用户名: 密码: 验证码:
基于表面势的GaN HEMT器件模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓高电子迁移率晶体管(GaN HEMT)模型是GaN微波单片集成电路(MMIC)CAD的基础。现有的GaN HEMT物理模型未能解决载流子传输方程与新效应联立自洽求解带来的数值算法问题、异质结界面处量子力学效应和极化电荷处理的物理问题,难以表征多样的器件结构和复杂的物理效应。相比之下,基于表面势的物理模型可不断加入新物理效应的表征,将各种物理效应直接引入表面势方程,这样模型能更加精确的描述器件的物理本质。目前基于表面势模型研究尚在起步阶段,本文通过深入研究GaN异质结结构、器件物理特性的关联性,主要围绕基于表面势GaN HEMT紧凑型建模方法和技术展开。具体内容概括如下:
     1)从半导体理论和量子阱理论出发,分析各外延层结构基础上,将GaN HEMT器件特有的极化效应、费米势、势垒层掺杂等影响引入表面势方程,建立GaN HEMT器件表面势方程;并采用牛顿迭代法对GaN HEMT器件的表面势方程进行数值自洽求解,获得的表面势精确数值解验证了表面势方程的可行性。
     2)在GaN HEMT器件超越方程的解析求解、连续性函数和函数平滑因子开发等难点上取得了突破,避免了PSP电荷模型在积累区难以胶合的缺点;把全部工作区分为三个区重新推导体电荷密度,获得了全部工作区内连续、可导的电流电压(I-V)和电荷/电容电压(Q/C-V)特性方程;根据GaN HEMT器件的散射机制建立了新的迁移率模型;建立的紧凑型(Compact)内核模型实现了对电流和电荷/电容特性及一阶导数(跨导、电导、电容)以及高阶导数的拟合。TCAD工具仿真AlGaN/GaN HEMT和AlGaN/AIN/GaN HEMT两种结构器件的直流特性,TCAD仿真与模型仿真结果对比验证了基于表面势内核模型的准确性。
     3)在GaN HEMT紧凑型内核模型的基础上,提出了能准确表征器件高阶行为和高频寄生效应的模型拓扑结构,给出了模型参数以及模型参数提取方法,完成了一种基于表面势的GaN HEMT器件紧凑型模型。测试数据和模型仿真结果有很好的拟合,验证了GaN HEMT器件紧凑型模型的精确性。
     本文发展出基于器件物理机理和结构参数信息的表面势紧凑型模型和建模方法,在GaN HEMT器件基于表面势建模、电流及电荷/电容特性研究方面取得了较大的进展,为器件模型的开发提供了可信的方程形式,也为兼任数字、数模混合仿真用GaNHEMT器件模型的开发建立了基础。为了能精确描述器件实际行为并丰富模型的表征能力,不仅需要对模型进一步实用化的开发和经验/半经验化的处理,而且要不断拓展电流/电荷方程。
Gallium Nitride High Electron Mobility Transistor (GaN HEMT) models are basics of the GaN Microwave Monolithic Integrated Circuit (MMIC) CAD. But the existed GaN HEMT physical models not only can't solve the numerical computation problems which come from self consistently solving carrier transport equation and physcial problems which deal with the quantum effect and the polarization charge on the hetero-junction interface, but also can't describe the variety of device structure and the complexity of the physical effects. By contrast, the surface potential based model is more accurately characterize the transistor physical essence which can add new physical effects to model and surface potential equation. Now the study on the surface potential model was still in the initial stage, this paper made an intensive study of GaN heterogeneous structure and relativity between physical characteristics, mainly focused on the the modeling method and technology based on the surface potential for GaN HEMT device. It can be summarized as follow:
     1) Based on the semiconductor theory and quantum theory, this paper analyze the device epitaxial layer structure. In this work, the effects of the polarization, the Fermi level and the doping in barrier are incorporated into the surface potential equation, and the surface potential equation for GaN HEMT was built; Numerical self consistent solutions of the equation were got by using the newton iteration method. The precise numerical solution of the surface potential verified the feasibility of the surface potential equation.
     2) The difficulties have been broken through, such as the building of the surface potential equation for GaN HEMT, the analytical solution of the transcendental equation, the exploitation of the continuous function and smoothing factor. This paper deduced the equation of the body charge density in new three regions which can avoid the hardly continuum of the PSP charge model, and got the continuous I-Vand C-v characteristic equations in all the work area; The new mobility model is built according to the scattering mechanisms of GaN HEMT device; The developed surface potential based compact core model achieved the fitting of the current and charge characteristics, first-order derivative (conductance, capacitance, trans-conductance) and higher-order derivative. The TCAD tools simulated the direct-current characteristic of GaN HEMT (AlGaN/GaN HEMT and AlGaN/AlN/GaN HEMT. Good agreement with TCAD simulations verified the accuracy of model.
     3) Based on GaN HEMT compact core model, this paper proposed the topology structure of the model which can accurately characterize high order behaviors and the high frequency parasitic effects, and the model parameters and the flow of the parameter extraction are presented. In he end, this paper developed a surface potential based compact model for GaN HEMT. The measured and modeled results have good fitting.
     The paper presented the surface potential compact model and modeling methods based on the physical mechanism and the structural.parameter information. It has made great progress in the surface potential modeling and the research of current and charge/capacitance characteristics. This work provided the credible forms of the equation and the theoretical basis to the modeling, and the base of GaN HEMT model which can be used for the digital signal, the digital and analog mixed signal simulation. To accurately describe the device practical behavior and enrich the representation ability, this model not only need be practical developed and empirical/semi empirical processed but also expanded the current equation and charge equation.
引文
[1]A.Katz, M.Franco.GaN Comes of Age[J].IEEE Microwave Magazine,2010,11(7):S24-S34
    [2]T.Ueda, T.Tanaka, D.Ueda. Current status on GaN-based RF-power devices. Proceedings of the European Solid-State Device Research Conference (ESSDERC),2011:61-66
    [3]K.Shinohara, D.Regan. Electron Velocity Enhancement in Laterally Scaled GaN DH-HEMTs With fTof 260 GHz[J]. IEEE Electron Device Letters,2011,32(8):1074-1076
    [4]中国科学院.中科院微电子所研制成功毫米波GaN功率器件.稀土信息,2010,2:15
    [5]D.Bliss, B.Wang, M.Mann. True bulk GaN technology for high efficiency devices. Conference on Lasers and Electro-Optics (CLEO),2011:1-3
    [6]M.H.Wong, D.F.Brown. X-band power performance of N-face GaN MIS-HEMTs[J]. Electronics Letters,2011,47(3):214-215
    [7]P.Srivastava, J.Das, D.Visalli. Record Breakdown Voltage (2200V) of GaN DHEMTs on Si With 2um Buffer Thickness by Local Substrate Removal[J]. IEEE Electron Device Letters,2011,32(1):30-32
    [8]S.Kolluri, S.Keller, S.P.DenBaars. N-Polar GaN MIS-HEMTs With a 12.1W/mm Continuous-Wave Output Power Density at 4 GHz on Sapphire Sustrate[J]. IEEE Electron Device Letters,2011,32(5):635-637
    [9]Z.Li, T.P.Chow. Channel scaling of hybrid GaN MOS-HEMTs. Proceedings of the 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD),2010:221-224
    [10]S.Tamura, Y.Anda, M.Ishida. Recent Advances in GaN Power Switching IEEE Devices. Compound Semiconductor Integrated Circuit Symposium (CSICS),2010:1-4
    [ll]M.Kanechika, T.Uesugi, T.Kachi. Advanced SiC and GaN power electronics for automotive systems. IEEE Electron Devices Meeting (IEDM),2010:13.5.1-13.5.4
    [12]M.Marso. GaN for THz sources. Proceedings of the 8th International Conference on Advanced Semi-conductor Devices & Microsystems (ASDAM),2010:147-154
    [13]K.Son, B.Yang, N.Prokopuk. RF GaN HEMT Sensors for Detection of Caustic Chemicals[J].IEEE Sensors Journal,2011,ll(12):3476-3478
    [14]A.Katz, B.Eggleston, D.McGee. UHF GaN SSPA for space applications Radio and Wireless. IEEE Radio and Wireless Symposium (RWS),2010:108-111
    [15]S.Heck, A.Brackle, M.Berroth. A high-power dual-gate GaN switching-amplifier in the GHz-range. IEEE 12th Annual Wireless and Microwave Technology Conference (WAMICON),2011:1-4
    [16]K.Mimis, K.A.Morris, J.P.McGeehan. A 2GHz GaN Class-J power amplifier for base station applications. IEEE Topical Conference on Digital Object Identifier Power Amplifiers for Wireless and Radio Applications (PAWR),2011:5-8
    [17]R.Fagotti, A.Cidronali, GManes. Concurrent Hex-Band GaN Power Amplifier for Wireless Communication Systems[J]. IEEE Microwave and Wireless Components Letters,2011,21 (2):89-91
    [18]M.Musser, H.Walcher, T.Maier. GaN power FETs for next generation mobile com-munication systems. Microwave Integrated Circuits Conference (EuMIC),2010:9-12
    [19]B.E.Foutz, S.K.OLeary, M.S.Shur. Transient electron transport in wurtzite GaN, InN and A1N. Apply Physical Letters,2000,85(1):7727-7730
    [20]S.Nakajima,et al. GaN HEMT:Revolution in High Power Microwave Applications. International Workshop on Nitride Semiconductors,2006:22-27
    [21]J.Burm, W.J.Schaff, L.F.Eastman. GaN Channel Modulation Doped Field Effect Transistors[J]. Apply Physical Letters,1996,68(20):2849-2851.
    [22]P.Jvarka, A.Alam, A.Fox, et al. AlGaN/GaN HETMs on Silicon Substrate with fT of 32/20 GHz and fmax of 27/22 GHz for 0.15/0.17μm Gate Length[J]. Electronics Letters, 2002,38(6):288-289
    [23]M.Marso, G.Heidelberger. Origin of improved RF performance of AlGaN/GaN MOS-HEMTs compared to HEMTs[J]. IEEE Transactions on Electron Devices,2006, 53(7):1517-1523
    [24]M.A.Khan, A.Bhattarai, J.N.Kuznia. High Electron Mobility Transistor based on a GaN/ AlGaN Heterojunction [J]. Applied Physics Letters,1993,63(9):1214-1215
    [25]X.L.Wang, T.S.Chen, H.L. Xiao. An Internally Matched GaN HEMTs Device with 45.2W at 8GHz for X Band Application[J]. Solid State Electronics,2009,53(7):332-335
    [26]P.Parikh, Y.F.Wu, P.Chavarkar, M. Moore. AlGaN-GaN HEMTs:material, device, circuit technology and applications. International Symposium on Compound Semiconductors: Post-Conference Proceedings,2003:164-171
    [27]祃龙,王燕,余志平.AlG aN/GaN材料HEMT器件优化分析与I-V特性.半导体学报,2004,25(10):1285-1290
    [28]Ma Zhi-Yong, Wang Xiao-Liang, Hu Guo-Xin, Ran Jun-Xue, Xiao Hong-Ling, Luo Wei-Jun, Tang Jian, Li Jian-Ping, Li Jin-Min. Growth and Characterization of AlGaN /GaN Hetero-structure Using Unintentionally Doped AIN/GaN Superlattices As Barrier Layer[J].Super lattices and Microstructures,2009,45:54-59
    [29]M.Higashiwaki,T.Mimura,T.Matsui. AlGaN/GaN Heterostructure Field Effect Transistors on 4H-SiC Substrates with Current-Gain Cutoff Frequency of 190 GHz[J]. Applied Physics Express,2008,1(2):021-103
    [30]L.Shen, S.Heikman, B.Moran, et al. AlGaN/AlN/GaN High Power Microwave HEMT [J]. IEEE Electron Device Letters,2001,22(10):457-459
    [31]周忠堂,郭丽伟,邢志刚等.AlGaN/AlN/GaN结构中二维电子气的输运特性[J].物理学报,2007,56(10):6013-6018
    [32]X.L. Wang, T.S. Cheng, Z.Y. Ma, G.X. Hu, H.L. Xiao, J.X. Ran, CM. Wang, W.J. Luo.1 mm Gate Periphery AlGaN/AlN/GaN HEMTs on SiC with Output Power of 9.39W at 8 GHz[J].Solid State Electronics,2007,51(3):428-432
    [33]M.Miyoshi, A.Imanish, H.Ishikawa, T.Egawa, K.Asai, M.Mouri, T.Shibata, M.Tanaka, O.Oda. High performance AlGaN/AIN/GaN HEMTs grown on 100-mm-diameter epitaxial AIN/sapphire templates by MOVPE. IEEE Compound Semiconductor Integrated Circuit Symposium,2004:193-196
    [34]T.Palacios, N.Fichtenbaum, S.Keller, et al.50 nm AlGaN/GaN HEMT Technology for mm-wave Applications. Device Research Conference,2006:26-28
    [35]张进成,郑鹏天,董作典等.背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响[J].物理学报,2009,58(5):3409-3415
    [36]孙再吉.多台面型栅结构AlGaN_GaNHEMT的开发.半导体信息,2010,4:16
    [37]周肖鹏.高线性度AlxGal.xN/AlyGal.yN/GaN HEMT研究.硕士论文,杭州电子科技大学,2009
    [38]M.Micovic, A.Kurdoghlian, K.Shinohara. W-band GaN MMIC with 842 mWoutput power at 88 GHz. IEEE MTT-S International Microwave Symposium,2010:237-240.
    [39]M. Micovic, A.Kurdoghlian, K.Shinohara. W-band GaN MMIC amplifiers. IEEE Lester Eastman Conference on High Performance Devices,2010:334-340
    [40]S.Masuda, T.Ohki, K.Makiyama, M.Kanamura. GaN MMIC amplifiers for W-band transceivers. Europe Microwave Integrete Circuits Conference,2009:443-447.
    [41]A.Fung, J.Ward, G.Chattopadhyay, R Lin, L. Samoska, P. Kangaslahti, I. Mehdi. Power combined Gallium nitride amplifier with 3 Watt output power at 87 GHz. Proceedings of the 22nd International Symposium on Space Terahertz Technology,2011:21-15
    [42]J.Schellenberg, E.Watkins, M.Micovic, B.Kim, and K.Han. W-band,5 W solid state power amplifier/combiner. IEEE MTT-S International Microwave Symposium,2010: 240-243
    [43]KJ.Herrick, KW.Brown, F.A.Rose, C.S.Whelan, J.Kotce, J.R.Laroche, and Y.Zhang. W-band metamorphic HEMT with 267 mWoutput power. IEEE MTT-S International Microwave Symposium,2005:843-846
    [44]D.L.Ingram, Y.C.Chen, J.Kraus, B.Brunner. A 427 mW,20%compact W-band InP HEMT MMIC power amplifier. IEEE RFIC Symposium,1999:95-98.
    [45]M.Morgan, E.Bryerton, H.Karimy, D.Dugas, L.Gunter, K.Duh. X Wideband medium power amplifiers using a short gate-length GaAs MMIC process. IEEE MTT-S International Microwave Symposium,2009:541-544
    [46]P.P.Huang, R.Lai, R.Grundbacher, and B.Gorospe. A 20 mW G-band monolithic driver amplifier using 0.07 m InP HEMT. IEEE MTT-S International Microwave Symposium, 2006:806-809
    [47]V.Radisic, W.R.Deal. A 10 mW submillimeter wave solid state power amplifier module [J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(7):1903-1909
    [48]L.Dunleavy, C.Baylis, W.Curtice, R.Connick. Modeling GaN:Powerful but challenging [J]. IEEE Microwave Magazine,2010,11(6):82-96.
    [49]W.R. Curtice. Nonlinear modeling of compound semiconductor HEMTs state of the art. Microwave Symposium Digest (MTT),2010:1194-1197
    [50]C.Baylis, L.Dunleavy, et al. Modeling considerations for GaN HEMT devices. IEEE 10th Solid-State Electronics Wireless and Microwave Technology Conference,2009:891-900
    [51]M.Laredj, L.Degachi, A.irafane, et al. Extrinsic extraction procedure for a small signal GaN HEMT model. International Conference on Microelectronics(ICM),2011:9-22
    [52]M.A.Aziz, A.E.Abd. Theoretical Study of the Charge Control in AlGaN/GaN HEMTs. Proceedings of the 23rd National Radio Science Conference,2006:1-7
    [53]常远程.AlGaN/GaN高电子迁移率晶体管的模型研究.博士论文,西安电子科技大学,2006
    [54]O.Ambacher, B.Foutz, J.Smart, et al. Two dimension electron gases induced by spontaneous and piezoelectric in undoped and doped AlGaN/GaN hetero-structrues[J]. Apply Physical Letters,2000,87(1):334-344
    [55]E.T.Yu, G.J.Sullivan, P.M.Asbeck, et al. Measurement of piezo-electrically induced charge in AlGaN/GaN heterostructures field effect transistors [J]. Apply Physical Letters, 1997,71(19):2794-2796
    [56]B.M.Green, K.K.Chu, E.M.Chumbes, et al. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters,2000,21 (6):268-270.
    [57]T.T.Mnatsakanov, M.E.Levinshtein, L.I.Pomortseva, J.W.Palmour. Carrier mobility models for simulation of multilayer 4H-,6H-and 3C-SiC based structures. Semiconductor Science Technology,2013,22(2):110-116
    [58]D.M.Caughey, R.E.Thomas. Carrier mobilities in silicon empirically related to doping and field. Proceedings of the IEEE,1967,55(12):2192-2193.
    [59]T.T. Mnatsakanov, L.I.Pomortseva, S.N. Yurkov. Semiempirical model of carrier mobility in silicon carbide for analyzing its dependence on temperature and doping level [J].Semiconductors Journal,2001,35(4):394-397.
    [60]J.GKim, A.C.Frenkel, H.Liu, R.M.Park. Growth by molecular beam epitaxy and electrical characterization of Si-doped zinc blende GaN films deposited on b-SiC coated (001) Si substrates. Apply Physical Letters,1994,65(1):91~93.
    [61]M.E.Levinshtein, S.L.Rumyantsev, M.S.Shur. Properties ofadvanced semiconductor materials GaN, A1N, InN, BN,SiC, SiGe. New York:John Wiley & Sons Inc,2001
    [62]D. E. Root, Jan Verspecht, et al. Broad-Band Poly-Harmonic Distortion (PHD) Behavioral Models From Fast Automated Simulations and Large-Signal Vectorial Network Measurements. IEEE Transactions on Microwave Theory and Techniques, 2005,53(11):3656-3664
    [63]Jan Versecht, David E.Root. Polyharmonic Distortion Modeling [J]. IEEE Microwave Magazine,2006,7(3):44-57
    [64]G Pailloncy, F. Verbeyst, M. V.Bossche. Nonlinear extensions for VNAs[J]. Microwave Journal,2009,52(9):118-128
    [65]M. Myslinski, F. Verbeyst, M. Vanden Bossche, et al. S-functions extracted from narrow-band modulated large-signal network analyzer measurements. Proceedings of the 74th Automatic RF Techniques Group Conference,2009:1-8
    [66]GSimpson, J.Hom, D.Gunyan, and D.E.Root. Load-Pull NVNA Enhanced X-Parameters for PA Designs with High Mismatch and Technology Independent Large-Signal Device Models. Microwave Measurement Symposium,2008:88-91
    [67]M.H.Jason, J.Verspecht, et al. X-Parameter Measurement and Simulation of a GSM Handset Amplifier. Agilent Technologies, Inc., Santa Rosa, CA,95403, USA.
    [68]Xianfu Sun. PNA-X Nonlinear Vector Network Analyzer Applications.Agilent technologies,2008
    [69]www.openwaveforum.org
    [70]Zhang Qinglong, Liang Shengli.Comparative study of X-parameters and nonlinear scattering functions. Proceedings of the 10th International Conference on Electronic Measurement and Instruments (ICEMI),2011:355-358
    [71]M.Heimlich. Get on the Same Nonlinear Page [J].IEEE Microwave Magazine,2011, 12(2):32-37
    [72]GQ.Sun, Y.F.Xu, A.H.Liang. The study of nonlinear scattering functions and X-parameters. International Conference on Microwave and Millimeter Wave Technology (ICMMT),2010:1086-1089
    [73]D.E.Root, J.Xu, J.Horn, and M.Iwamoto. The large-signal model:Theoretical foundations, practical considerations, and recent trends in Nonlinear Transistor Model Parameter Extraction Technique. Cambridge Univervisty Press,2011, ch.5
    [74]I.Angelov, H.Zirath. A new empirical nonlinear model for HEMT and MESFET devices [J].IEEE Transactions on Microwave Theory and Techniques,1992,40(12):2258-2266
    [75]F.M..Yigletu, B.Iniguez, S.Khandelwal, T.A.Fjeldly. A compact charge-based physical model for AlGaN/GaN HEMTs. IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR),2013:103-105
    [76]W.R.Curtice, M.Ettenberg. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques,1985,33(12):1383-1394
    [77]H.Statz, P.Newman, I.W.Smith, et al. GaAs FET device and circuit simulation in SPICE[J]. IEEE Transactions on Electron Devices,1987,34(2):160-169
    [78]P.M.Cabral, J.C.Pedro, N.B.Carvalho. Nonlinear device model of microwave power GaN HEMTs for high power amplifier design[J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(11):2585-2592
    [79]I.Kallfass, H. Schumacher, and T.J.BraziL.A unified approach to charge-conservative capacitance modelling in HEMTs.IEEE Transactions on Microwave and Wireless Components Letters,2006,16(12):678-680
    [80]J.G.Leckey. A scalable X-parameter model for GaAs and GaN FETs. Microwave Integrated Circuits Conference (EuMIC),2011:13-16
    [81]W.R.Curtice. Nonlinear modeling of compound semiconductor HEMTs state of the art[J]. IEEE MTT-S International Microwave Symposium,2010:1194-1197.
    [82]H.Statz, P.Newman, I.W.Smith, R.A.Pucel, H.A. Haus. GaAs FET device and circuit simulation in SPICE[J]. IEEE Transactions on Electron Devices,1987,34(2):160-169
    [83]I.Angelov, K.Andersson, D.Schreurs, D.Xiao, N.Rorsmanl. Large-signal modeling and comparison of AlGaN/GaN HEMTs and SiC MESFETs. Proceedings of Asia-Pacific Microwave Conference,2006:279-282.
    [84]Agilent Technologies, ICCAP Software Documentation. Agilent Technologies Inc.,2009
    [85]A.Shey, W.H.Ku.An Analytical Current-Voltage Characteristics Model for High Electron Mobility Transistors Based on Nonlinear Charge-Control Formulation[J].IEEE Trans-actions on Electron Devices,1989,36(10):2299-2350,
    [86]H.Rohdin, P.Roblin. A MODFET dc Model with Improved Pinch off and Saturation Characteristics[J].IEEE Transactions on Electron Devices,1986,33(5):664-672,
    [87]R.Sasic, R.Ramovic, D.Tjapkin. A simple 2D analytical model of HEMT. IEEE Proceedings of Micro-electronics,1995:709-712
    [88]X. Cheng, M. Li. Physics-based compact model for AlGaN/GaN MODFETs with close-formed IV and C-V characteristics[J].IEEE Transactions on Electron Devices,2009,56 (12):2881-2887
    [89]H.J.Mattausch, M.Mattausch, N.Sadachika. The HiSIM compact model family for integrated devices containing a surface potential MOSFET core. Proceedings of Mixed Design of Integrated Circuits and Systems,2008:39-50
    [90]G.Gildenblat, X.Li, W.Wu, H.Wang. PSP:An advanced surface potential based MOSFET model for circuit simulation[J].IEEE Transactions on Electron Devices,2006,53(9): 1979-1993
    [91]吕彬义.基于表面势的HEMT模型研究.硕士论文,杭州电子科技大学,2010
    [92]H.C.Pao, C.T.Sah. Effects of diffusion current on characteristics of met al-oxide /insulator/-semiconductor transistors[J].Solid-state Electron,1966:927-930
    [93]D.L.John, F.Allerstam, et al. A surface-potential based model for GaN HEMTs in RF power amplifier applications[J]. Electron Devices Meeting (IEDM),2010:8.3.1-8.3.4
    [94]X.X.Cheng, Y.Wang. A Surface-Potential-Based Compact Model for AlGaN/GaN MODFETs [J]. IEEE Transactions on Electron Devices,2011,58 (2):448-454
    [95]S.Karmalkar. A new equivalent MOSFET representation of a HEMT to analytically model nonlinear charge control for simulation of HEMT devices and circuits[J]. IEEE Transactions on Electron Devices,1997,44(5):862-868
    [96](美)萨支唐.固态电子学基础.复旦大学出版社,2003
    [97]T.H.Yu, K.F.Brennan. Theoreticl study of a GaN-AlGaN high electron mobility transistor including a non-linear polarization model[J].IEEE Transactions on Electron Devices, 2003,50(4):315-323
    [98]T.L.Chen, GGildenblat. Analytical approximation for the MOSFET surface potential [J]. Solid-State Electronics,2001,45(2):335-339
    [99]GGildenblat, T.L.Chen, et al. SP:An Advanced Surface-Potential-Based compact MOSFET Model [J]. IEEE solid-state circuits,2004,39(9):1394-1406
    [100]H.J.Park, P.Kenung, C.M.Hu. A charge sheet capacitance Model of short channel MOSFET for SPICE [J]. IEEE Transactions on Computer-aided design,1991,10(3):376-389
    [101]L.Chen, G Gildenblat. Symmetric bulk charge linearization in charge-sheet MOSFET model [J].IEEE Electronics letters,2001,37(12):791-793
    [102]H.L.Wang, T.L.Chen, GGildenblat. Quasi-static and Nonquasi-static compact MOSFET Models Based on Symmetric Linearization of the Bulk and Inversion Charges [J]. IEEE Transactions on Electron Devices,2003,50(11):2262-2272
    [103]J.R.Brews. A comparison of MOS inversion layer charge and capacitance formulas. IEEE Transactions on Electron Devices,1986,33(2):182-187
    [104]DE.Ward, R.W. Dutton. A charge-oriented model for MOS transistor capacitances [J]. IEEE Solid-State Circuits,1978,13(5):7O3-7O8
    [105]U.Radhakrishna, Lan Wei, Dong-Seup Lee, T.Palacios, D.Antoniadis. Physics-based GaN HEMT transport and charge model:Experimental verification and performance projection. Electron Devices Meeting (IEDM),2012:13.6.1-13.6.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700