M.; Bailly, C.; Imbert, T. Synthesis of conjugated spermine derivatives with 7-nitrobenzoxadiazole (NBD), rhodamine and bodipy as new fluorescent probes for the polyamine transport system. Bioorg Med Chem Lett 2009,19,2474-2477.
    [129]Braybrooke, J. P.; O'Byrrte, K. J.; Propper, D. J.; Blann, A.; Saunders, M.; Dobbs, N.; Han, C.; Woodhull, J.; Mitchell, K.; Crew, J.; Smith, K.; Stephens, R.; Ganesan, T. S.; Talbot, D. C.; Harris, A. L. A phase Ⅱ study of razoxane, an antiangiogenic topoisomerase Ⅱ inhibitor, in renal cell cancer with assessment of potential surrogate markers of angiogenesis. Clin Cancer Res 2000,6,4697-4704.
    [130]Hu, C. X.; Zuo, Z. L.; Xiong, B.; Ma, J. G.; Geng, M. Y.; Lin, L. P.; Jiang, H. L.; Ding, J. Salvicine functions as novel topoisomerase Ⅱ poison by binding to ATP pocket. Mol Pharmacol 2006, 70,1593-1601.
    [131]Furet, P.; Schoepfer, J.; Radimerski, T.; Chene, P. Discovery of a new class of catalytic topoisomerase Ⅱ inhibitors targeting the ATP-binding site by structure based design. Part I. Bioorg Med Chem Lett 2009,19,4014-4017.
    [132]Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A series of alpha-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase Ilalpha catalytic activity. J Med Chem 2010,53,3048-3064.
    [133]Rao, V. A.; Klein, S. R.; Agama, K. K.; Toyoda, E.; Adachi, N.; Pommier, Y.; Shacter, E. B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase Ilalpha in breast cancer cells. Cancer Res 2009,69,948-957.
    [134]Lovejoy, D. B.; Jansson, P. J.; Brunk, U. T.; Wong, J.; Ponka, P.; Richardson, D. R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res 2011,71,5871-5880.
    [135]Dallavalle, S.; Gattinoni, S.; Mazzini, S.; Scaglioni, L.; Merlini, L.; Tinelli, S.; Beretta, G. L.; Zunino, F. Synthesis and cytotoxic activity of a new series of topoisomerase I inhibitors. Bioorg Med Chem Lett 2008,18,1484-1489.
    [136]Denny, W. A.; Baguley, B. C. Dual topoisomerase Ⅰ/Ⅱ inhibitors in cancer therapy. Curr Top Med Chem 2003,3,339-353.
    [137]Rewcastle, G. W.; Denny, W. A.; Baguley, B. C. Potential antitumor agents.51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J Med Chem 1987,30,843-851.
    [138]Vicker, N.; Burgess, L.; Chuckowree, I. S.; Dodd, R.; Folkes, A. J.; Hardick, D. J.; Hancox, T. C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S. P.; Charlton, P. A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A. J.; Denny, W. A. Novel angular benzophenazines:dual topoisomerase I and topoisomerase Ⅱ inhibitors as potential anticancer agents. J Med Chem 2002,45,721-739.
    [139]Ishida, K.; Asao, T. Self-association and unique DNA binding properties of the anti-cancer agent TAS-103, a dual inhibitor of topoisomerases Ⅰ and Ⅱ. Biochim Biophys Acta 2002,1587,155-163.
    [140]Padget, K.; Stewart, A.; Charlton, P.; Tilby, M. J.; Austin, C. A. An investigation into the formation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) and 6-[2-(dimethylamino)ethylamino]-3-hydroxy-7H-indeno[2, 1-C]quinolin-7-one dihydrochloride (TAS-103) stabilised DNA topoisomerase Ⅰ and Ⅱ cleavable complexes in human leukaemia cells. Biochem Pharmacol 2000,60,817-821.
    [141]Marzaro, G; Dalla Via, L.; Toninello, A.; Guiotto, A.; Chilin, A. Benzoquinazoline derivatives as new agents affecting DNA processing. Bioorg Med Chem 2011,19,1197-1204.
    [142]Chen, Y. L.; Hung, H. M; Lu, C. M.; Li, K. C.; Tzeng, C. C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorg Med Chem 2004,12,6539-6546.
    [143]Lu, C. M.; Chen, Y. L.; Chen, H. L.; Chen, C. A.; Lu, P. J.; Yang, C. N.; Tzeng, C. C. Synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. Bioorg Med Chem 2010, 18,1948-1957.
    [144]Tseng, C. H.; Chen, Y. L.; Chung, K. Y.; Cheng, C. M.; Wang, C. H.; Tzeng, C. C. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives. Bioorg Med Chem 2009,17, 7465-7476.
    [145]Tseng, C. H.; Chen, Y. L.; Lu, P. J.; Yang, C. N.; Tzeng, C. C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg Med Chem 2008,16,3153-3162.
    [146]Tseng, C. H.; Tzeng, C. C.; Yang, C. L.; Lu, P. J.; Chen, H. L.; Li, H. Y.; Chuang, Y. C.; Yang, C. N.; Chen, Y. L. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2. J Med Chem 2010,53,6164-6179.
    [147]Khan, Q. A.; Elban, M. A.; Hecht, S. M. The topopyrones poison human DNA topoisomerases I and II. JAm Chem Soc 2008,130,12888-12889.
    [148]Shchekotikhin, A. E.; Dezhenkova, L. G.; Susova, O. Y.; Glazunova, V. A.; Luzikov, Y. N.; Sinkevich, Y. B.; Buyanov, V. N.; Shtil, A. A.; Preobrazhenskaya, M. N. Naphthoindole-based analogues of tryptophan and tryptamine:synthesis and cytotoxic properties. Bioorg Med Chem 2007, 15,2651-2659.
    [149]Shi, W.; Marcus, S. L.; Lowary, T. L. Cytotoxicity and topoisomerase Ⅰ/Ⅱ inhibition of glycosylated 2-phenyl-indoles,2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans. Bioorg Med Chem 2011,19,603-612.
    [150]Kang, D. H.; Kim, J. S.; Jung, M. J.; Lee, E. S.; Jahng, Y.; Kwon, Y.; Na, Y. New insight for fluoroquinophenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorg Med Chem Lett 2008,18,1520-1524.
    [151]Goodell, J. R.; Madhok, A. A.; Hiasa, H.; Ferguson, D. M. Synthesis and evaluation of acridine-and acridone-based anti-herpes agents with topoisomerase activity. Bioorg Med Chem 2006,14, 5467-5480.
    [152]Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, D. M. Acridine-based agents with topoisomerase Ⅱ activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J Med Chem 2008,51,179-182.
    [153]Galvez-Peralta, M.; Hackbarth, J. S.; Flatten, K. S.; Kaufmann, S. H.; Hiasa, H.; Xing, C.; Ferguson, D. M. On the role of topoisomerase I in mediating the cytotoxicity of 9-aminoacridine-based anticancer agents. Bioorg Med Chem Lett 2009,19,4459-4462.
    [154]Ismael, G F.; Rosa, D. D.; Mano, M. S.; Awada, A. Novel cytotoxic drugs:old challenges, new solutions. Cancer Treat Rev 2008,34,81-91.
    [155]Baran, Y; Zencir, S.; Cakir, Z.; Ozturk, E.; Topcu, Z. Imatinib-induced apoptosis:a possible link to topoisomerase enzyme inhibition. JClin Pharm Ther 2011,36,673-679.
    [1]Blundell, T. L.; Jhoti, H.; Abell, C. High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 2002,1,45-54.
    [2]Bajorath, J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002,1, 882-894.
    [3]Ma, X. H.; Zhu, F.; Liu, X.; Shi, Z.; Zhang, J. X.; Yang, S. Y.; Wei, Y Q.; Chen, Y Z. Virtual screening methods as tools for drug lead discovery from large chemical libraries. Curr Med Chem 2012, 19,5562-5571.
    [4]Shoichet, B. K. Virtual screening of chemical libraries. Nature 2004,432,862-865.
    [5]Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S. H. Structure-based virtual screening for drug discovery:a problem-centric review. AAPS J 2012,14,133-141.
    [6]Stumpfe, D.; Ripphausen, P.; Bajorath, J. Virtual compound screening in drug discovery. Future Med Chem 2012,4,593-602.
    [7]Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 2006,10,194-202.
    [8]Villoutreix, B. O.; Eudes, R.; Miteva, M. A. Structure-based virtual ligand screening:recent success stories. Comb Chem High Throughput Screen 2009,12,1000-1016.
    [9]Seifert, M. H.; Lang, M. Essential factors for successful virtual screening. Mini Rev Med Chem 2008,8,63-72.
    [10]Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A. B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 2005,48,2336-2345.
    [11]Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B., Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 2002,99, 15387-15392.
    [12]loanoviciu, A.; Antony, S.; Pommier, Y.; Staker, B. L.; Stewart, L.; Cushman, M. Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis. J Med Chem 2005,48,4803-4814.
    [13]Tripos, L.P. http://www.tripos.com.
    [14]Accelrys Software Inc., San Diego; http://www.accelrys.com.
    [15]Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997,267,727-748.
    [16]Thomsen, R.; Christensen, M. H. MolDock:a new technique for high-accuracy molecular docking. J Med Chem 2006,49,3315-3321.
    [17]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J Comput Chem 1998,19,1639-1662.
    [18]Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A Semiempirical Free Energy Force Field with Charge-Based Desolvation.. J. Comput. Chem.2007,28,1145-1152.
    [19]Shaw, D. E. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J Comput Chem 2005,26,1318-1328.
    [20]Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, J. K.; Shan, Y; Shaw, D. E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, November 11-17 2006.
    [21]Bowers, K. J.; Dror, R. O.; Shaw, D. E. The midpoint method for parallelization of particle simulations. J Chem Phys 2006,124,184109.
    [1]Kobayashi, Y; Nakano, Y.; Kizaki, M.; Hoshikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med 2001,67,628-633.
    [2]Chiou, W. F.; Sung, Y. J.; Liao, J. F.; Shum, A. Y.; Chen, C. F. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. J Nat Prod 1997,60,708-711.
    [3]Ko, H. C.; Wang, Y H.; Liou, K. T.; Chen, C. M.; Chen, C. H.; Wang, W. Y.; Chang, S.; Hou, Y C.; Chen, K. T.; Chen, C. F.; Shen, Y C. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. European Journal Of Pharmacology 2007,555,211-217.
    [4]Fei, X. F.; Wang, B. X.; Li, T. J.; Tashiro, S.; Minami, M.; Xing, D. J.; Ikejima, T. Evodiamine, a constituent of Evodiae Fructus, induces anti-proliferating effects in tumor cells. Cancer Science 2003, 94,92-98.
    [5]Kobayashi, Y The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Med 2003,69,425-428.
    [6]Ogasawara, M.; Matsubara, T.; Suzuki, H. Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biological & Pharmaceutical Bulletin 2001, 24,917-920.
    [7]Ogasawara, M.; Matsunaga, T.; Takahashi, S.; Saiki, I.; Suzuki, H. Anti-invasive and metastatic activities of evodiamine. Biological& Pharmaceutical Bulletin 2002,25,1491-1493.
    [8]Zhang, Y; Wu, L. J.; Tashiro, S.; Onodera, S.; Ikejima, T. Intracellular regulation of evodiamine-induced A375-S2 cell death. Biological & Pharmaceutical Bulletin 2003,26,1543-1547.
    [9]Kan, S. F.; Huang, W. J.; Lin, L. C.; Wang, P. S. Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. International Journal Of Cancer 2004,110,641-651.
    [10]Liao, C. H.; Pan, S. L.; Guh, J. H.; Chang, Y L.; Pai, H. C.; Lin, C. H.; Teng, C. M. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis 2005,26,968-975.
    [11]Huang, H.; Zhang, Y.; Liu, X.; Li, Z.; Xu, W.; He, S.; Huang, Y.; Zhang, H. Acid sphingomyelinase contributes to evodiamine-induced apoptosis in human gastric cancer SGC-7901 cells. Dna And Cell Biology 2011,30,407-412.
    [12]Wang, C.; Li, S.; Wang, M. W. Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-kappaB signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicology In Vitro 2010,24,898-904.
    [13]Wang, T.; Wang, Y.; Yamashita, H. Evodiamine inhibits adipogenesis via the EGFR-PKCalpha-ERK signaling pathway. Febs Letters 2009,583,3655-3659.
    [14]Yang, Z. G.; Chen, A. Q.; Liu, B. Antiproliferation and apoptosis induced by evodiamine in human colorectal carcinoma cells (COLO-205). Chem Biodivers 2009,6,924-933.
    [15]Yang, X. W.; Zhang, H.; Li, M.; Du, L. J.; Yang, Z.; Xiao, S. Y Studies on the alkaloid constituents of Evodia rutaecarpa (Juss) Benth var. bodinaieri (Dode) Huang and their acute toxicity in mice. Journal Of Asian Natural Products Research 2006,8,697-703.
    [16]Dong, G. Q.; Sheng, C. Q.; Wang, S. Z.; Miao, Z. Y.; Yao, J. Z.; Zhang, W. N. Selection of Evodiamine as a Novel Topoisomerase I Inhibitor by Structure-Based Virtual Screening and Hit Optimization of Evodiamine Derivatives as Antitumor Agents. Journal of Medicinal Chemistry 2010, 53,7521-7531.
    [17]Lu, W.; Liu, X.; Cao, X.; Xue, M.; Liu, K.; Zhao, Z.; Shen, X.; Jiang, H.; Xu, Y.; Huang, J.; Li, H. SHAFTS:a hybrid approach for 3D molecular similarity calculation.2. Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem 2011,54,3564-3574.
    [18]Nitiss, J. L. Targeting DNA topoisomerase Ⅱ in cancer chemotherapy. Nat Rev Cancer 2009,9, 338-350.
    [19]Marshal], K. M.; Holden, J. A.; Koller, A.; Kashman, Y.; Copp, B. R.; Barrows, L. R. AK.37:the first pyridoacridine described capable of stabilizing the topoisomerase I cleavable complex. Anticancer Drugs 2004,15,907-913.
    [20]Routier, S.; Peixoto, P.; Merour, J. Y.; Coudert, G.; Dias, N.; Bailly, C.; Pierre, A.; Leonce, S.; Caignard, D. H. Synthesis and biological evaluation of novel naphthocarbazoles as potential anticancer agents. J Med Chem 2005,48,1401-1413.
    [21]Baviskar, A. T.; Madaan, C.; Preet, R.; Mohapatra, P.; Jain, V.; Agarwal, A.; Guchhait, S. K.; Kundu, C. N.; Banerjee, U. C.; Bharatam, P. V. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase Ilalpha and induce apoptosis in G1/S phase. J Med Chem 2011,54,5013-5030.
    [22]Du, L.; Liu, H. C.; Fu, W.; Li, D. H.; Pan, Q. M.; Zhu, T. J.; Geng, M. Y; Gu, Q. Q. Unprecedented citrinin trimer tricitinol B functions as a novel topoisomerase Ⅱalpha inhibitor. J Med Chem 2011,54,5796-5810.
    [23]Ioanoviciu, A.; Antony, S.; Pommier, Y.; Staker, B. L.; Stewart, L.; Cushman, M. Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis. J Med Chem 2005,48,4803-4814.
    [24]Nitiss, J. L. DNA topoisomerase Ⅱ and its growing repertoire of biological functions. Nat Rev Cancer 2009,9,327-337.
    [25]Wei, H.; Ruthenburg, A. J.; Bechis, S. K.; Verdine, G. L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. JBiol Chem 2005,280,37041-37047.
    [26]Palchaudhuri, R.; Hergenrother, P. J. DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 2007,18,497-503.
    [27]Bailly, C. Contemporary challenges in the design of topoisomerase Ⅱ inhibitors for cancer chemotherapy. Chem Rev 2012,112,3611-3640.
    [28]Aleksic, M.; Bertosa, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M. H.; Kralj, M.; Tomic, S.; Karminski-Zamola, G. Novel Substituted Benzothiophene and Thienothiophene Carboxanilides and Quinolones:Synthesis, Photochemical Synthesis, DNA-Binding Properties, Antitumor Evaluation and 3D-Derived QSAR Analysis. JMedChem 2012,55,5044-5060.
    [29]Li, X.; Lin, Y; Wang, Q.; Yuan, Y; Zhang, H.; Qian, X. The novel anti-tumor agents of 4-triazol-l,8-naphthalimides:synthesis, cytotoxicity, DNA intercalation and photocleavage. EurJMed Chem 2011,46,1274-1279.
    [30]Wang, P.; Leung, C. H.; Ma, D. L.; Lu, W.; Che, C. M. Organoplatinum(Ⅱ) complexes with nucleobase motifs as inhibitors of human topoisomerase Ⅱ catalytic activity. Chem Asian J2010,5, 2271-2280.
    [31]Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A series of alpha-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase Ⅱalpha catalytic activity. J Med Chem 2010,53,3048-3064.
    [32]Peixoto, P.; Bailly, C.; Helene, M.; David-Cordonnier, M.-H. Topoisomerase I-mediated DNA relaxation as a tool to study intercalation of small molecules into supercoiled DNA. In:Fox, K.R. (Ed.). Drug-DNA Interaction Protocols,2nd ed. Human Press.2010,613,235-256.
    [33]Perrin, D.; van Hille, B.; Barret, J. M.; Kruczynski, A.; Etievant, C.; Imbert, T.; Hill, B. T. F 11782, a novel epipodophylloid non-intercalating dual catalytic inhibitor of topoisomerases Ⅰ and Ⅱ with an original mechanism of action. Biochem Pharmacol 2000,59,807-819.
    [34]Graves, D. E. Drug-DNA Interactions. Methods in Molecular Biology 2001,95,161-169.
    [35]Suh, D.; Chaires, J. B. Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 1995,3,723-728.
    [36]Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A. B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 2005,48,2336-2345.
    [37]Tripos, L.P. http://www.tripos.com.
    [1]Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012,112,3611-3640.
    [2]Gorelik, M. V. Ring opening reaction of quino-1,2,5-thia-and-selenadiazoles. Khim. Geterotsikl. Soedin.1971, No.3,212-216.
    [3]Gorelik, M. V.; Kharash, M. S. Quinones. XXVII. Reaction of 2-arylanthraquinonetriazoles with amines. Khim. Geterotsikl. Soedin.1971,7,1574-1580.
    [4]Gorelik, M. V.; Lantsman, S. B. Quinones. VI. Reaction of anthra[1,2-c][1,2,5]thiadiazole-6,11-dione with nucleophilic agents. Khim. Geterotsikl. Soedin.1968, 453-458.
    [5]Gorelik, M. V.; Lantsman, S. B. Quinones. V. Anthra[1,2-c][1,2,5]thiadiazole-6,11-diones and their reaction with amines. Khim. Geterotsikl. Soedin 1968,447-452.
    [6]Gorelik, M. V.; Lantsman, S. B.; Puchkova, V. V. 1,2-Anthraquinone-1,2,5-thiadiazoles. SU170137, 1965.
    [7]Gorelik, M. V.; Zhdamarov, O. S.; Levin, E. S.; Zaitsev, B. E.; Chetkina, L. A. Quinones. XXIV. Structure and reactivity of heterocyclic derivatives of anthraquinone. Zhurnal Organicheskoi Khimii 1971,7,1044-1049.
    [8]Huang, H. S.; Chen, T. C.; Chen, R. H.; Huang, K. F.; Huang, F. C.; Jhan, J. R.; Chen, C. L.; Lee, C. C.; Lo, Y.; Lin, J. J. Synthesis, cytotoxicity and human telomerase inhibition activities of a series of 1,2-heteroannelated anthraquinones and anthra[1,2-d]imidazole-6,11-dione homologues. Bioorg Med Chem 2009,17,7418-7428.
    [9]Chang, Y. L.; Lee, H. J.; Liu, S. T.; Lin, Y. S.; Chen, T. C.; Hsieh, T. Y; Huang, H. S.; Huang, S. M. Different roles of p53 in the regulation of DNA damage caused by 1,2-heteroannelated anthraquinones and doxorubicin. International Journal of Biochemistry & Cell Biology 2011,43,1720-1728.
    [10]Wu, X.; Kassie, F.; Mersch-Sundermann, V. Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutation Research 2005,589,81-102.
    [1]Nitiss, J. L. DNA topoisomerase Ⅱ and its growing repertoire of biological functions. Nat Rev Cancer 2009,9,327-337.
    [2]Nitiss, J. L. Targeting DNA topoisomerase Ⅱ in cancer chemotherapy. Nat Rev Cancer 2009,9, 338-350.
    [3]Larsen, A. K.; Escargueil, A. E.; Skladanowski, A. Catalytic topoisomerase Ⅱ inhibitors in cancer therapy. Pharmacology and Therapeutics 2003,99,167-181.
    [4]Jimenez-Alonso, S.; Orellana, H. C.; Estevez-Braun, A.; Ravelo, A. G.; Perez-Sacau, E.; Machin, F. Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase Ⅱ catalytic inhibitors. JMed Chem 2008,51,6761-6772.
    [5]Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A series of alpha-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase Ilalpha catalytic activity. JMed Chem 2010,53,3048-3064.
    [6]Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Muller, G Small-molecule inhibitors binding to protein kinase. Part Ⅱ:the novel pharmacophore approach of type Ⅱ and type in inhibition. Expert Opinion on Drug Discovery 2008,3,1427-1449.
    [7]Wei, H.; Ruthenburg, A. J.; Bechis, S. K.; Verdine, G L. Nucleotide-dependent domain movement in the ATPase domain of a human type ⅡA DNA topoisomerase. J Biol Chem 2005,280,37041-37047.
    [8]Tripos, L.P. http://www.tripos.com.
    [9]Baviskar, A. T; Madaan, C.; Preet, R.; Mohapatra, P.; Jain, V.; Agarwal, A.; Guchhait, S. K.; Kundu, C. N.; Banerjee, U. C.; Bharatam, P. V. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase Ilalpha and induce apoptosis in Gl/S phase. JMed Chem 2011,54, 5013-5030.
    [10]Jones, G; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997,267,727-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700