用户名: 密码: 验证码:
气候变化对黑河流域水资源系统的影响及综合应对
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化深刻影响着水资源系统的供水和需水过程,进一步加剧了水资源的供需矛盾。黑河流域在还未有效解决水资源供需分配不平衡问题,且流域生态环境恶化态势尚未得到有效遏制的同时,又面临着黑河水量调度的要求。在气候变化影响下,黑河流域水资源演变规律发生变化且出现新的水资源问题:流域水资源供需不平衡态势加剧,社会经济用水进一步挤占生态用水,流域社会-经济-生态-环境整体效益有待进一步提高。
     为维持黑河流域的水资源安全,本文在融合现代水文水资源学研究新进展的同时,结合野外原型观测、地理信息技术与数值模拟技术的优势,从水资源系统学角度,系统辨识了气候变化下水资源系统的相互作用机制,从水资源、可利用水资源、可供水、需水、缺水角度,识别了气候变化对水资源系统的影响过程。
     本文研究拓展了气候变化对水资源系统的影响评估理论与方法。本文基于水资源系统的角度评价气候变化对水资源系统的影响,以评估供水和需水预测为主线,将水文的常态过程和极值过程纳入到水资源系统的影响评估中,重点关注供水量和需水量在时间节律和空间差异方面的变化,拓展了传统气候变化影响评估模式的研究范畴和方法。
     与传统气候变化对水资源影响评估不同的是:本文结合SWAT水文模型和现代水资源评价技术,先从水循环的演变规律出发,整体识别气候变化对水资源量、可利用水资源量和可供水量的影响,逐级反映气候变化对供水的影响过程;
     针对气候变化对需水过程的影响评价,本文基于物候变化规律,采用物候观测资料和积温阈值方法,识别了气候变化对典型作物和天然植被生育期的影响,其技术核心是基于需水机理的物候预测技术和需水评估技术;
     在分析供需平衡时,不仅考虑了传统评价模式中的缺水量因素,还考虑了缺水时间和缺水区域,为黑河流域调水方案的修正提供技术支撑,克服了以往调水曲线研究对气候变化考虑不足的问题。
     在以上理论基础及评估结果的支持下,从系统角度,提出基于水资源系统的集合应对框架。在满足自然规律的基础上,通过水利工程群的优化调度,控制水资源在时空尺度上的合理分布;调整社会经济发展格局,使水资源在不同用水户之间合理配置,满足经济社会发展需求。
     本文研究的主要成果和结论如下:
     (1)变化环境下水资源演变规律及旱涝事件演变规律识别
     根据太阳黑子与水文气象要素的关系,结合Morlet小波和Mann-Kendall两种分析方法,将研究时段划分为1960~1991年基准期以及1992~2010年对比期。
     黑河流域降水量和气温均呈增加趋势,且时空分布发生变化。上游丰水区域降水增幅最大、气温增幅较小,下游缺水区域降水减少、气温增幅最大。单场降水强度增大且降水时间推后集中在8、9月份,最高气温推后至7月中下旬发生。
     河川径流量增加,莺落峡水文站径流量由基准期的15.61亿m3增加为16.80亿m3。对比期相对于基准期,8-11月径流量占全年径流量的比例由43.78%增加为46.96%,径流丰水期逐渐后移。
     受调水工程影响,黑河中游地下水位下降,而下游地下水位埋深变浅。调水之后,中游地下水位下降幅度为2.96m左右,从上游到下游、距离河道越远,地下水位降幅越大。黑河下游年均地下水埋深降低,降幅为0.20m,从东西两河上游至下游,距离河道越远,地下水位埋深变浅程度逐渐降低,
     干旱发生次数和覆盖范围增加,干湿交替频次增大,从上游到下游干旱持续时间加大。干旱之后第一场降水强度大于同时期平均降水量,以中游旱后降水强度最高、下游最小,旱后发生洪涝的潜在风险增加。
     干旱时期气温高于同期非干旱期气温,实际水汽压低于同期值。随着干旱持续日数的延长,气温增加、实际水汽压降低;受干旱程度的影响,气温和实际水汽压以6月份变化最大,其次是7月和8月;6月份气温和水汽压干旱期与多年平均的差值从上游到下游逐渐降低。
     (2)气候变化对黑河流域水资源系统的影响
     气候变暖使黑河流域需水量呈增加态势,基准期流域需水量为18.65亿m2,对比期为21.23亿m2,增幅为13.8%。除7月份以外,其他月份需水量均增加,其中需水量最大的月份依次为6月、7月和5月。需水呈现出明显的空间差异:上游需水量5月份增加量最大,中游需水量以5月和8月最大,下游6月份需水比例提高。
     随着保证率的提高,气候变化影响下黑河流域需水量整体呈增加趋势,以中游需水增加最大,且整体需水时间逐渐前移。对于流域整体的需水变化,在25%频率下,以9月和5月需水量增加最大;50%频率下,以8月和7月需水量增加最大;90%频率下,以6月、5月和7月需水量增加最大。
     气候变化影响下,丰水年可利用水资源量增多,且汛期可利用水资源量进一步增多;平水年可利用水资源量增加;枯水年可利用水资源量减少,且干旱时期可利用水资源量进一步减少。90%频率下,黑河流域可利用水资源量下降了0.91亿m3,减幅为5.1%,干旱时期可利用的水资源量更小;50%频率下,可利用水资源量增加了1.21亿m3,增幅为5.8%,5-8月可利用水资源量增大;25%频率下,可利用水资源量增幅为15.7%,4-8月汛期可利用水资源量增大。
     缺水存在明显的时空变化。丰水年缺水时间集中在4-5月,平水年缺水时间也为4-5月但缺水增加明显,枯水年以6月份缺水增幅最大。黑河中游区域缺水率增大,干旱进一步加大,且缺水时间逐渐往前推移;上游目前受气候变化影响不明显,供水基本可满足需水的要求;对于下游,由于受到黑河近年连续丰水年的影响,其缺水率反而由22.0%降到15.9%,丰水年和平水年缺水率下降,枯水年缺水率微弱增加,缺水时间提前到3~4月。
     (3)气候变化影响下水资源系统的集合应对
     从水资源系统的角度提出了应对气候变化影响的集合策略。在规划层面,实施面向常态管理与应急管理统一的集合管理方式,进行组合风险分区,制定面向旱涝急转的集合应对预案;在实施层面,实施面向常态与极值过程的合理配置和水利工程群的联合调度,对水库汛限水位进行动态控制,并优化黑河流域分水方案。对于干旱而言,主要表现为水资源短缺问题,应从水循环的自然过程和社会过程两端入手,重点加强水资源在各个环节的优化利用,即通过合理开发、合理优化、合理配置和统一调度,规避干旱风险。
Against the background of climate change, the process of water supply and demand in the water resource system changes and the contradiction between water supply and demand exacerbates. In Heihe River Basin, the imbalance of water resources allocation has not been solved, and the ecological environment deterioration has not been curbed, while water dervison has been implemented for14years. Under climate change, the imbalance between water supply and demand has been aggravated, and the ecological water demand has not been met, which have a threat to the social-economical-environmental sustainable development of the basin.
     Based on the technology of geographic information system, digital simulation and fileld observation, from the perspective of water resources system, the interaction mechanism of climate change on water resources system is analyzed. On the basis of phenology, water demand and its process are predicted. The impact of climate change on the process of water supply is evaluated from the amount of water resources, available water resources and water supply.
     This study extends the theory and methods of evaluating the impact of climate change on water resources system. Furthermore, the difference from the traditional method is as follows: First, from the perspective of water resources system, the water supply and demand is evaluated. The paper emphases on the resource amount, time rhythm and spatial distribution of water supply and water demand in the water resource systems. Based on the SWAT model and the techonology of water resource assessment, the evolutionary characterisitics of water cycle, water resouces, available water resouces, water supply, water demand and water defict are analysed gradually. The phenological observations and accumulated temperature threshold method are used to determine the phenological variation of typical crops and vegetation. The water deficit ratio, time and regions are considered to support the adjustment of water diversion scheme under climate change.
     Collective strategy coping to climate change is conducted on the basis of both respecting the nature laws and satisfying the demands of social and economic development. The combination of normal and emergency management is used. The regulation goal is to control water availability. Specifically, the collective strategies are to make the time-space distribution of water resources rational through optimizing the hydraulic projects groups and dispatching water, without effecting the natural balance. Furthermore, the collective strategies are to meet the requirements of the social and economic development with rational allocation of water resources among different water consumers, through adjusting socio-economic development patterns.
     In the support of above basic theory and key technology, the conclusions about the impacts of climate change on water resources system in Heihe River Basin can be described below:
     (1) Evolutionary characteristics of water cycle elements and drought and flood in the changing environment
     The mean annual precipitation and daily maximum precipitation in Heihe river Basin increased. For the water-rich region in the upstream, the precipitation takes an increasing trend, while the precipitation takes a decreasing trend for the water-poor region in the downstream. The date of daily maximum precipitation moves from July to August and September. The intensity of precipitation increased. There is an increase in daily mean temperature, maximum temperature, minimum temperature and accumulated temperature. The lowest temperature happened in late January and the highest temperature happened in late July.
     The runoff has an upward trend, and it rises from15.61×108m3during1945-1991to16.80×108m3during1992~2010. In the flood season from June to September, the proportion of total annual runoff decreases from68%to66%, while the runoff from August to November increases from44%to47%.
     Due to the water diversion project, the water table in middle reaches of Heihe river Basin becomes falling, while rising in lower reaches. After the water diversion, the groundwater level in middle reaches declined by2.96m and water depth in lower reaches reduced by0.2m. The groundwater depth is gradually decreased due to the gradual decrease in water quantity from the upstream to downstream. The change of water table is dependent on the distance from the river, and the closer to the river, the shallower the depth is.
     The drought frequency, drought coverage, and the shift of dought and flood increase. For the drought duration, the area in the downstream tends to be longer than that in the upstream. The precipitation intensity after the drought in the midstream is greater than that in the downstream. For the middle and upper reaches, the precipitation intensity after drought is greater than that on the normal condition.
     The temperature after drought tends to be higher and the water vapor pressure after drought tends to be lower than the normal value. The temperature increases with the continuous dry days and the actual water vapor pressure decreases with the continuous dry days. The average temperature and actual vapour pressure varies with the degree of drought with the most change in June and followed by July and August. In June, the variation of temperature and vapor pressure in drought decrease from upstream to downstream.
     (2) The impact of climate change on water resources system in Heihe River Basin
     Due to climate warming, water demand in Heihe River Basin increases. Water demand is18.65×108m3in the baseline period and21.23×108m3in the control period with an increase of13.8%. The maximum of water demand is in June, July and May. The water demand presents obvious spatial differences. In the upstream, the water demand increases with the maximum in May. In the midstream, water demand increase by0.519×108m3,0.819×108m3and0.637×108m3in April, May and August, respectively. Furthermore, the time rhythm of water demand has changed, with an increase in the ratio from November to May of the following year. In the downstream, the ratio of water demand in June increase from22.84%to23.26%. For the whole basin, under guaranteeing rate of25%, the maximum water demand happens in September and May; under guarantee rate of50%, the maximum water demand occurs in August and July; under guarantee rate of90%, the maximum water demand happens in June, May and July.
     Under guarantee rate of90%, the quantity of available water resources decrease by0.91x108m3during the dry year in the control period compared to the baseline period. The quantity of available water resources in drought period are less with a decrease between June and December due to climate change. Under guarantee rate of50%, the available water resources decreases by1.21x108m3during the normal year in the control period when compared to the baseline period. The water resources are less with a decrease from September to April in the following year and an increase from May to August. Under guarantee rate of25%, the quantity of available water resources decreases by15.7%with an increase between April and August. The water resource increases in flood season and decreases in dry season due to climate change.
     The water shortage in wet year is concentrated in April and May, and the rate of water shortage in April increases weakly. The time of water shortage in normal year is from April to May, and the water shortage increases significantly in June. The water shortage in drought year is from April to June, and the maximum water shortage is in June. Under climate change, the rate of water shortage increases in the middle reaches. The time of water shortage goes forward gradually. For the upstream, the impacts of climate change are not obvious currently, and water supply can meet the basic water demand. For the downstream, due to continuous wet years, its rate of water shortage drops by21.96%to15.90%, and the rate of water shortage in wet year and normal year are declining. The rate of water shortage in drought is increasing. The time of water demand is earlier to March, April and June, and the maximum amplification is from March to April.
     (3) General framework concerning integrated strategies for coping with climate change
     The management framework of collective strategies should be formed on both the levels of planning and implementation. For the planning level, the management mode should shift from crisis management mode to collective management mode, unifying normal and emergent management. For the planning level, the goals are to revise the traditional method of drought and flood risk zoning, to implement the combined risk zoning of drought and flood, and to optimize the regulation ability of the hydraulic projects groups. For the level of implementation, based on the collective water resource management oriented at the normal and extreme values, the goals proposed to combat the rapid shifting of drought and flood are to implement rational water resources allocation oriented at normal and extreme value process, to dispatch hydraulic projects group at the extreme value process, to dynamically control the flood limit water level of reservoir, and to maximize the utilization efficiency of water resources.
引文
[1]Langbein WB. Annual runoff in the United States[M]. US Geological Survey Circular 5. Washington, DC.1949.
    [2]Schwarz HE. Climatic change and water supply:how sensitive is the Northeast?. In:Climate, Climatic Change and Water Supply[M]. National Academy of Sciences, Washington, DC.1977.
    [3]Revelle R, Waggoner P. Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in 7 the Western United States[J]. Changing Climate,1983: 419-432.
    [4]Glantz MH, Brown BG, Krenz ME. Societal responses to regional climate change forecasting by analogy[R]. ESIG/EPA.1988.
    [5]Liu C. The Study of Climate Change and Water Resources in North China. Ministry of Water Resources.1989.
    [6]Demaree G, Nicolis C. Onset of Sahelian drought viewed as a fluctuation-induced transition[J]. Quarterly Journal of the Royal Meteorological Society,1990, 116:221-238.
    [7]Glantz M, Wigley T. Climatic variations and their effects on water resources[R]. In:Resources and World Development, D. McLaren and B.Skinner (eds) Wiley. Chichester.1987:625-641.
    [8]Vinnikov K, Lemeshko N, Speranskaya N. Soil moisture and runoff in the extratropical part of the northern hemisphere[J]. Meteorology and Hydrology,1989, 14.
    [9]US Environmental Protection Agency. Potential Climatic Impacts of Increasing Atmospheric CO2 with Emphasis on Water Availability and Hydrology in the United States[R]. Office of Policy Analysis. Washington, DC.1984.
    [10]Singh B. The impacts of CO2-induced climate change on hydro-electric generation potential in the James Bay Territory of Quebec[R]. In:The Influence of Climate Change and Climatic Variability on the Hydrologie Regime and Water Resources, S. Solomon et al. (eds). IAHS Publication.1987,168:403-418.
    [11]Nemec J, Schaake J. Sensitivity of water resource systems to climate variation[J]. Hydrological Sciences-Journal-des Sciences Hydrologiques,1982,27(3):327-343.
    [12]Gleick PH. Methods for evaluating the regional hydrologic impacts of global climatic changes[J]. Journal of Hydrology,1986,88:99-116.
    [13]Gleick PH. The development and testing of a water balance model for climate impacts assessment[J]. Water Resources Research,1987,23:1049-1061.
    [14]Cohen SI. Impacts of CO2-induced climatic chang on water resources in the Great Lakes Basin[J]. Climatic Change,1986,8:135-153.
    [15]Flaschka JS, Boggess CW. Climatic variation and surface water resources in the Great Basin region[J]. Water Resources Bulletin,1987,23:47-57.
    [16]Bultot F, Coppens A, Dupriez A et al. Repercussions of a CO2 doubling on the water cycle and on the water balance-A case study for Belgium [J]. Journal of Hydrology,1988,99:319-347.
    [17]Kuchment L, Motovilov Y, Startsava L. Sensitivity of evapotranspiration and soil moisture to possible climatic changes[C]. Proc, Conference on Climate and Water. Helsinki.1989:236-251.
    [18]Lane ME, Kirshen PH, Vogel RM. Indicators of impacts of global climate change on United States water resources[J]. Journal of Water Resources Planning and management-ASCE.1999,125(4):194-204.
    [19]Vogel R, Moomaw W, Kirshen PA. National Assessment of the Impact of Climate Change on Water Resources[R]. National Centre for Environmental Research, report to the EPA.1999.
    [20]Arnell NW, Jenkins A, George DG. Implications of Climate Change for the NRA[R]. National Rivers Authority/HMSO, London.1994.
    [21]Allen RG, Smith M, Pereira LS et al. An update for the calculation of reference evapotranspiration[R]. ICID Bulletin.1994,43(2):35-92.
    [22]Allen RG, Pereira LS, Raes D et al.Crop evapotranspiration. Guidelines for computing crop water requirements[R]. FAO Irrigation and drainage paper 56. FAO, Rome.1998.
    [23]Arnell NW. Climate change and global water resources[J]. Global Environmental Change,1999,9:531-549.
    [24]Allen M, Stott P, Mitchell J et al. Quantifying the Uncertainty in Forecasts of Anthropogenic Climate Change[J]. Nature,2000,407:617-620.
    [25]Doll P. Impact of climate change and variability on irrigation requirements:a global perspective[J]. Climatic Change,2002,54:269-293.
    [26]Doll P, Florke M, Marker M, Vassolo S. Einfluss des Klimawandels auf Wasserressourcen und Bewasserungswasserbedarf:Eine giobale Analyse unter Berucksichtigung neuer Klimaszenarien.Tagungsband des Tags der Hydrologie 2003 in Freiburg, Forum fur Hydrologie und Wasserbewirtschaftung,04.03, Band 2,11-14.
    [27]Mote PW, Canning DJ, Fluharty DL et al. Impacts of Climate Variability and Change, Pacific Northwest. National Atmospheric and Oceanic Administration, Office of Global Programs, and JISAO/SMA Climate Impacts Group, Seattle, Washington. 1999:110.
    [28]Downing TE, Butterfield RE, Edmonds B et al. Climate Change and the Demand for Water, Research Report[R]. Stockholm Environment Institute Oxford Office, Oxford.2003.2.
    [29]Protopapas L, Katchamart S, Platonova A. Weather effects on daily water use in New York City[J]. Journal of Hydrologic Engineering,2000,5:332-338.
    [30]高彦春,于静洁,刘昌明.气候变化对华北地区水资源供需影响的模拟预测[J].地理科学进展,2002,21(6):616-624.
    [31]Jeffrey TP, Andrew WW, Alan FH et al. Mitigating the effects of climate change on the water resources of the Columbia River Basin[J]. Climatic Change,2004, 62:233-256.
    [32]Thomson AM, Brown RA, Rosenberg NJ et al. Climate change impacts for the conterminous USA:an integrated assessment. Part 5. Irrigated agriculture and national grain crop production[J]. Climatic Change,2005,69:89-105.
    [33]Wit MD, Stankiewicz J. Changes in Surface Water Supply Across Africa with Predicted Climate Change[J]. Science,2006,311:1917-1921.
    [34]Josue MA, Julien JH, Marcelo AO et al. Adaptability and adaptations of California's water supply system to dry climate warming[J]. Climatic Change,2008, 87 (Suppl 1):S75-S90.
    [35]Matthew BC, Nigel WA. Adapting to climate change impacts on water resources in England-An assessment of draft Water Resources Management Plans[J]. Global Environmental Change,2011,21:238-248.
    [36]王建,李硕.气候变化对中国内陆干早区山区融雪径流的影响[J].中国科学(D辑),2005,35(7):664-667.
    [37]Hagg W, Braun LN, Kuhn M et al. Modelling of hydrological response to climate change in glacierized Central Asian catchments[J]. Journal of Hydrology,2007,332 (1-2):40-53.
    [38]Darren LF, Luo YZ, Eike L et al. Climate change sensitivity assessment of a highly agricultural watershed using SWAT[J]. Journal of Hydrology,2009,374:16-29.
    [39]Williams P. Adapting water resources management to global climate change[J]. Climatic Change,1989,15:83-93.
    [40]Nigel WA. Factors controlling the effects of climate change on river flow regimes in a humid temperate environment[J]. Journal of Hydrology,1992, 132(1-4):321-342.
    [41]向毓意,张永勤,刘文泉等.气候变化对长江三角洲工业和生活用水影响的统计模型[J].南京气象学院学报,1999,22(S1):523-528.
    [42]刘晓英,林而达.气候变化对华北地区主要作物需水量的影响[J].水利学报,2004,(2):77-82,87.
    [43]Loe'RD, Kreutzwiser R, Moraru L. Adaptation options for the near term:climate change and the Canadian water sector[J]. Global Environmental Change,2001, 11:231-245.
    [44]吴普特,赵西宁.气候变化对中国农业用水和粮食生产的影响[J].农业工程学报,2010,26(2):1-6.
    [45]Thomas A. Agricultural irrigation demand under present and future climate scenarios in China[J]. Global and Planetary Change,2008,60:306-326.
    [46]Serrat-Capdevila A, Scott RL, James Shuttleworth W et al. Estimating evapotranspiration under warmer climates:Insights from a semi-arid riparian system[J]. Journal of Hydrology,2011,399:1-11.
    [47]Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature,2005,438:303-309.
    [48]Philippe R, Benjamin S, Philippe Q et al. The impact of future climate change on West African crop yields:What does the recent literature say? [J]. Global Environmental Change,2011,21:1073-1083.
    [49]Lucas B, Thomas B. How will combined changes in water demand and climate affect water availability in the Zambezi river Basin?[J]. Global Environmental Change, 2011,21:1061-1072.
    [50]Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature,2005,438:303-309.
    [51]Toews MW, Allen DM. Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change[J]. Environmental Research Letters,2009,4:1-19.
    [52]Arnel N, Delaney K. Adapting to climate change:Public water supply in England and Wales[J]. Climatic Change,2006,78 (2-4):227-255.
    [53]Wei Y, Langford J, Willett IR et al. Is irrigated agriculture in the Murray Darling Basin well prepared to deal with reductions in water availability? [J]. Global Environmental Change,2011,21:906-916.
    [54]郝振纯,李丽,王加虎等.气候变化对地表水资源的影响[J].中国地质大学 学报,2007,32(3):425-432.
    [55]姚玉璧,王润元,邓振镛等.黄河上游主要产流区气候变化及其对水资源的影响[J].中国沙漠,2007,27(5):903-909.
    [56]Wei X, Ian H, Erda L et al. Climate change, water availability and future cereal production in China[J]. Agriculture, Ecosystems and Environment,2010,135:58-69.
    [57]Rosenberg NJ, Epstein DJ, Wang D et al. Possible impacts of global warming on the hydrology of the Ogallala aquifer region[J]. Climatic Change,1999,42:677-692.
    [58]Suzana M, Ragab R. Impact of possible climate and land use changes in the semi arid regions:A case study from North Eastern Brazil[J]. Journal of Hydrology, 2012,434-435:55-68.
    [59]Zhu TJ, Marion WJ, Jay RL. Estimated Impacts of Climate Warming on California Water Availability Under Twelve Future-Climate Scenarios[R]. California Energy Commission, PIER Energy-Related Environmental Research.2006.
    [60]Department of Energy. Processes for identifying regional influences of and responses to increasing atmospheric CO2 and climate change-The MINK project[R]. 1991.
    [61]Kwadijk J, Middelkoop H. Estimation of impact of climate change on the peak discharge probability of the River Rhine[J]. Climatic Change,1994,27:199-224.
    [62]Vogel RM, Lane M, Ravindiran RS et al. Storage reservoir behavior in the United States[J]. Journal of Water Resources Planning and Management,1999, 125(5):245-254.
    [63]Nemec J, Schaake J. Sensitivity of water resource systems to climate variation[J]. Hydrologic Science Journal,1982,27 (3):327-343.
    [64]Yoichi F, Kenji T, Tsugihiro W et al. Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey[J]. Journal of Hydrology, 2008,353:33-48.
    [65]Fowler HJ, Kilsby CG, Stunell J. Modelling the impacts of projected future climate change on water resources in north-west England[J]. Hydrology and Earth System Sciences,2007,11(3):1115-1126.
    [66]Cynthia R, Kenneth MS, David CM et al. Water resources for agriculture in a changing climate:international case studies[J]. Global Environmental Change,2004, 14:345-360.
    [67]Brian H, Neil L, Russell J et al. Relative regional vulnerability of water resources to climate change[J]. Journal of the American Water Resources Association,1999, 35(6):1399-1409.
    [68]Lucas B, Thomas B. How will combined changes in water demand and climate affect water availability in the Zambezi river Basin? [J]. Global Environmental Change,2011,21(3):1061-1072.
    [69]Izaurralde RC, Rosenberg NJ, Brown RA et al. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States Part II.Regional agricultural production in 2030 and 2095[J]. Agricultural and Forest Meteorology,2003, 117:97-122.
    [70]Kirshen MA, Fennessey NM. Possible Climate Change Impacts on Water Supply of Metropolitan Boston[J]. Journal of Water Resources Planning and Management, 1995,121(1):61-70.
    [71]Brekke LD, Maurer EP, Jamie DA et al. Assessing reservoir operations risk under climate change[J]. Water Resources Research,2009,45(W04411).
    [72]Manning LJ, Hall JW, Fowler HJ et al. Using probabilistic climate change information from a multimodel ensemble for water resources assessment J]. Water Resources Research,2009,45(W11411).
    [73]Cloke HL, Jeffers CF. Wetterhall et al. Climate impacts on river flow:projections for the Medway catchment, UK, with UKCP09 and CATCHMOD[J]. Hydrological Processes,2010,24:3476-3489.
    [74]Arnell NW. Uncertainty in the relationship between climate forcing and hydrological response in UK catchments[J]. Hydrology and Earth System Sciences, 2011,15(3):897-912.
    [75]丛振涛,姚本智,倪广恒.SRA1B情景下中国主要作物需水预测[J].水科学进展,2011,22(1):38-43.
    [76]陈超,潘学标,张立祯等.气候变化对石羊河流域棉花生产和耗水的影响[J].农业工程学报,2011,27(1):57-65.
    [77]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.
    [78]蓝永超,沈永平,李州英等.气候变化对黄河河源区水资源系统的影响[J].干旱区资源与环境,2006,20(6):57-62.
    [79]丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社.1998.
    [80]Xi HY, Qi F, Liu W et al. The research of groundwater flow model in Ejina Basin, Northwestern China[J]. Environmental Earth Sciences,2010,60:953-963.
    [81]张一驰,于静洁,乔茂云等.黑河流域生态输水对下游植被变化影响研究[J].水利学报,2011,42(7):757-765.
    [82]Yu L, Sun JY, Song HM et al. Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430[J]. Water research,2010,44: 2781-2792.
    [83]Zhang YH, Wu Y, Su J et al. Groundwater replenishment analysis by using natural isotopes in Ejina Basin, Northwestern China[J]. Environmental Geology,2005, 48:6-14.
    [84]Hosking JRM. "The theory of probability weighted moments." IBM Research, Yorktown Heights, New York, IBM Research Report. RC 12210.1986.
    [85]Hosking JRM, Wallis JR. Regional frequency analysis:an approach based on L-moments[M]. Cambridge University Press, Cambridge.1997.
    [86]Hosking JR, Wallis JR. Some statistics useful in regional frequency analysis[J]. Water Resources Research,1993,29(2):271-281.
    [87]Hosking JRM, Wallis JR. Correction to'Some statistics useful in regional frequency analysis[J]. Water Resources Research,1995,31(1):251.
    [88]Lin G, Chen L. Identification of homogeneous regions for regional frequency analysis using the self-organizing map[J]. Journal of Hydrology,2006,324:1-9.
    [89]Gebrehiwot T, Veen A van der, Maathuis B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia[J]. International Journal of Applied Earth Observation and Geoinformation,2011,13:309-321.
    [90]Vicente-Serrano SM, L'opez-Moreno JI. Hydrological response to different time scales of climatological drought:an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean Basin[J]. Hydrology and Earth System Sciences, 2005,9:523-533.
    [91]Patel NR, Chopra P, Dadhwal VK. Analyzing spatial patterns of meteorological drought using standardized precipitation index[J]. Meteorological Applications,2007, 14:329-336.
    [92]Fischer T, Gemmer M, Luliu L et al. Temperature and precipitation trends and dryness/wetness pattern in the Zhujiang River Basin, South China,1961-2007[J]. Quaternary International,2011,244:138-148.
    [93]Logan KE, Brunsell NA, Jones AR et al. Assessing spatiotemporal variability of drought in the U.S. central plains[J]. Journal of Arid Environments,2010,74:247-255.
    [94]Gebrehiwot T, Veen A van der, Maathuis B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia[J]. International Journal of Applied Earth Observation and Geoinformation,2011,13(3):309-321.
    [95]黄晚华,杨晓光,李茂松等.基于标准化降水指数的中国南方季节性干旱近 58a演变特征[J].农业工程学报,2010,26(7):50-59.
    [96]闫峰,王艳姣,吴波.近50年河北省干旱时空分布特征[J].地理研究,2010,29(3):423-430.
    [97]李建平,张柏,张树清.吉林省西部草地的时空变化及其驱动因素分析[J].自然资源学报,2005,20(6):830-835.
    [98]Hosking JRM. Fortran routines for use with the method of L-moments, version 2. Research report RC17097[R]. IBM Research Division, T.J. Watson Res. Centre, Yorktown Heights, New York.1991.
    [99]Allen RG, Pereira LS, Dirk R et al. Crop evapotranspiration guidelines for computing crop water requirements[M]. FAO Irrig And Drain Paper 56. Rome,1998.
    [100]陈军武,吴锦奎.气候变化对黑河流域典型作物灌溉需水量的影响[J].灌溉排水学报,2010,29(3):69-73.
    [101]李金华,杨晓光,曹诗瑜等.甘肃张掖地区不同种植模式需水特征及作物系数分析[J].江西农业学报,2009,21(4):17-20.
    [102]卢其尧,王菱.中国稻麦棉主要品种生长期的积温[J].作物学报,1965,4(2):157-169.
    [103]刘兴聪.青海云杉[M].兰州:兰州大学出版社,1992.
    [104]司建华,冯起,席海洋等.极端干旱区柽柳林地蒸散量及能量平衡分析[J].干旱区地理,2006,29(4):517-522.
    [105]王继林,于洪波,何虎林等.物候观测与造林树种的选择[J].甘肃科技,2006,22(12):218-219,242.
    [106]常兆丰,韩福贵,仲生年.甘肃民勤荒漠区植物物候相的持续特征和组合特征[J].林业科学,2011,47(10):91-97.
    [107]王耀琳.民勤沙区70种植物的物候观测分析[J].甘肃林业科技,1992,(4):40-50.
    [108]赵志轩.白洋淀湿地生态水文过程耦合作用机制及综合调控研究[D].天津:天津大学.2012.
    [109]Moriasi DN, Arnold JG, Van Liew MW et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE,2007,50(3):885-900.
    [110]邱瑞田,王本德,周惠成.水库汛期限制水位动态控制理论与观念的更新探讨[J].水科学进展,2004,15(1):68-72.
    [111]周惠成,李丽琴,胡军等.短期降雨预报在汛限水位动态控制中的应用[J].水力发电.2005,31(8):22-26.
    [112]高波,吴永祥,沈福新等.水库汛限水位动态控制的实现途径[J].水科学 进展.2005,16(3):406-411.
    [113]周惠成,董四辉,王本德等.水库群联合防洪预报调度方式及汛限水位研究[J].大连理工大学学报,2006,46(3):401406.
    [114]王国利,袁晶碹,梁国华等.莅窝水库汛限水位动态控制域研究与应用[J].大连理工大学学报,2008,48(6):892-896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700