用户名: 密码: 验证码:
生物炭对中国北方酸化土壤的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪80年代以来,我国就形成以氮(N)肥的大量施用来换取作物高产的农业生产模式。由于多年来N肥持续大量施用以及不合理的农业耕种、施肥制度和管理措施,导致我国北方土壤酸化日趋严重。近些年来兴起的生物炭技术为环保、高效改良酸化土壤提供了新途径。本研究针对我国北方N肥大量施用引起的土壤酸化问题,选取山东省招远市典型果园酸化土为研究对象,以我国北方典型的生物质棉花秸秆和花生壳为原料制备生物炭,研究了不同热解时间和热解温度等工艺参数对生物炭物理化学性质的影响;选择两种热解温度下制备的花生壳生物炭为供试材料,以2.5%和5%两种比例添加到酸化土壤中,研究了其对酸化土壤理化性质的影响;通过研究生物炭对酸化土壤N素转化过程的影响,初步揭示了生物炭改性酸化土壤的内在机制;通过研究生物炭对玉米植株根际效应及氮素利用有效性的影响,评价生物炭改性酸化土壤的效果,并对生物炭减少肥料施用的经济效益进行了分析和估算。本研究为建立北方酸化土壤改良的生物炭技术,最终构建生物炭的新型产业模式提供了重要的理论依据。主要研究结果如下:
     (1)选取我国北方典型的农业残留物棉花秆和花生壳为原料,利用慢速热解方式制备生物炭。在2h内,随着热解时间的延长,生物炭物理化学特性变化显著,当热解时间大于2h时,这种变化趋于平缓;随着热解温度的升高,生物炭产率降低,阳离子交换量(CEC)下降,表面官能团的种类及数量逐渐降低,而其灰分含量、pH、比表面积、K、Ca、Mg含量逐渐增加。
     (2)通过对制备生物炭的pH及CEC、产率、比表面积等特征的综合分析,当热解温度高于300℃时,花生壳生物炭的pH才表现为碱性,但高于400℃生物炭CEC值只有2.86cmol kg-1甚至更低,不宜用于酸化土壤改良,因此选择了300℃和400℃下热解花生壳制备的生物炭(H300和H400)作为酸化土壤改性研究的供试材料。
     (3)生物炭添加量为2.5%时,H300和H400分别使土壤容重降低了5.1%和7.1%,土壤pH分别提高了0.58和0.80个单位,有机质含量分别增加了65%和35%,CEC值分别提高了5.5%和9.0%;生物炭添加量为5%时,土壤各理化性质指标改善效果更好。
     (4)通过生物炭对NH4+和N03-吸附试验,表明H300和H400对NH4+有很强的吸附作用,并且当NH4+的浓度高于10mg L-1,H400的吸附能力明显高于H300;但对N03均未表现出明显的吸附作用。
     (5)H300和H400一方面通过吸附作用降低NH4+可利用性,减少硝化反应底物,另一方面通过减少氨氧化细菌数量,抑制了土壤中的硝化作用,进而减少了土壤中的H+释放量而提高土壤pH值,另外还可以减少土壤N素以N03-的形式而流失。
     (6)两种生物炭均明显促进了玉米植株的生长,以2.5%和5%添加H400后,植株干物重分别提高了30.3%和32.7%;同时玉米根系形态变化明显,根长、根尖数、根比表面积及根体积分别提高了44%和91%、51%和117%、60%和99%以及79%和108%。
     (7)两种生物炭H300和H400可以释放一定的N素,量非常少几乎可以忽略不计;但H300和H400能明显提高土壤N素利用有效性,以2.5%和5%的比例添加时可分别减少8.5%、13.6%、27.0%和27.7%的N肥施用量,具有很强的肥性效应。
Since1980s, large amount of nitrogen fertilizer was used in order to increase crop yields to fulfill the people's demands. Due to long-term excessive N fertilizer application, unreasonable farming system and management measures, the soil acidification in north China was getting more severely. In recent years, the rise of biochar technology provided a new environmental protection, high efficiency way for ameliorating soil acidification. Based on the soil acidification caused by excessive nitrogen fertilizer used, biochars were prepared from cotton straw and peanut hull at different pyrolysis times and temperatures, then two peanut hull biochars were selected for soil incubation and changes of physical and chemical properties of acid soil were studied with biochar amendment at ratio of2.5%and5%, separately. Through the effect of biochar on soil N transform, the mechanism of biochar amendment on acid soil was explained. Moreover, the rhizosphere effect and N utilization was studied with biochar amendment, and the economic benefit of biochar reducing fertilizer applied was analyzed and estimated. The main conclusions are as follows:
     (1) The typical agricultural residues in north China-cotton stalk and peanut hull were selected, and pyrolized to prepare biochar. Within2hours, the physical and chemical properties of biochars changed significantly as the pyrolysis time extended, but began to flatten when the pyrolysis time was above2hours. The biochar yield and cation exchange capacity decreased as the pyrolysis temperature rised, while the ash content, pH, surface area and the content of K, Ca, Mg increased.
     (2) The pH of peanut hull biochar was alkaline when pyrolysis temperature was above300℃, but the CEC was only2.86cmol kg-1which was not suitable for acid soil amendment when pyrolysis temperature was above400℃. Therefore, two biochars (H300, H400) which was obtained from300℃and400℃was selected for acid soil amendment.
     (3) When H300and H400were added into the acid soil at ratio of2.5%, the soil bulk density decreased by5.1%and7.1%, while the pH increased by0.58and0.80units as well as organic matters and CEC elevated by65%,35%and5.5%,9.0%, separately. The improvement of soil physicochemical properties was much more significant when the ratio of biochar was5%.
     (4) H300and H400could strongly absorb NH4+, and H400adsorption ability was obviously higher than that of the H300when the concentration of NH4+was above10mg L-1. However, NO3-was barely absorbed on H300and H400.
     (5) Through the absorption NH1+in one hand, and the amount of ammonia oxidizing bacteria decreased by H300and H400in the other hand,the nitrification was strongly inhibited. Just because of this, soil pH was arised and nitrogen was maintained.
     (6) The growth of maize plant was significantly promoted with two biochars amendment. The maize biomass was improved by30.3%and32.7%when H400was added into acid soil at ratio of2.5%and5%. Meanwhile, the root morphology was enhanced.
     (7) A small amount of nitrogen that could be neglected was released from H300and H400, but the N utilization efficiency was significantly improved with biochar amendment. The amount of nitrogen fertilizer decreased by8.5%,13.5%,27.0%and27.7%when H300and H400was used at the ratio of2.5%and5%.
引文
[1]周修萍,秦文娟,华南三省(区)土壤对酸雨的敏感性及其分区图[J].环境科学学报,1992,12(01):78-83.
    [2]Guo, J. H., Liu, X. J., Zhang, Y., et al., Significant Acidification in Major Chinese Croplands [J]. Science,2010,327(5968):1008-1010.
    [3]Yuan, J. H., Xu, R. K., Qian, W., et al., Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars [J]. Journal of Soils and Sediments,2011,11(5):741-750.
    [4]Zhang, H. M., Wang, B. R., Xu, M. G., et al., Crop Yield and Soil Responses to Long-Term Fertilization on a Red Soil in Southern China [J]. Pedosphere,2009,19(2): 199-207.
    [5]Sullivan, T., Cosby, B., Driscoll, C., et al., Target loads of atmospheric sulfur deposition protect terrestrial resources in the Adirondack Mountains, New York against biological impacts caused by soil acidification [J]. Journal of Environmental Studies and Sciences, 2011,1(4):301-314.
    [6]Ju, X. T., Kou, C. L., Christie, P., et al., Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain [J]. Environmental Pollution,2007,145(2):497-506.
    [7]Bolan, N., Hedley, M.White, R., Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures [J]. Plant and Soil,1991,134(1):53-63.
    [8]易杰祥,吕亮雪,刘国道,土壤酸化和酸性十壤改良研究[J].华南热带农业大学学报,2006,12(01):23-28.
    [9]Brown, T. T., Koenig, R. T., Huggins, D. R., et al., Lime Effects on Soil Acidity, Crop Yield, and Aluminum Chemistry in Direct-Seeded Cropping Systems [J]. Soil Science Society of America journal,2008,72(634-640
    [10]王宁,李九玉,徐仁扣,土壤酸化及酸性土壤改良和管理[J].安徽农学通报,2007,13(23):48-51.
    [11]Hunter, D. J., Yapa, L. G. Hue, N. V., Effects of green manure and coral lime on corn growth and chemical properties of an acid Oxisol in Western Samoa [J]. Biology and Fertility of Soils,1997,24(3):266-273.
    [12]Shamshuddin, J., Muhrizal, S., Fauziah, I., et al., Effects of adding organic materials to an acid sulfate soil on the growth of cocoa (Theobroma cacao L.) seedlings [J]. Science of The Total Environment,2004,323(1-3):33-45.
    [13]Novak, J. M., Busscher, W. J., Laird, D. L., et al., Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil [J]. Soil Science,2009.174(2):105-112.
    [14]Steiner, C., Teixeira, W. G., Lehmann, J., et al., Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil [J]. Plant and Soil,2007,291(1-2):275-290.
    [15]Liang, B., Lehmann, J., Solomon, D., et al., Black Carbon Increases Cation Exchange Capacity in Soils [J]. Soil Sci. Soc. Am. J.,2006,70(5):1719-1730.
    [16]Sohi, S. P., Krull, E., Lopez-Capel, E., et al., A Review of Biochar and Its Use and Function in Soil [J].2010,105,47-82.
    [17]Lehmann, J., Pereira da Silva, J., Steiner, C., et al., Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fertilizer, manure and charcoal amendments [J]. Plant and Soil,2003,249(2):343-357.
    [18]Dempster, D., Gleeson, D., Solaiman, Z., et al., Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil [J]. Plant and Soil,2012,354(1):311-324.
    [19]Berglund, L. M., DeLuca, T. H.Zackrisson, O., Activated carbon amendments to soil alters nitrification rates in Scots pine forests [J]. Soil Biology and Biochemistry,2004, 36(12):2067-2073.
    [20]Dempster, D. N., Jones, D. L.Murphy, D. V., Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition [J]. Soil Biology and Biochemistry,2012,48(0):47-50.
    [21]Ding, Y., Liu, Y. X., Wu, W. X., et al., Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns [J]. Water, Air, & Soil Pollution, 2010,213(1-4):47-55.
    [22]Jones, D. L., Rousk, J., Edwards-Jones, G., et al., Biochar-mediated changes in soil quality and plant growth in a three year field trial [J]. Soil Biology and Biochemistry, 2012,45(0):113-124.
    [23]赵军,下述洋,我国农业生物质资源与利用[J].现代化农业,2007,(01):30-31.
    [24]孙丰文,张茜,李自峰,花生壳综合利用的研究进展[J].山东林业科技,2008,(06):84-88.
    [25]杨挣,中国花生生产及贸易现状与展望[J].花生学报,2009,38(01):27-31.
    [26]余涛,杨忠芳,唐金荣,et al.,湖南洞庭湖区十壤酸化及其对十壤质量的影响[J].地学前缘,2006,13(01):98-104.
    [27]杨忠芳,余涛,唐金荣,et al.,湖南洞庭湖地区土壤酸化特征及机理研究[J].地学前缘,2006,13(01):105-112.
    [28]任立民,刘鹏,谢忠雷,et al.,植物对铝毒害的抗逆性研究进展[J].十壤通报,2008,39(01):177-181.
    [29]赵其国,中国东部红壤地区土壤退化的时空变化、机理及调空.2002,北京,北京科技出版社.
    [30]王见月,刘庆花,李俊良,et al.,胶东果园土壤酸度特征及酸化原因分析[J].中国农学通报,2010,26(16):164-169.
    [31]赵全桂,卢树昌,吴德敏,et al.,施肥投入对招远农田土壤酸化及养分变化的影响[J].中国农学通报,2008,24(1):301-306.
    [32]董昭皆,肖忠义,荣成市士壤酸化现状及改良措施[J].山东农业科学,2009,(02):67-68.
    [33]戎秋涛,杨春茂,徐文彬,土壤酸化研究进展[J].地球科学进展,1996,11(04):396-401.
    [34]刘春生,杨守祥,宋国菡,et al.,模拟酸雨对褐土盐基离子淋失的影响[J].十壤通报,1999,30(01):42-43.
    [35]李庆军,林英,李俊良,et al.,土壤pH和不同酸化土壤改良剂对苹果果实品质的影响[J].中国农学通报,2010,26(14):209-213.
    [36]Roese, T., Soil pH and bitter pit in apples [J]. Good Fruit Grower,1999, May(1):15-16.
    [37]Sato, K.Takahashi, A., Acidity neutralization mechanism in a forested watershed in Central Japan [J]. Water, Air, & Soil Pollution,1996,88(3):313-329.
    [38]杨昂,孙波,赵其国,中国酸雨的分布、成因及其对土壤环境的影响[J].土壤,1999,(01):13-18.
    [39]王力军,青长乐,牟树森,模拟酸雨对土壤化学及蔬菜生长的影响[J].农业环境科学学报,1993,12(1):17-20.
    [40]Delavechia, C., Hampp, E., Fabra, A., et al., Influence of pH and calcium on the growth, polysaccharide production and symbiotic association of & lt;i & gt;Sinorhizobium meliloti SEMIA 116 with alfalfa roots [J]. Biology and Fertility of Soils,2003,38(2):110-114.
    [41]Ceballos, H., Pandey, S., Narro, L., et al., Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils [J]. TAG Theoretical and Applied Genetics, 1998,96(5):662-668.
    [42]尤开勋,秦拥政,赵一博,et al.,宜吕市植烟十壤酸化特点与成因分析[J].安徽农业科学,2011,39(05):2737-2739.
    [43]叶优良,张福锁,于忠范,et al.,苹果粗皮病与锰含量的关系[J].果树学报,2002,19(04):219-222.
    [44]中国林业学会,酸雨与农业1989,北京:中国林业出版社.
    [45]朴承俊,王宏山,瞿春艳,et al.,水体富营养化现状及对策分析[J].煤炭技术,2008,27(08):134-135.
    [46]孙志梅,武志杰,陈利军,et al.,农业生产中的氮肥施用现状及其环境效应研究进展[J].十壤通报.2006,37(04):782-786.
    [47]Zhu, J. H., Li, X. L., Christie, P., et al., Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems [J]. Agriculture, Ecosystems & amp; Environment,2005,111(1-4):70-80.
    [48]许中坚,刘广深,俞佳栋,氮循环的人为干扰与土壤酸化[J].地质地球化学,2002,30(02):74-78.
    [49]Malhi, S. S., Nyborg, M.Harapiak, J. T., Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay [J]. Soil and Tillage Research,1998,48(1-2):91-101.
    [50]徐仁扣,D.R.C.,某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(05):385-388.
    [51]Kemmitt, S. J., Wright, D.Jones, D. L., Soil acidification used as a management strategy to reduce nitrate losses from agricultural land [J]. Soil Biology and Biochemistry,2005, 37(5):867-875.
    [52]Bouman, O. T., Curtin, D., Campbell, C. A., et al., Soil Acidification From Long-term Use Of Anhydrous Ammonia And Urea [J]. Soil Sci. Soc. Am. J.,1995,59(5):1488-1494.
    [53]高国红,改良果园土壤的有效措施[J].现代农村科技,2011,(18):48.
    [54]许中坚,刘广深,刘维屏,人为因素诱导下的红壤酸化机制及其防治[J].农业环境保护,2002,21(02):175-178.
    [55]曾希柏,红壤酸化及其防治[J].土壤通报,2000,31(03):111-113.
    [56]王桂华,于树增,陈浪波,et al.,施用生石灰改良苹果园酸化土壤试验[J].中国果树,2005,(04):11-12.
    [57]熊德中,李春英,黄光伟,et al.,施用石灰对福建低pH植烟土壤的效应[J].中国烟草学报,1999,5(01):25-29.
    [58]李春英,刘添毅,刘奕平,et al.,酸性植烟土壤施用石灰的后效探讨[J].烟草科技,2001,(07):38-41.
    [59]Golding, K. W. T., Lime, Liming and the Management of Soil Acidity Vol.410.1998:The International Fertiliser Society.
    [60]孟赐福,傅庆林,水建国,et al.,浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响[J].植物营养与肥料学报,1999,5(02):129-136.
    [61]胡衡生,潘晖,格拉姆柱花草对土壤改良作用的研究[J].广西师院学报(自然科学版),1994,(01):57-61.
    [62]Nkana, J. C. V., Demeyer, A.Verloo, M. G., Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study [J]. Bioresource Technology,2002, 85(3):323-325.
    [63]Shen, Q. R.Shen, Z. G., Effects of pig manure and wheat straw on growth of mung bean seedlings grown in aluminium toxicity soil [J]. Bioresource Technology,2001,76(3): 235-240.
    [64]姜军,徐仁扣,李九玉,et al.,两种植物物料改良酸化茶园士壤的初步研究[J].土壤, 2007,39(02):322-324.
    [65]Xu, J. M., Tang, C.Chen, Z. L., The role of plant residues in pH change of acid soils differing in initial pH [J]. Soil Biology and Biochemistry,2006,38(4):709-719.
    [66]Xu, R. K.Coventry, D. R., Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil [J]. Plant and Soil,2003,250(1): 113-119.
    [67]Yan, F.Schubert, S., Soil pH changes after application of plant shoot materials of faba bean and wheat [J]. Plant and Soil,2000,220(1):279-287.
    [68]Xu, J. M., Tang, C.Chen, Z. L., Chemical composition controls residue decomposition in soils differing in initial pH [J]. Soil Biology and Biochemistry,2006,38(3):544-552.
    [69]Sukartono, Utomo, W. H., Kusuma, Z., et al., Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia [J]. Journal of Tropical Agriculture,2011, (49):47-52.
    [70]Lehmann, C. J.Rondon, M., Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics. Biological Approaches to Sustainable Soil Systems2006, Boca Raton: CRC Press.
    [71]Sohl, S., Lopez-Capel, E.Krul, E., Biochar, climate change and soil--a review to guide future research. Land and Water Science Report,2009:CSIRO.
    [72]Glaser, B., Haumaier, L., Guggenberger, G., et al., The' Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften,2001,88(1): 37-41.
    [73]Yaman, S., Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion and Management,2004,45(5):651-671.
    [74]Das, K., Garcia-Perez, M., Bibens, B., et al., Slow pyrolysis of poultry litter and pine woody biomass:Impact of chars and bio-oils on microbial growth [J]. Journal of Environmental Science and Health, Part A,2008,43(7):714-724.
    [75]Shinogi, Y., Yoshida, H., Koizumi, T., et al., Basic characteristics of low-temperature carbon products from waste sludge [J]. Advances in Environmental Research,2003.7(3): 661-665.
    [76]Fushimi, C., Araki, K., Yamaguchi, Y., et al., Effect of Heating Rate on Steam Gasification of Biomass.2. Thermogravimetric-Mass Spectrometric (TG-MS) Analysis of Gas Evolution [J]. Industrial & Engineering Chemistry Research,2003,42(17): 3929-3936.
    [77]Demirbas, A., Production and characterization of bio-chars from biomass via pyrolysis [J]. Energy Sources, Part A,2006,28(5):413-422.
    [78]Zhang, L, Xu, C.Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass [J]. Energy Conversion and Management,2010,51(5):969-982.
    [79]Yanik, J., Kornmayer, C., Saglam, M., et al., Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products [J]. Fuel Processing Technology,2007,88(10): 942-947.
    [80]Duman, G., Okutucu, C., Ucar, S., et al., The slow and fast pyrolysis of cherry seed [J]. Bioresoure Technology,2011,102(2):1869-78.
    [81]Gaunt, J. L.Lehmann, J., Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production [J]. Environmental Science & Technology,2008,42(11):4152-4158.
    [82]Bridgwater, T., Biomass for energy [J]. Journal of the Science of Food and Agriculture, 2006,86(12):1755-1768.
    [83]Bridgwater, A. V., Toft, A. J.Brammer, J. G, A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion [J]. Renewable and Sustainable Energy Reviews,2002,6(3):181-246.
    [84]Bridgwater, A. V., The production of biofuels and renewable chemicals by fast pyrolysis of biomass [J]. International Journal of Global Energy Issues,2007,27(2):160-203.
    [85]Meyer, S., Glaser, B.Quicker, P., Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies:A Literature Review [J]. Environmental Science & Technology,2011,45(22):9473-9483.
    [86]Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., et al., Characterization of biochar from fast pyrolysis and gasification systems [J]. Environmental Progress & Sustainable Energy, 2009,28(3):386-396.
    [87]Fernandes, M. B.Brooks, P., Characterization of carbonaceous combustion residues:II. Nonpolar organic compounds [J]. Chemosphere,2003,53(5):447-458.
    [88]Demirbas, A., Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis,2004,72(2): 243-248.
    [89]Masami, U., Yoshinobu, K., Yasuaki, K., et al., Carbonisation and gasification of bagasse for effective utilisation of surgacane biomass. Vol.110.2008, London, ROYAUME-UNI: Informa Healthcare.22-25.
    [90]Antal, M. J.Gr(?)nli, M., The Art, Science, and Technology of Charcoal Production(?) [J]. Industrial & Engineering Chemistry Research,2003,42(8):1619-1640.
    [91]Khalil, L., Porosity characteristics of chars derived from different lignocellulosic materials [J]. Adsorption Science & Technology,1999, (17):729-739.
    [92]Varhegyi, G., Szabo, P., Till, F., et al., TQ TG-MS, and FTIR Characterization of High-Yield Biomass Charcoals [J]. Energy & Fuels,1998,12(5):969-974.
    [93]Di Blasi, C., Signorelli, G., Di Russo, C., et al., Product Distribution from Pyrolysis of Wood and Agricultural Residues [J]. Industrial & Engineering Chemistry Research,1999, 38(6):2216-2224.
    [94]Manya, J. J., Ruiz, J.Arauzo, J., Some Peculiarities of Conventional Pyrolysis of Several Agricultural Residues in a Packed Bed Reactor [J]. Industrial & Engineering Chemistry Research,2007,46(26):9061-9070.
    [95]Cetin, E., Moghtaderi, B., Gupta, R., et al., Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars [J]. Fuel,2004,83(16):2139-2150.
    [96]Antal, M. J., Mok, W. S. L., Varhegyi, G., et al., Review of methods for improving the yield of charcoal from biomass [J]. Energy & Fuels,1990,4(3):221-225.
    [97]Mok, W. S. L., Antal, M. J., Szabo, P., et al., Formation of charcoal from biomass in a sealed reactor [J]. Industrial & Engineering Chemistry Research,1992,31(4):1162-1166.
    [98]Keiluweit, M., Nico, P. S., Johnson, M. G., et al., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) [J]. Environmental Science & Technology, 2010,44(4):1247-1253.
    [99]Nguyen, B. T., Lehmann, J., Hockaday, W. C, et al., Temperature Sensitivity of Black Carbon Decomposition and Oxidation [J]. Environmental Science & Technology,2010, 44(9):3324-3331.
    [100]Krull, E. S., Swanston, C. W., Skjemstad, J. O., et al., Importance of charcoal in determining the age and chemistry of organic carbon in surface soils [J]. J. Geophys. Res., 2006, 111(G4):G04001.
    [101]Chan, K. Y., Van Zwieten, L., Meszaros, I., et al., Using poultry litter biochars as soil amendments [J]. Soil Research,2008,46(5):437-444.
    [102]Lehmann, J., Rillig, M. C., Thies, J., et al., Biochar effects on soil biota-A review [J]. Soil Biology and Biochemistry,2011,43(9):1812-1836.
    [103]Nguyen, B. T.Lehmann, J., Black carbon decomposition under varying water regimes [J]. Organic Geochemistry,2009,40(8):846-853.
    [104]Cheng, C., Lehmann, J., Thies, J., et al., Oxidation of black carbon by biotic and abiotic processes [J]. Organic Geochemistry,2006,37(11):1477-1488.
    [105]Yuan, J.-H., Xu, R.-K.Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology,2011,102(3):3488-3497.
    [106]Danny, D.. J., E. R., W., L. J., et al., Economical CO[2], SO[x], and NO[x] capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Vol.30.2005, Kidlington, ROYAUME-UNI:Elsevier.2558-2579.
    [107]Yu, X.-Y., Ying, G.-G.Kookana, R. S., Sorption and Desorption Behaviors of Diuron in Soils Amended with Charcoal [J]. Journal of Agricultural and Food Chemistry,2006, 54(22):8545-8550.
    [108]Brown, R. A., Kercher, A. K., Nguyen, T. H., et al., Production and characterization of synthetic wood chars for use as surrogates for natural sorbents [J]. Organic Geochemistry, 2006,37(3):321-333.
    [109]Ogawa. M.. Okimori, Y.Takahashi, F.. Carbon Sequestration by Carbonization of Biomass and Forestation:Three Case Studies [J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):421-436.
    [110]Scholes, R. J.Noble, I. R., Storing Carbon on Land [J]. Science,2001,294(5544): 1012-1013.
    [111]Schlesinger, W. H.Lichter, J., Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2 [J]. Nature,2001,411(6836):466-469.
    [112]Lehmann, J., Gaunt, J.Rondon, M., Bio-char Sequestration in Terrestrial Ecosystems - A Review [J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2): 395-419.
    [113]Swift, R. S., Sequestration of Carbon By Soil [J]. Soil Science,2001,166(11):858-871.
    [114]Nguyen, B. T., Lehmann, J., Kinyangi, J., et al., Long-term black carbon dynamics in cultivated soil [J]. Biogeochemistry,2008,89(3):295-308.
    [115]McHenry, M. P., Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia:Certainty, uncertainty and risk [J]. Agriculture, Ecosystems & Environment,2009,129(1-3):1-7.
    [116]Yanai, Y., Toyota, K.Okazaki, M., Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Science and Plant Nutrition,2007,53(2):181-188.
    [117]Zhang, A., Cui, L., Pan, G., et al., Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems & Environment,2010,139(4):469-475.
    [118]Rondon, M., Ramirez, J.Lehmann, J. Greenhouse gas emissions decrease with charcoal additions to tropical soils.2005.
    [119]Bridgwater, A. V., Renewable fuels and chemicals by thermal processing of biomass [J]. Chemical Engineering Journal,2003,91(2-3):87-102.
    [120]Abdullah, H.Wu, H., Biochar as a Fuel:l. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions [J]. Energy & Fuels,2009,23(8):4174-4181.
    [121]Chan, K. Y., Van Zwieten, L., Meszaros, I., et al., Agronomic values of greenwaste biochar as a soil amendment [J]. Australian Journal of Soil Research,2007,45(8):629.
    [122]Masulili, A.Utomo, W. H., Rice husk bipchar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia [J]. Journal of Agricultural Science, 2010,2(1):39-48.
    [123]Glaser, B., Lehmann, J.Zech, W., Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review [J]. Biology and Fertility of Soils, 2002,35(4):219-230.
    [124]Yao, Y., Gao, B., Zhang, M., et al., Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil [J]. Chemosphere,2012,89(11): 1401-14/1.
    [125]Kleiner, K., The bright prospect of biochar [J].2009,0906):72-74.
    [126]Manya, J. J., Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs [J]. Environ Sci Technol,2012,46(15):7939-7954.
    [127]Downie, A., Crosky, A.Munroe, P., Physical properties of biochar. In Biochar for Environmental Management:Science and Technology, J. Lehmann and S. Joseph, Editors. 2009, Earthscan:London, U.K.13-29.
    [128]Dornbush, M. E., Kolb, S. E.Fermanich, K. J., Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Science Society of America Journal,2009, 73(4):1173-1181.
    [129]Halvorson, J. J., Godwin, H. W., Gonzalez, J. M., et al., Chicken manure biochar as liming and nutrient source for acid Appalachian soil [J]. Journal of Environmental Quality, 2012,41(4):1096-1106.
    [130]Rondon, M. A., Lehmann, J., Ramirez, J., et al., Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils,2007,43(6):699-708.
    [131]Steiner, C., Glaser, B., Geraldes Teixeira, W., et al., Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal [J]. Journal of Plant Nutrition and Soil Science,2008,171(6):893-899.
    [132]Major, J., Rondon, M., Molina, D., et al., Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol [J]. Plant and Soil,2010,333(1-2): 117-128.
    [133]Liang, B., Lehmann, J., Solomon, D., et al., Stability of biomass-derived black carbon in soils [J]. Geochimica et Cosmochimica Acta,2008,72(24):6069-6078.
    [134]Verheijen, F., Jeffery, S., Bastos, A. C., et al., Biochar applicatino to soils. A critical scientific review of effects on soil properties, processes and functions; 2010, Luxembourg: JRC Scientific and Technical Reports; European Commission.
    [135]JSC, M.A, P., Effects of humic substances from oxidized coal on soil chemical properties and maize yield, in The role of humic substances in the ecosystems and in environmental protection, G.S. Drozd J, Senesi N, Weber J, Editor 1997, IHSS:Wroclaw, Poland, p. 921-925.
    [136]Glaser, B., Balashov, E., Haumaier, L., et al., Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry,2000, 31(7-8):669-678.
    137] Lehmann, J., da Silva Jr, J., Rondon, M., et al. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon, in Soil Science:Confronting New Realities in the 21stCentury.7th World Congress of Soil Science..2002. Bangkok.
    138] Chidumayo, E. N., Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia [J]. Forest Ecology and Management,1994, 70(1-3):353-357.
    [139]Yamato, M., Okimori, Y., Wibowo,I. F., et al., Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia [J]. Soil Science & Plant Nutrition,2006,52(4): 489-495.
    [140]Glaser, B., Haumaier, L., Guggenberger, G., et al., The Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften,2001,88(37-41.
    [141]S., K.G., S., Charcoal as a soil conditioner [J]. Int Achieve Future,1985, (5):12-23.
    [142]Brown, T. R., Wright, M. M.Brown, R. C., Estimating profitability of two biochar production scenarios:slow pyrolysis vs fast pyrolysis [J]. Biofuels, Bioproducts and Biorefining,2011,5(1):54-68.
    [143]Cantrell, K. B., Hunt, P. G., Uchimiya, M., et al., Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar [J]. Bioresource Technology, 2012,107(0):419-428.
    [144]Ozcimen, D.Ersoymericboyu, A., A study on the carbonization of grapeseed and chestnut shell [J]. Fuel Processing Technology,2008,89(11):1041-1046.
    [145]Wang, P., Zhan, S., Yu, H., et al., The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue) [J]. Bioresource Technology,2010,101(9):3236-3241.
    [146]Karaosmano lu, F., I(?)lg lgur-Ergiidenler, A.Sever, A., Biochar from the Straw-Stalk of Rapeseed Plant [J]. Energy & Fuels,2000,14(2):336-339.
    [147]Song, W.Guo, M., Quality variations of poultry litter biochar generated at different pyrolysis temperatures [J]. Journal of Analytical and Applied Pyrolysis,2012, (94): 138-145.
    [148]Novak, J. M., Lima, I. M., Xing, B., et al., Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand [J]. Annals of Environmental Science,2009,3:195-206.
    [149]Mukherjee, A., Zimmerman, A. R.Harris, W., Surface chemistry variations among a series of laboratory-produced biochars [J]. Geoderma,2011,163(3-4):247-255.
    [150]Gundale, M. J.DeLuca, T. H., Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal [J]. Forest Ecology and Management,2006,231(1-3):86-93.
    [151]Peng, X., Ye, L. L., Wang, C. H., et al., Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China [J]. Soil and Tillage Research,2011,112(2):159-166.
    [152]Haykiriacma, H., Yaman, S.Kucukbayrak, S., Effect of heating rate on the pyrolysis yields of rapeseed [J]. Renewable Energy,2006,31(6):803-810.
    [153]Demirbas. A., Pyrolysis of ground beech wood in irregular heating rate conditions [J]. Journal of Analytical and Applied Pyrolysis,2005,73(1):39-43.
    [154]Zimmerman, A. R., Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar) [J]. Environmental Science & Technology,2010,44(4):1295-1301.
    [155]Shafizadeh, F., Introduction to pyrolysis of biomass [J]. Journal of Analytical and Applied Pyrolysis,1982,3(4):283-305.
    [156]Yang, H., Yan, R., Chen, H., et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86(12-13):1781-1788.
    [157]Kucuk, M.Demirbas, A., Delignification of Ailanthus altissima and Spruce orientalis with glycerol of alkaline glycerol at atmospheric pressure [J]. Cellulose chemistry and technology,1993,27(6):679-686.
    [158]Ozcimen, D.Ersoy-Mericboyu, A., Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials [J]. Renewable Energy,2010, 35(6):1319-1324.
    [159]Guo, Y.Bustin, R. M., FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods:implications for studies of inertinite in coals [J]. International Journal of Coal Geology,1998,37(1-2):29-53.
    [160]Dou, L., Komatsuzaki, M.Nakagawa, M., Effects of Biochar, Mokusakueki and Bokashi application on soil nutrients, yields and qualities of sweet potato [J].2012,2(8):318-327.
    [161]Shafie, S. T., Mohd Salleh, M. A., Lek Hang, L., et al., Effect of pyrolysis temperature on the biochar nutrient and water retention capacity [J]. Journal of Purity, Utility Reaction and Environment,2012,1(6):293-307.
    [162]Mao, J. D., Johnson, R. L., Lehmann, J., et al., Abundant and Stable Char Residues in Soils:Implications for Soil Fertility and Carbon Sequestration [J]. Environmental Science & Technology,2012,46(17):9571-9576.
    [163]Cheng, H., Lee, X., Zhang, L., et al., The Deviation on the Determination of Microbial Biomass Carbon in Biochar Amendment Soil with Fumigation Extraction [J]. Journal of Agricultural Science,2012,4(9):251-251.
    [164]Kolb. S. E., Fermanich, K. J.Dornbush, M. E., Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils [J]. Soil Science Society of America Journal, 2009,73(4):1173-1181.
    [165]Ball, P, N., Mackenzie, M. D., Deluca, T, H., et al., Wildfire and Charcoal Enhance Nitrification and Ammonium-oxidizing Bacterial Abundance in Dry Montane Forest Soils [J]. Journal of Environmental Quality,2010, (39):1243-1253.
    [166]Steiner, C., Das, K. C., Garcia, M., et al., Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol [J]. Pedobiologia,2008, 51(5-6):359-366.
    [167]Bailey, V. L., Fansler, S. J., Smith, J. L., et al., Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biology and Biochemistry,2011,43(2):296-301.
    [168]Bai, J.-H., Wang, Q., Hai-Feng, G., et al., Spatial and temporal distribution patterns of nitrogen in marsh soils from an inland alkaline wetland - A case study of Fulaowenpao wetland, China [J]. Acta Ecologica Sinica,2010,30(4):210-215.
    [169]Green, V. S., Stott, D. E.Diack, M., Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples [J]. Soil Biology and Biochemistry,2006,38(4):693-701.
    [170]Sun, T. R., Cang, L., Wang, Q. Y., et al., Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil [J]. J Hazard Mater,2010, 176(1-3):919-25.
    [171]Dunbar, J., Ticknor, L. O.Kuske, C. R., Assessment of Microbial Diversity in Four Southwestern United States Soils by 16S rRNA Gene Terminal Restriction Fragment Analysis [J]. Applied and Environmental Microbiology,2000,66(7):2943-2950.
    [172]Spokas, K. A., Koskinen, W. C., Baker, J. M., et al., Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil [J]. Chemosphere,2009,77(4):574-81.
    [173]Jeffery, S., Verheijen, F. G. A., van der Velde, M., et al., A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis [J]. Agriculture, Ecosystems & amp; Environment,2011,144(1):175-187.
    [174]Van Zwieten, L., Kimber, S., Downie, A., et al., A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil [J]. Soil Research,2010,48(7): 569-576.
    [175]DeLuca, T. H.Anna, S., Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland Northwest [J]. Ecology,2006,87(10):2511-2522.
    [176]胡君利,林先贵,褚海燕,et al.,土壤氨氧化细菌的分离方法研究[J].土壤,2005,37(05):569-571.
    [177]M, O., Symbiosis of people and nature in the tropics [J]. Farming Japan,1994,28(5): 10-34.
    [178]Warnock, D. D., Lehmann, J., Kuyper, T. W., et al., Mycorrhizal responses to biochar in soil - concepts and mechanisms [J]. Plant and Soil,2007,300(1-2):9-20.
    [179]Steinbeiss, S., Gleixner, GAntonietti, M., Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biology and Biochemistry,2009,41(6): 1301-1310.
    [180]DeLuca, T. H., MacKenzie, M. D., Gundale, M. J., et al., Wildfire-Produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests [J]. Soil Science Society of America Journal,2006,70(2):448.
    [181]Xu, G., Lv, Y., Sun, J., et al., Recent Advances in Biochar Applications in Agricultural Soils:Benefits and Environmental Implications [J]. CLEAN-Soil, Air, Water,2012, 00(0).1-6.
    [182]Uzoma, K. C., Inoue, M., Andry, H., et al., Effect of cow manure biochar on maize productivity under sandy soil condition [J]. Soil Use and Management,2011,27(2): 205-212.
    [183]Asai, H., Samson, B., Stephan, H., et al., Biochar amendment techniques for upland rice production in Northern Laosl. Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research,2009,111(1-2):81-84.
    [184]Deenik, J. L., McClellan, T., Uehara, G., et al., Charcoal Volatile Matter Content Influences Plant Growth And Soil Nitrogen Transformations [J]. Soil Sci. Soc. Am. J., 2010,74(4):1259-1270.
    [185]贾彦,张燕李花粉,镉在黄瓜和油菜中的运输与分布规律[J].生态学杂志,2008,27(1):117-121.
    [186]马晓梅,尹林克陈理,塔里木河干流胡杨和择柳根际土壤微生物及其垂直分布[J].干旱区研究,2008,25(2):183-189.
    [187]Wang, Z. Y., Kelly, J. M.Kovar, J. L., In Situ Dynamics Of Phosphorus In The Rhizosphere Solution Of Five Species [J]. J. Environ. Qual.,2004,33(4):1387-1392.
    [188]Chan, K.Y., Xu, Z., Lehmann, J., Joseph, S.2009. Biochar: nutrient properties and their enhancement. Biochar for environmental management:science and technology,67-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700