用户名: 密码: 验证码:
不同农业措施对丛枝菌根真菌群落结构和侵染效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根(Arbuscular mycorrhiza, AM)是植物根系与AM真菌(AM fungi, AMF)形成的一种互惠共生体,是自然生态系统中一个重要的组成成分。AMF能促进植物养分吸收,改善植物水分代谢,增强植物抗逆性,改善土壤理化性状,提高植物产量。农业生态系统中AMF多样性丰富,并以独特的群落结构发挥其功能。田间AM的形成与作用发挥的好坏,与相关的农业管理措施,如耕作方式、种植方式以及肥料施用等密切相关。本研究针对传统农业措施对资源、环境和粮食安全等造成不利影响的现状,利用茵根微生态理论和技术,对现代不同农业措施条件下(如保护性耕作、水稻旱作、无害化有机肥)的AMF群落结构和侵染效应的影响进行研究分析,旨在为现代农业管理措施的推广应用提供理论指导,从而更好地发挥AM在农业生产上的增产潜力,促进农业的可持续发展。主要研究结果如下:
     1.分析了位于江苏盐城的长期水稻旱作栽培条件下的AMF群落结构特征,发现其AM真菌可分3个属,18个种,其中球囊霉属(Glomus)有11个种,无梗囊霉属(Acaulospora)有2个种,盾巨孢囊霉属(Scutellospora)有1个种,尚有4个未知种;三个水稻旱作处理的AMF物种丰度均高于水作处理,但它们的优势种基本一致。地球囊霉(G. geosporum)、摩西球囊霉(G. mosseae)和沾屑球囊霉(G. spurcum)为水作处理0-20cm土层和旱作处理0-40cm土层的优势种,聚丛球囊霉(G. aggregatum)为水作和旱作处理20-80cm土层的优势种。
     2.深入分析了长期水稻旱作和水作田AMF的时空分布规律,发现同一土层旱作处理的AMF孢子密度均高于水作处理,大小依次为覆膜>裸露>覆草>水作;各处理均随土层加深,孢子密度逐渐降低。水作处理中AMF孢子主要集中在0-20cm土层,20-80cm土层的孢子密度显著降低,旱作处理下层孢子密度虽然也有降低趋势,但明显高于水作处理,尤其覆膜处理20-40cm土层的孢子密度比0-20cm土层还高。大麦季AMF孢子密度高于水稻季,且随作物生育期延长,大麦的AMF孢子密度趋增,而水稻的AMF孢子密度趋减;在大麦田,旱作与水作处理0-20cm土层的孢子密度差异不显著,在水稻田旱作覆草和旱作裸露两个处理0-20cm土层的孢子密度显著高于旱作覆膜和水作处理。对根系AM侵染率做了比较分析,结果表明大麦AM侵染率显著高于水稻AM侵染率;旱作处理的AM侵染率显著高于水作处理,其中,旱作覆膜处理的AM侵染率显著高于旱作覆草和旱作裸露两个处理。
     3.分析了以上长期试验水稻田土壤的环境因子与AMF孢子密度和AM侵染率的相关性,发现0-20cm土层的土壤有机质、温度、速效P、含水量及pH值不同,这些因子对AMF的发育和侵染均有一定影响。孢子密度与AM侵染率随土壤有机质含量,尤其是土壤水分含量的提高呈显著的下降趋势,但与土壤pH值、土壤温度间则呈一定程度的正相关,覆膜处理表层(0-20cm)高磷土壤环境对AMF的产孢和侵染具有一定的抑制作用。AMF孢子密度、AM侵染率与水稻产量呈不同程度的负相关,而与大麦产量呈显著正相关。分析认为,旱作处理中影响AMF侵染的关键因子是土壤水分。
     4.分析了位于山西临汾的长期免耕(15年以上)和传统耕作小麦田的AMF多样性特征,发现其AM真菌分为3个属,12个种,包括球囊霉属(Glomus)7个种,无梗囊霉属(Acaulospora)1个种,盾巨孢囊霉属(Scutellospora)2个种,尚有2个未知种。免耕和传统耕作处理的AMF优势种相同,均为摩西球囊霉(G. mosseae)、地表球囊霉(G. versiforme)和聚丛球囊霉(G. aggregatum),且摩西球囊霉和地表球囊霉主要出现在上层土壤,聚丛球囊霉主要在下层土壤。
     5.调查分析了长期免耕和传统耕作小麦的AMF时空分布规律,发现免耕处理的AMF物种丰度显著高于传统耕作处理,三个免耕处理间的AMF物种丰度基本一致;免耕处理和传统耕作处理的AMF物种丰度均随土层加深而逐渐降低。免耕处理的AMF孢子密度显著高于传统耕作处理,尤以免耕深松处理为高,但与其它两个免耕处理相比差异不显著;不同土层的AMF孢子密度不同,传统耕作20-40cm土层孢子密度低于0-20cm土层,但免耕处理20-40cm土层的孢子密度均稍高于0-20cm土层;40cm土层以下,所有处理的AMF孢子密度均明显降低,160cm土层以下没有发现AMF孢子;另外,100cm土层以下,所有处理都只有1个AMF物种出现,为聚丛球囊霉(G. aggregatum)。
     6.分析了小麦不同生长时期AMF侵染率和孢子密度的季相变化规律,结果显示免耕处理的AM侵染率和AMF孢子密度在小麦不同生长时期均显著高于传统耕作处理,免耕深松处理的AM侵染率和孢子密度显著高于免耕免压和免耕少压两个处理;侵染率在小麦拔节期达到最高,而孢子密度在小麦收获期达到最高。
     7.分析了不同免耕条件下土壤环境因子与AMF孢子密度和AM侵染率的相关性,结果表明土壤容重与AMF孢子密度和AM侵染率呈显著负相关,而土壤有机质与孢子密度和AM侵染率呈显著正相关。本研究中,免耕处理的土壤容重明显降低,有机质含量提高,这两个因素提高了土壤的保水性和透气性,有利于小麦根系AM的形成。
     8.通过盆栽试验,发现单施有机肥对摩西球囊霉(G. mosseae)及其寄主植物玉米的生长发育等有明显的影响,且影响程度随有机肥水平的改变而发生变化。当有机肥施用量<2.0g/kg时,接种处理的AM侵染率、AMF孢子密度、玉米株高、叶绿素含量、生物量以及磷含量均高于或显著高于相应水平的不接种处理,且随有机肥水平的提高而逐渐增高。然而,当有机肥施用量>2.0g/kg时,接种AMF处理的各项指标则与不接种处理相当或显著低于不接种处理。
     9.通过有机肥和等量氮磷钾无机肥对比试验,研究了两者对摩西球囊霉(Gmosseae)及其寄主植物生长发育的影响。结果显示,有机肥对AM侵染率、玉米株高以及生物量均有明显的影响。有机肥处理的AM侵染率和玉米生物量均显著高于无机肥处理,证明有机肥中的有机质部分(包括微量元素等其他营养成分)发挥着重要作用。
     以上研究结果表明不同农业措施对土壤AMF的群落结构产生了显著的影响。其中,南方水稻旱作和北方免耕覆盖处理对AMF的重要影响因素都是改善了土壤的水分状况和通气性,从而促进了AMF的繁殖、侵染及其寄主植物的生长发育;而施用有机肥对AMF的影响则表现为,有机肥含量较低时对AMF生长有促进作用,而含量较高时则有抑制作用。采用不同农业技术措施,适度调控表层土壤养分,有助于AMF的丰度和侵染效率的提高,从而促进农业的可持续发展。
Arbuscular mycorrhizal (AM) symbiosis is a plant-microbe association between some Glomeromycota fungi and the roots of more than80%of land plants. AM fungi (AMF) are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. AMF improve plant growth by increasing the supply of immobile soil nutrients, notably P, enhancing tolerance or resistance to soil pathogens and abiotic stresses, and by improving the soil structure. Agricultural management factors such as tillage methods, cultivated forms, types and amounts of fertilizers applied may have severe impacts on the AMF community structure. In this study, the micro-ecology theory and technology of mycorrhiza were adopted to investigate the effects of new agricultural practices, such as conservation tillage, rice cultivated in aerobic soil and use of harmless organic fertilizer, on community structures and inoculation rates of AMF. The experimental methods and main results were summarized as follows:
     1. In order to learn the community structure, spatial and temporal distribution of AMF in rice paddy soils, a field investigation was carried out in the experimental farm of Yancheng Academy of Agriculture Science, Jiangsu province from2006to2007. The soil samples were collected respectively from the plots of a waterlogged soil treatment and three aerobic soil treatments including the ground covered with plastic film, with rice straw mulching and without any mulching. Eighteen AM fungal species belonging to three genera were identified in the soil samples, including11species from Glomus,2species from Acaulospora,1specie from Scutellospora, and4unknown species. The most abundant species of AMF were G. geosporum, G. spurcum and G. mosseae. AMF diversity in aerobic paddy soil was higher than that of waterlogged paddy soil, but the dominant species of AMF, were not altered by water regime in the paddy field. However, the distribution of the dominant AMF species in the soil profile was altered by the water regime. G. geosporum, G spurcum and G. mosseae were the most abundant species in0-20cm layer of waterlogged soil and0-40cm layer of aerobic soil and G. aggregatum was the dominant species in 20-80cm layer of waterlogged and aerobic soil.
     2. AMF density was significantly higher in the aerobic soil than the waterlogged soil. Among three aerobic soil treatments, plastic film cover resulted highest AMF density. The density of AMF spores gradually decreased from upper layer to lower layer of soil. In waterlogged soil, the spores of AM fungi were mainly distributed in0-20cm soil layer, but the spores of AMF in the20-80cm soil layer in aerobic soil were significantly higher than that of waterlogged soil. It was also observed that both the water regime and plant species affected the root colonization rate. The rice root colonization of AMF was significantly higher in the aerobic soil compared to waterlogged soil. In addition, the colonization percentage of AMF in rice roots grown under aerobic condition was much higher in the treatment with plastic film than with straw mulching and no mulching. The AM colonization in barley roots was significantly higher than that in rice roots.
     3. The study on the different types of rice cultivated under non-flooded soil showed that the density of AMF spores in host plant rhizosphere correlated significantly with the infection rate of AMF. The cultivation methods significantly affected the contents of organic matter, available P and pH value in0-20cm layer of soils, which had very large effects on AMF's growth and infection. The spore density and the infection rate of AMF showed a declining trend with the improvement of soil water content and soil organic matter. In contrast, the spore density and the infection rates of AMF to host plants were to some extent positively correlated with soil pH. Phosphorus (P) enrichment on the top layer of soil in plastic film treatment led to the inhibition of the reproduction and infection of AMF. Soil water content was the important influence factor on infection of AMF in aerobic soil.
     4. A field survey was conducted in a15-years long-term no-tillage wheat area in Linfen, Shanxi to study the effects of no-tillage without compaction, no-tillage with less compaction, no-tillage with subsoiling and traditional tillage on the diversity of AMF.12species from three genus of AMF were identified in the soil samples, including seven of Glomus, one of Acaulospora, two of Scutellospora, and two of unknown species. In addition, G. mosseae, G. versiforme and G. aggregatum were the dominant species in the no-tillage and conventional tillage treatments, G. mosseae and G. versiforme mainly were in the surface layer of soil, and G. aggregatum mainly was in the deep layer of soil.
     5. AM fungal species richnesses of conservation tillages were significantly higher than that of conventional tillage. There was no significant difference in AMF species richness among three no-tillage treatments. The species richness of AMF differed between different soil layers, and the species richness gradually decreased with the soil layer increases. The spore densities in no-tillage treatments were significantly higher than that of conventional tillage treatment. Especially, no-tillage with subsoiling treatment had the highest density of spores in the three conservation tillage treatments. The spore densities of AMF in different layers were also different, and the spore density of20-40cm layer was lower than that of0-20cm layer in the conventional tillage, but it was higher in the no-tillage treatments. The spore density of AMF of all treatments decreased with the increase of soil layer below40cm soil layer, and no AMF was founded below160cm soil layer. There was only one specie of AMF, identified as G. aggregatum in all the treatments below100cm soil layer.
     6. AM colonization and spore density at different growth stages of wheat in no-tillage soil were all significantly higher than that of conventional tillage soil, and the AM colonization and spore density in no-tillage with subsoiling were significantly higher than those of other two no-tillage treatments. The study results showed that the spore density and colonization of AMF in wheat soil had a seasonal variation. The AM fungal colonization reached the maximum in jointing stage of wheat, and the spore density had a highest value in mature period of wheat.
     7. The analysis on the relevance of soil environmental factors and the spore density and the infection rates of AMF in long-term no-tillage wheat field showed that the soil bulk density linking to the tillage management was negatively correlated with the spore density and the infection rates of AMF to wheat. In contrast, soil organic matter was positively correlated with the spore density and the infection rates of AMF to host plants.
     8. In order to evaluate the effect of G. mosseae on maize growth, a pot experiment was conducted by using different organic fertilizer rates (0.0,0.5,1.0,2.0and4.0g kg'soil). There were two AMF treatments (inoculation with G. mosseae,+AM and uninoculated control,-AM) at every organic fertilizer rate. Generally, both inoculated G. mosseae and organic fertilizer significantly improved plant growth. In the inoculated pots, the growth of plant and AM colonization varied with the rates of organic fertilization. The plant height, chlorophyll content, biomass, P uptake, and AM colonization were increased by the increasing of organic fertilizer rate up to2.0g kg1, but decreased or had no significant difference compared to the uninoculated plants at the highest fertilizer rate (4.0g kg-1). The results suggested that optimal organic fertilizer rate was needed to stimulate AM fungi and improve the maximal growth of plant in agricultural systems.
     9. The comparative experiments between the organic fertilizer and inorganic fertilizer with the same amount of major nutrients (N, P and K) were conducted to understand the effect of organic matter on AM colonization and growth of maize. The results showed that organic matter played a significant role in promoting the infection rate of G. mosseae, plant height and biomass of maize. The infection rate of AMF and biomass of maize in the organic fertilizer treatments were higher than that of inorganic fertilizer treatment. At the early growing period of maize, the plant height was lower in organic fertilizer treatment than that of inorganic treatment, but it was significantly higher than that of inorganic fertilizer treatments at the late period of maize.
     Taking together, the effect of the agricultural practices on soil AMF community structure and infection rate was significant. The conservation tillage and non-flooded rice cultivation increased the infection and reproduction of AMF due to improved the soil aeration and water content. Increasing application of either organic or inorganic fertilizers containning P could inhibite the growth of AMF and AM rate in maize. The proper agricultural practices could thus promote the sustainable development of agriculture by moderately adjusting and controlling nutrition of top soil.
引文
Abbot LK, Robson AD. The effect of VA mycorrhiza on plant growth. In:Powell, C.L., Bagyaraj, D.L. (ed.):VA Mycorrhizae, CRC Press, Boca Raton,1984,113-130
    AI-Karakia GN, AI raddad A. Effects of arbuscular mycorrhizal fungi and drought stress on growth and Nutrient uptake of two wheat genotypes, differing in drought resistance. Mycorrhiza,1997, 7(2):83-88
    Al-Karaki GN, McMichael B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza,2004,14:263-269
    Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature,2005,435:824-827
    Alien EB, Alien MF, Helm DY, Trappe JM, Molina R, Rjncon E. Patterns and regulation of mycorrhizal plant and fungal diversity. In:Collins H P, Roberston GP, Klug MJ, eds. The Significance and Regulation of Soil Biodiversity. Dordrechat, Netherlands:Kluwer Academic Publishers,1995,47-62
    Alvey S. Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils. Biology and Fertilityof Soils,2003,37(2):73-82
    Amaya-Carpio L, Davies FT, Fox T, He C. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition and growth of Ipomoea carnea ssp. Fistulosa. Photosynthetica,2009,47:1-10
    Anderson RC, Liberta AE. Influence of supplemental inorganic nutrients on growth, survivorship, and mycorrhizal relationships of Schizachyrium (Poceae) grown in fumigated and unfumigated soil. America Journal of Botany,1992,79:406-411
    Azaizeh HA, Marschner H, Romheld V, Wittenmayer L. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soilgrown maize plants. Mycorrhiza,1995,5:321-327
    Bearden BN, Petersen L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertiso. Plant and Soil,2000,218:173-183
    Begon ME, Harper JL, Townsend CR. Okologie,3rd edn. Spektrum, Heidelberg, Berlin,1998
    Bending GD, Turner MK, Rayns F, Marx MC, Wood M. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry,2004,36:1785-1792
    Berkeley MJ, Broome CE. Enumeration of the fungi of ceylon. Botanical Journal of the Linnean Society,1873,14:29-140
    Besada YB, EI-Nsggar IM, Armanios RR. Effect of inoculation with VA mycorrhizal fungi and different phosphate fertilizers on wheat nutrients content and yield under field condition. Zagazig Journal of Agricultural Research,1995,22:1225-1235
    Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Plos Biology,2006,4:1239-1247
    Bethlenfalvay GJ. Mycorrhizae and crop productivity. In:Mycorrhizae in sustainable agriculture, eds. G J. Bethlenfalvay and R. G. Linderman, pp.1-27. ASA Special Publication No.54. Agronomy Society of America, Madison, Wisconsin:SSSA.1992
    Biermann B, Linderman RG. Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular arbuscular mycorrhizae. Journal of the American Society for Horticultural Science,1983,108:962-971
    Blaszkowski J. Comparative studies of the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol.,1993,28:93-140
    Blaszkowski J., Adamska I., Czerniawska B. Arbuscular mycorrhizal fungi (Glomeromycota) of the Vistula Bar. Acta Mycol.,2002a.37:39-62
    Blaszkowski J., Tadych M., Madej T. Arbuscular mycorrhizal fungi (Glomales, Zygomycota) of the Bledowska Desert, Poland. Acta Soc. Bot. Pol.,2002b,71:71-85
    Boddington CL, Dodd JC. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fung.i I. Field studies in an Indonesian ultiso. Plant and Soil,2000,218: 137-144
    Bohme L, Bohme F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilization. European Journal of Soil Biology,2006,42:1-12
    Borges RG, Chaney WR. Root temperature affects mycorrhizal efficiency in Fraxinus pensylvanoca March. New Phytologist,1989,112:411-417
    Borowicz VA. Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology,2001,82: 3057-3068
    Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32. Canberra, Australia:Pirie Printers,1996
    Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants:understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil,2009,320(1/2):37-77
    Buick R. The antiquity of oxygenic photosynthesis:Evidence from stromatolites in sulfate-deficient Archean lakes. Science,1992,255:74-77
    Burrows RL, Pfleger FL. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journal of Botany,2002,80:120-130
    Calvet C, Estaun V, Camprubi A. Germination, early mycelial growth and infectivity of a vesicular-arbuscular mycorrhizal fungus in organic substrates. Symbiosis,1992,14:405-411
    Cantrell IC, Lindennan RG. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil,2001,233(2):269-281
    Cerligione LJ, Liberta AE, Anaerson RC. Effect of soil moisture and soil sterilization on vesicular arbuscular mycorrhizal colonization and growth of little bluestem (Schizachyrium scoparium). Canadian Journal of Botany,1988,66:757-761
    Caravaca FJ, Barea M, Rolda'n A. Synergistic influence of an arbuscular mycorrhizal fungus and organic amendment on Pistacia lentiscus L. seedlings afforested in a degraded semi-arid soil. Soil Biology and Biochemistry,2002,34:1139-1145
    Chhabra ML, Singh RP, Jalali BL. Studies on VA mycorrhizal impact on growth and development of cowpea. Trends in mycorrhizal research held at Haryans Agr:Hisa, Fed,1990,1-6
    Corkidi L, Johnson NC, Johnson NC. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil,2002,240 (2):299-310
    Courty PE, Buee M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J. The role of ectomycorrhizal communities in forest ecosystem processes:New perspectives and emerging concepts. Soil Biology & Biochemistry,2010,42:679-698
    Davies Jr FT, Olalde-Portugal V, Escamilla HM, Ferrera-Cerrato RC, Alvarado MJ, Espinosa IJ. Alleviating phosphorus stress of chile ancho pepper(Capsicum annuum L. cv. San Luis) by arbuscular mycorrhizal inoculation. The Journal of Horticultural Science & Biotechnology,2000, 75:655-661
    DeClerck F, Singer MJ, Lindert P. A 60-year history of California soil quality using paired samples. Geoderma,2003,114:215-230
    Degens BP, Schipper LA, Sparling GP, Duncan LC. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance. Soil Biology and Biochemistry,2001,33: 1143-1153
    Dekkers TBM, van der Werff PA. Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza, 2001,10:195-201
    De la Providencia IE, de Souza FA. Fernandez F. Arbuscular mycorrhizal fungi reveal distinct Patterns of anastomosis formation and hyphal healing mechanisms between different Phylogenic groups. New Phytologist,2005,165:261-271
    Dhillion SS, Ampornpan L. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of p retrains plant rice (Oryza saliva L.) plants. Biology and Fertility of Soils,1992,13:85-91
    Dospekhov BA. Field experimentation. In:Statistical procedures. Moscow, Mir Publishers,1984 pp. 352.
    Douds DD, Galvez L, Franke-Snyder M, Reider C, Drinkwater LE. Effect of compost addition and crop rotation point upon VAM fungi. Agriculture, Ecosystems and Environment,1997,65: 257-266.
    Douds DD, Millner P. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agriculture, Ecosystems & Environment,1999,74:77-93
    Fontenla S, Godoy R, Rosso P, Havrylenko M. Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza,1998,8:29-33
    Frank AB. Uber die auf wurzelsymbiose beruhende ernahrung gewisser baume durch unterirdische pilze. Brr Deutsch Bot Gessell,1885,3:128-145
    Friese C. F., Koske R. E. The spatial dispersion of spores of vesicular-arbuscular mycorrhizal fungi in a sand dune:microscale patterns associated with the root architecture of American beachgrass. Mycol. Res.,1991,95:952-957
    Fritz Oehl, Ewald Sieverding, Kurt Ineichen, Elisabeth Anne Ris, Thomas Bollerand, Andres Wiemken. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist,2005,165:273-283
    Gange AC, West HM. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist,1994,128:79-87
    Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. The Plant Cell,2008,20:1407-1420
    Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. The Plant Cell,2005,17:3489-3499
    Gerdemann JW, Nicolson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society,1963,46:235-244
    Gianinazzi-Pearson V, smith SE, Gianinazzi S, Smith FA. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of the enzyme activities in plant-fungus interfaces? New Phytologist,1991,117:61-74
    Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S. Gene expression and molecular modification associated with plant respons to infection by arbuscular mycorrhizal fungi. Advance in Molecular Genetic of Plant-microbe Interaction,1994,3:179-186
    Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J. Enzyma-tic studies on the metabolism of vesicular-arbuscular myco-rrhiza. Ⅲ. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytologist,1979,82:127-132
    Giovanetti M, Avio L. VAM infection and reproduction as influenced by different organic and inorganic substances. In R. Molina, editor. Proceedings of the 6th North American Conference on Mycorrhizae. Forest Research Laboratory, Bend, Oregon.1985
    Giovanetti M, Avio L, Sbrana C, Citernesi A. Factors affecting appressoria development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytologist,1993,123:114-122
    Goldstein AH, Baertlein DA, McDaniel RG Phosphate starvation inducible metabolism in Lycopersicon esculentum. Plant Physiology,1988,87:711-715
    Gosling P, Hodge A, Goodlass G, Bending GD. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems and Environment,2006,113:17-35
    Graham JH, Abbott LK. Wheat response to aggressive and nonaggressive arbuscular mycorrhizal fungi. Plant and Soil,2000,220:207-218
    Gryndler M, Hrselova H, Sudova R, Gryndlerova H, Rezacova V, Merhautovi V. Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza,2005a,15:483-488
    Gryndler M, Larsen J, Hrselova H, Rezacova V, Gryndlerova H, Kubat J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza,2005b,16:159-166
    Hawksworth DL, Kirk PM, Sutton BC. Ainsworth & Bisby's Dictionary of the Fungi. Londen: Cambridge University Press,1995
    Harley JL, Smith SE. Myeorrhizal symbiosis. London:Aeadamie Press, Ine, Ltd.1983,1-313
    Harrison MJ. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:361-389
    Haugen LM, Smith SE. The effects of high temperature and fallow period on infection of mungbean and cashew roots by the Vesicular arbuscular mycorrhizal fungus Glomus intraradices. Plant and Soil,1992,145:71-80
    Hayman DS. Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology,1982,72:1119-1125
    Hayman DS. Advances in Agricultural Microbiology. New Delhi:Oxford and IBP Publishing Co,1982, 325-376
    Hazarika DK, Das KK, Dubey LN. Effect of vesicular arbuscular mycorrhizal fungi inoculation on growth and nutrient uptake of blackgram, Journal of Mycology and Plant Pathology,1999,29: 201-204
    Helgason BL, Walley FL, Germida JJ. Fungal and bacterial abundance in longterm no-till and intensive-till soils of the Northern Great Plains. Soil Science Society of America Journal,2009, 73(1):120-127
    Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. Ploughing up the wood-wide web? Nature,1998,394:431
    Hetrick BAD, Wilson GT, Kitt DG, Schwab AP. Effect of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non-sterile soil, Soil Biology & Biochemistry,1988, 20:501-507
    Hetrick BAD, Kitt DG, Wilson GT. The influence of phosphorus fertilization, drought, fungal species, and non-sterile soil on mycorrhizal growth response in tall grass praiser plants. Canadian Journal of Botany,1986,64:1199-1203
    Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature,2001,413:297-299
    Ilag LL, Rosales AM, Elazegui FA, Mew TW. Changed in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant and Soil,1987,103:67-73
    Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber roots. New Phytologist,1990,115:77-83
    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature,2006,443:818-822
    Jansa J. Effect of Soil Tillage on Arbuscular Mycorrhizal Fungi and on Their Role in Nutrient Uptake by Crops. PhD Thesis. Zuerich:The Swiss Federal Institute of Technology,2002
    Jansa J, MozafarA, Banke S, Mcdonald BA, Frossard E. Intra-and inter sporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycological Research,2002,106(6):670-681
    Jansa J, Wiemken A, Frossard E. The effects of agricultural practices on arbuscular mycorrhizal fung.i Geological Society, London. Special Publications,2006,266:89-115
    Johnson NC. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist,2010,185:631-647
    Joner EJ. The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biology and Fertility of Soils, 2000,32:435-440.
    Joner EJ, Jakobsen I. Growth and extra cellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biology and Biochemistry,1995,27:1153-1159
    Jindal V, Atwal A, Seckhon BS, Singh R. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCI salinity. Plant Physiology and Biochemistry,1993,31:475-81
    St. John TV, Coleman DC, Reid CPP. Association of vesicular-arbuscular mycorrhizal hyphae with organic particles. Ecology,1983,64:957-959
    Johnson NC, Pfleger FL. Vesicular-arbuscular mycorrhizae and cultural stress. In:Mycorrhizae in sustainable agriculture, eds. G J. Bethlenfalvay and R. G. Linderman, pp.71-99. Proceedings of a Symposium, Denver,31 October 1991. Special publication No.54. American Society of Agronomy, Madison, Wisconsin:SSSA.1992
    Joner EJ, Jakobsen I. Uptake of 32P from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L.). Plant and Soil,1995,172:221-227
    Jordan NR, Zhang J, Huerd S. Arbuscular-mycorrhizal fungi, potential roles in weed management. Weed Research.2000,40:397-410
    Jr. Douds DD, Miliner RD. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agriculture, Ecosystems and Envelopment,1999,74:77-93
    Kabir Z, O'Halloran IP, Widden P, Hamel C. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza,1998,8:53-55
    Kahiluoto H, Ketoja E, Vestberg M, Saarela I. Promotion of AM utilization through reduced P fertilization.2. Field studies. Plant and Soil,2001,231:65-79
    Kenrick P, Crane PR The origin and early evolution of plants on land. Nature,1997,389:33-39
    Kittiworawat S, Youpensuk S, Rerkasem B. Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis. Chiang Mai Journal of Science,2010,37(3): 517-527
    Kogelmann WJ, Lin HS, Bryant RB, Beege DB, Wolf AM, Peterse GW. A statewide assessment of the impacts of phosphorus-index implementation in Pennsylvania. Journal of Soil and Water Conservation,2004,59:9-18
    Koske R. E. Glomus aggregatum emended:A distinct taxon in the Glomus fasciculatum complex. Mycologia,1985.77:619-630
    Koske R. E. Vesicular-arbuscular mycorrhizae of some Hawaiian dune plants. Pacific Sci.,1988,42: 217-229
    Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENODll expression in roots of Medicago truncatula. Plant Physiology,2003,131:952-962
    Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proceedings of the National Academy of Sciences of the United States of America,2008,105:9823-9828
    Kothari SK, Marschner H, Romheld V. Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in calcareous soil. Plant and Soil,1991,131:77-185
    Lal R. Soil carbon sequestration impacts on global climate change and food Security. Science,2004,304: 1623-1627
    Lambais MR, Mebdy MC. Differential expression of defense-related gene in arbuscular mycorrhizal. Canadian Journal of Botany,1995,73:533-540
    Land S, Von Alten H, Schonbeck F. The influence of host plant, nitrogen fertilization and fungicide application on the abundance and seasonal dynamics of vesicular-arbuscular mycorrhizal fungi in arable soils of northern Germany. Mycorrhiza,1993,2:157-166
    Le Tacon F, Skinner FA, Mosse B. Spore germination and hyphal growth of a vesicular-arbuscular mycorrhizal fungus, Glomus mosseae under reduced Oxygen and increased carbondioxide concentrations. Canadian Journal of Microbiology,1983,29:1280-1285
    Linderman RG, Davis EA. Evaluation of commercial inorganic and organic fertilizer effects on Arbuscular mycorrhizae formed by Glomus intraredices. HortTechnology,2004,14:196-202
    Linderman RG, Davis EA. Soil amendment with different peatmosses affects mycorrhizae of onion. HortTechnology,2003,13:285-289
    Lingua G, Agostino GD, Massa N, Antosiano M, Berta G. Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza,2002,12:191-198
    Link HF. Observations in ordine plantarum naturales. Ges Naturforch Freunde Berlin Mag,1809,3:3-42
    Li YS, Wu LH, Zhao LM, Lu XH, Fan QL, Zhang FS. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil and Tillage Research,2007,93(2):370-378
    Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza,2000,9: 331-336
    Li XL, Marschner H, George E. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil,1991,136:49-57
    Lugo MA, Maza MEG, Cabello MN. Arbuscular mycorrhizal fungi in a mountain grassland II. Seasonal variation of colonization studied,along with its relation to host type. Mycologia,2003, 95(3):407-415
    Mader P, Edenhofer S, Boller T, Wiemken A, Niggli U. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biology and Fertility of Soils,2000,31:150-156
    Madigan MT, Martinko JM, Parker J. Brock Biology of Microorganisms,9th edn. Prentice-Hall, Inc., Upper saddle River, New Jersey,2000
    Martensson AM, Carlgren K. Impact of phosphorus fertilization on VAM diaspores in two Swedish long-term field experiment. Agriculture, Ecosystems and Environment,1994,47:327-334
    Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J. Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agriculture, Ecosystems and Environment,2007,119:22-32
    McGonigle TP, Evans DG, Miller MH. Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiment. New Phytologist, 1990,116:629-636
    Mcgonigles TP, Millers MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist,1990,115:492-501
    Michelini S. Relationships between environmental factors and levels of mycorrhizal infect ion of citrus on four islands in the Eastern Caribbean. Tropical Agriculture,1993,70(20):135-140
    Mohammad A, Mitra B, Khan AG Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agriculture, Ecosystems and Environment,2004, 103:245-249
    Mohammad MJ, Malkawi HI, Shibli R. Effects of mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of Plant Nutrition,2003,26:125-137
    Morton JB, Redecker D. Two new families of Glornales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus based on concordant molecular and morphological characters. Mycologia,2001,93(1):181-195
    Morton JB, Benny GL. Revised classifcation of arbuscular mycorrhiza fungi (Zygomycetes):a new ordered Glomales, two new suborders, Glomineae and Gigasporaceae, and two new families, Acaulosporaceae and Gigasporaceae, with a emendation of Glomaceae. Mycotaxon,1990,37: 471-491
    Mosse B. Mycorrhiza in a sustainable agriculture. In:The role of Microorganisms in a sustainable Agriculture, eds. J. M. Lopez-Real and R. H. Hodges, pp.105-123. London, Academic press.1986
    Mosse B. Mycorrhiza in a sustainable agriculture. In:Lopez-Real JM, Hodges RH (eds.), Role of Microorganisms in a sustainable Agriculture. London:Academic Publishers,1986,105-123
    Mosse B. The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing, vesicular-arbuscular mycorrhiza. Transactions of the British Mycological Society,1959,42:273-286
    Murphy Y, Riley JP. A modified single solution method for determination of phosphate in natural waters. Analytica Chemica Acta,1962,27:31-36
    Muthukumar T, Udaiyan K. Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions. Biology and Fertility of Soils,2000,31:114-120
    N. C. Schenck and George S. Smith. Additional New and Unreported Species of Mycorrhizal Fungi (Endogonaceae) from Florida. Mycologia,1982,74,1:77-92
    Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology,2003,69:2816-2824
    Ojala JC, Jarrell WM, Menge JA, Johnson ELV. Influence of mycorrhizal fungion the mineral nutrition and yield of onion in saline soil. American Society of Agronomy,1983,75(2):255-258
    Oldroyd GED, Downie JA. Calcium, kinases and nodulation signalling in legumes. Nature Reviews/ Molecular Cell Biology,2004,5:566-576
    Oldroyd GED, Downie JA. Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology,2006,9:351-357
    Olsson PA, Thingstrup I, Jakobsen I, Baralth E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology & Biochemistry,1999,31:1879-1887
    O"Toole JC, Maguling MA. Greenhouse selection for drought resistance in rice. Crop Science,1981,21: 325-327
    Pasolon YB, Hirata H, Barrow NJ. Effect of white clover (Trifolium repens L.) intercropping on growth and nutrient uptake of upland rice (Oryza sativa L.) in relation to VA-mycorrhizae and soil fertility. Dev. Plant Soil Science,1993,54:331-334
    Peterson RL, Massicotte HB, Melville LH. Mycorrhizas:Anatomy and Cell Biology. NRC Research Press, Ottawa, Canada.2004
    Pirozynski KA, Malloch DW. The origin of land plants:a matter of mycotropism. Biosystems,1975,6: 153-164.
    Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azco'n-Aguilar C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany,2002,53:525-534
    Ragupathy S, Mohankumar B, Mahadevan A. Occurrence of Vesicular-Arbucular Mycorrhizae in tropical hydrophytes.Aquatic Botany,1990,36:287-291
    Rasmussem PE, Collins HP. Long term impacts of tillage, fertilizer, and crop residues on soil organic matter in temperate semiarid regions. Advances in Agronomy,1991,45:93-134
    Raush C, Daram P, Brunner S. A phosphate transporter expressed in arbuscule containing cell in potato. Nature,2001,414(6862):462-470
    Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist,2003,157:475-492
    Redecker D. Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza,2000,10:73-80
    Redecker D. Morton J. B, Bruns T. D, Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution,2000,14 (2),276-284.
    Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 1994,91:11841-11843
    Rillig MC, Wright SF, Eviner VT. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species. Plant and Soil,2002,238(2):325-333
    Rosendahl S, Matzen HB. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytologist,2008,179:1154-1161
    Ruotsalainen AL, Vare H, Vestberg M. Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza,2002,12(1):29-36
    Ryan MH, Chilvers GA, Dumaresq DC. Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manure than on a conventional neighbour. Plant and Soil,1994,160:33-40
    Sanders IR. Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. American Naturalist, 2002,160:S128-S141
    Scheck NC, Perez Y. Manual for the Identification of VA Mycorrhizal Fungi,2nd edn. INVAM, University of Florida, Gainesville, USA,1988
    Schiipier A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromy cota:phylogeny and evolution. Mycological Research,2001,105(12):1413-1421
    Schuβler A. Molecular phylogeny, taxonomy and evolution of Geosiphon phyriformis and arbuscular mycorrhizal fungi. Plant and Soil,2002,244:75-83
    Schenck NC, Perez Y. Manual for Identification of Vesicular Arbuscular Mycorrhizal Fungi. Second edition. INVAM. University of Florida. Gainesville, Florida, USA.1988,1-233
    Schroeder MS, Janos DP. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil,2004,264 (1-2):335-348
    Sieverding E. Ecology of VAM fungi in tropical agrosystems. Agriculture, Ecosystems & Environment, 1989,29:369-390
    Siddiqui ZA. Effect of plant growth promoting bacteria and composted organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth. Bioresource Technology,2004,95: 223-227
    Siddiqui ZA, Akhtar MS. Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biology and Fertility of Soils,2007,43:603-609
    Siddiqui ZA, Iqbal A, Mahmood I. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology,2001,16: 179-185
    Siguenza C, Espejel I, Allen EB. Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza,1996,6:151-157
    Singh S, Anita P, Bhaskar C, Lok Man SP. Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in'natural'and'cultivated'ecosites. Biology and Fertility of Soils, 2008,44:491-500
    Smith SE, Read DJ. Mycorrhizal Symbiosis. London, Academic Press.1997
    Smith SE, Read DJ. Mycorrhizal Symbiosis,3rd edn. Academic Press, London.2008
    Smith FA, Smith SE. Mutualism and parasitism:diversity in function and structure in the vesicular-arbuscular (VA) mycorrhizal symbiosis. Advances in Botanical Research,1996,22:1-43
    Smith FA, Smith SE. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytologist,1997,137:373-388
    Song YC, Li XL, Christie P. Uptake of organic phosphorus by arbuscular mycorrhizal red clover. Pedosphere,2002,12(2):103-110
    Sreenivasa MN, Bagyaraj DJ. Chloris gayana (Rhodes grass), a better host for the mas production of Glomus fasciculatum inoculum. Plant and Soil,1988,106:289-290
    Stella A, Ennin, Clegg MD. Effect of soybean plant populations in a soybean and maize rotation. Agronomy Journal,2001,93:396-403
    Strother PK, Al-Hajri S, Traverse A. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology,24:55-58
    Subramanian KS, Bharathi B, Jegan A. Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biology and Fertility of Soils,2008,45:133-144
    Sylvia DM, Williams SE. Mycorrhizae and environmental stresses. In:Bethlenfalvay G J. Linderman R.G (eds), Mycorrhizae in sustainable agriculture, Madison, ASA Special Publication,1992,54: 101-124
    Tabatabai MA. Soil enzymes. In:Methods of Soil Analysis:Part 2, Microbiological and Biochemical Properties, eds. R. W. Weaver, J. S. Angle and P. S. Bottomley, pp.775-833. American Society of Agronomy, Madison, Wisconsin:SSSA.1994
    Tadych M., Blaszkowski J. Arbuscular fungi and mycorrhizae (Glomales) of the Slowinski National Park, Poland. Mycotaxon,2000,74:463-483
    Taylor TN, Remy W, Hass H, Kerp H. Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia,1995,87:560-573
    Tawaraya K, Satio M, Morioka M, Wagatsuma T. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae. Soil Science and Plant Nutrition,1994,40(4):667-673
    Thaxter R. A revision of Endogonaceae. Proceedings of American Academy of Arts. Science,1922,57: 291-351
    Trappe JM. Phylogenetic and ecological aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In:Safair GR ed. Ecophysiology of VA Mycorrhizal Plants. Boca Raton FL:CRC Press,1987,5-25
    Treonis AM, Austin EE, Buyer JS, Maul JE, Spicer L, Zasada IA. Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology,2010,46(1):103-110
    Treseder KK, Allen MF. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi, a model and field test. New Phytologist,2002,155:507-515
    Tylka GL, Hssey RS, Romcadori RW. Interactions of vesicular-arbuscular mycorrhizal fungi phosphorus and Heterodera glycies on soybean. Journal of Nematology,1991,23(1):122-133
    Vaidya GS, Keshab S, Khadge BR, Johnson NC, Wallander H. Organic matter stimulates bacteria and arbuscular mycorrhizal fungi in Bauhinia purpurea and Leucaena diversifolia plantations on eroded slopes in Nepal. Restoration Ecology,2008,16(1):79-87
    Van Buuren ML, Maldonado-Mendoza IE, Trieu AT. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus vesiforme. Molecular Plant-microbe Interactions,1992,12(3):171-181
    Walker C. Taxonomic concepts in the Endogonaceae:Spore wall characteristics in species descriptions. Mycotaxon,1983,18:443-445
    Wang JJ, Li XY, Zhu AN, Zhang XK, Zhang HW, Liang WJ. Effects of tillage and residue management on soil microbial communities in North China. Plant, Soil and Environment,2012, 58(1):28-33
    Whatley FR, Arnon DI. Methods in Enzymology. pp.308. New York, Academic Press.1963
    Withers PJA, Edwards AC, Foy RH. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use and Management,2001,17:139-149
    Wright SF, UPadhyaya A. Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza,1999,8(5):283-285
    Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth:a greenhouse trial. Geoderma,2005,125:155-166
    Zhang MQ, Wang YS, Xing LJ. The biological distribution of AMfungi in the east and south coast of China. Mycosystema,1999,18(2):145-148
    Zhu Y, Fox RH. Corn-soybean rotation effects on nitrate leaching. Agronomy Journal,2003,95: 1028-1033
    Zhu YG, Miller RM. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Science,2003,8:407-409
    鲍士旦.土壤农化分析.北京:中国农业出版社,2000
    毕国昌,赵志鹏,郭美珍.柑橘幼苗接种VA菌根真菌的研究.微生物学报,1990,30:141-148
    蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224
    陈蓓,张仁陟.免耕与覆盖对土壤微生物数量及组成的影响.甘肃农业大学学报,2004,39(6):634-638
    邓胤,罗文倩,朱金山,宫春明,高润霞.不同氮磷水平条件下接种AMF对玉米生长的影响.中国农学通报,2008,24:301-303
    董呈金.丛枝菌根真菌孢子萌发及类黄酮对丛枝菌根形成影响的研究.华中农业大学博士论文,2004,9-12
    董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997
    冯固,李晓林,张福锁,李生秀.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响.应用生态学报,2000,11(4):595-598
    盖京苹,刘润进,孟祥霞.土壤因子对野生植物根围AM真菌的影响.应用生态学报,2003,14:270-272
    盖京苹,刘润进,孟祥霞.野生植物根围的丛枝菌根真菌Ⅱ.菌物系统,2000,19(2):205-211
    郭绍霞,刘润进.不同品种牡丹对丛枝菌根真菌群落结构的影响.应用生态学报,2010,21,(08):1993-1997
    贺学礼,李生秀.陕西农田土壤中VA菌根真菌资源及生态分布.菌物系统,1999,18(3):334-340
    贺忠群.丛枝菌根真菌(AMF)提高番茄耐盐性机制的研究.西北农林科技大学博士论文,2007
    胡弘道.Glomus spinosum sp. Nov. in the Glomaceae from Taiwan. Mycota:con.2002,83:159-164
    胡弘道.杉木与台湾杉内生菌根之研究.中华林学,1988,21(2):45-72
    李登武,贺学礼,余仲东.施钾量与AM真菌接种效应的关系.西北植物学报,2002,22(4):889-893
    李凌飞,杨安娜,赵之伟.丛枝菌根真菌种群的孢子季相动态研究.生态学杂志,2005,24(10):1155-1158
    李敏,刘鹏起,刘润进.AM真菌对芋头组培苗的影响.园艺学报,2002,29(5):451-453
    李庆康,张永春,杨其飞,杨卓亚,李延.生物有机肥肥效机理及应用前景展望.中国生态农业学报,2003,11(2):78-80
    李晓林,冯固.丛枝菌根生态生理.北京:华文出版社.2001,1-358
    李勇,徐阳春,郭世伟,沈其荣.不同覆盖旱作水稻对后茬大麦生长和土壤氮素的影响.水土保持学报,2006,20(6):111-114,119
    梁永超,胡锋,杨茂成,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(1):26-32
    刘国顺,彭华伟.生物有机肥对植烟壤肥力及烤烟干物质积累的影响.河南农业科学,2005,1:46-49
    刘铭,吴良欢.覆膜旱作稻田土壤肥力变化的研究.浙江农业学报,2003,15(1):8-12
    刘柏玉,雷泽同.VA菌根真菌对蚕豆的磷、氮营养及其效应.土壤通报,1991,22(2):93-95
    刘润进,陈应龙.菌根学.北京:科学出版社,2007
    刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000
    牛家琪.广东省VA菌根资源调查和应用研究.士壤学报,1994,31(增刊):54-63
    牛西午,李永山,冯永平.晋南半干旱地区果树渗灌补水效应研究.农业工程学报,2003,19(1):72-74
    潘幸来,王永杰,张贵云,吴慎杰.黄土高原VAM真菌孢子数量的调查研究初报.士壤学报,1994,31:64-70
    潘幸来,张贵云,王永杰,吴慎杰.黄土高原的VA菌根真菌(Ⅲ)一新纪录种橙棕色盾巨孢囊霉及其与异配盾巨孢囊霉的比较.山西大学学报,1996,19(2):187-190
    潘幸来,张贵云,王永杰,吴慎杰.黄士高原的一个VA菌根真菌新种:三红盾巨孢囊霉.真菌学报,1997,16(3):169-171
    潘幸来,张贵云,王永杰,吴慎杰.黄土高原的VA菌根真菌IV.真菌学报,1997.16(3):166-168
    彭岳林.影响西藏高原草地植物AM真菌分布的环境因子研究.农业网络信息,2006,6:155-157
    沈其荣,崔国贤,梁永超.覆盖旱作水稻营养生理的变异特征及其适应机理.中国土壤学会第九次全国会员代表大会论文集.南京,1999,228-229
    石兆勇,陈应龙,刘润进.菌根多样性及其对植物的重要意义.应用生态学报,2003,14(9):1565-1568
    苏友波.VA菌根对三叶草和玉米根际磷酸酶活性的影响.北京:中国农业大学硕士学位论文,2000
    孙瑞莲,朱鲁生,赵秉强,周启星,徐晶,张夫道.长期施肥对土壤微生物的影响及其在养分调控中的作用.应用生态学报,2004,15(10):1907-1910
    田敏,姜葆霖,李小红.生物有机肥的研究与应用效果分析,2004,36(3):321-324
    王春梅,韩振海,李晓林.磷与VA菌根真菌对小金海棠苹果苗生长及营养的影响.园艺学报,2001,28(1):1-6
    王法宏,冯波,王旭清.国内外免耕技术应用概况.山东农业科学,2003,(6):49-53
    王发园,刘润进.环境因子对AM真菌多样性的影响.生物多样性,2001,9(3):301-305
    王淼焱,刘树堂,刘润进.长期定位施肥土壤中AM真菌耐磷性的比较.土壤学报,2006,143(16):1056-1059
    汪强.早作水稻节水及其产量效应机理的研究.华南农业大学,博士学位论文,2004
    王晓英,王冬.丛枝菌根真菌与土壤养分交互作用的生态效应研究.北方园艺,2009,6:111-115
    王幼珊,刘相梅,张美庆,邢礼军.盆栽基质及营养液对AM真菌接种剂繁殖的影响.华北农学报,2001,16(4):81-86
    吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,2007,40(10):2274-2280
    王友贞,袁先江,许浒,水稻旱作覆膜的增温保墒效果及其对生育性状影响研究.农业工程学报,2002,18(2):29-31
    吴继光,林素祯.囊丛枝内生菌根菌种原生产技术.囊丛枝内生菌根菌应用技术手册.台湾:台湾省农业试验所,1998,109-118
    吴延寿,徐阳春,沈其荣,周春霖.种稻方式对后茬大麦生长及土壤氮素转化和氮肥利用的影响.土壤学报,2006,43(1):168-172
    吴玉红,田霄鸿,池文博,南雄雄,闫小丽,朱瑞祥,同延安.机械化保护性耕作条件下土壤质量的数值化评价.应用生态学报,2010,21(6):1468-1476
    徐凤花,严永贵,孙冬梅.抗生一促生多功能生物肥料对黄瓜生长势及产量影响.北方园艺,2003,2:49
    徐华勤,肖润林,邹冬生,宋同清,罗文,李盛华.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,2007,27(8):3355-3361
    薛峰,颜廷梅,杨林章,乔俊.施用有机肥对土壤生物性状影响的研究进展.中国生态农业学报,2010,18(6):1372-1377
    杨建红.杨凌地区小麦根际VA菌种多样性调查及其对磷吸收影响的研究.西北农林科技大学博士论文,2004
    翟通毅.山西省发展机械化保护性耕作的报告.农机推广,2001,(2):4-5
    赵士杰,李树林.VA菌根促进青椒生长的生理研究.华北农学报,1994,9(1):81-86
    张贵云,王永杰,潘幸来,吴慎杰,李赈群.黄土高原的VA菌根真菌(VI)-摩西球囊霉、缩球囊霉及细凹面无梗囊霉.山西大学学报(自然科学版),1997,16(3):326-329
    张美庆,王幼珊,邢礼军.环境因子和AM真菌分布的关系.菌物系统,1999,18(1):25-29
    张美庆,王幼珊,张驰,黄磊.我国北方VA菌根真菌某些属和种的生态分布.真菌学报,1994,13(3):166-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700