用户名: 密码: 验证码:
我国沿青藏高原同纬度带降水云系的垂直结构及其微物理特征的分析模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云的研究工作虽已大量开展,但并未细致的分析降水云系和非降水云系的宏观特征和微物理结构,特别是我国不同下垫面不同天气条件下云系的气候特征有待深入研究。无论是天气模式还是气候模式,对云的模拟仍然存在较大的不确定性,需要进一步改进模式的云微物理方案,使其能更好地再现云的特征,提高模式的模拟能力。针对上述问题,本文首先将CloudSat/CALIPSO云卫星数据和高时空分辨率的融合降水数据结合,分析了沿高原同纬度带(90o-130oE和27o-33oN)不同下垫面不同降水强度情况下的云垂直分布和微物理结构的季节变化特征;基于观测分析,评估了CMIP5国内外多个气候模式对此纬度带降水云系的模拟能力;还利用WRF模式对2008年1月我国南方发生的雨雪冰冻天气条件下云的垂直结构和微物理结构特征进行模拟,研究了与冻雨的关联;最后,基于CloudSat卫星资料的观测分析,提出了新的水云,冰云比例计算的参数化方案,并在BCC_AGCM2.1大气环流模式中得到应用,评估了该方案的可用性。论文主要结论如下:
     1.沿高原同纬度带,无论是有雨还是无雨均是单层云占主导,多层云中双层云出现比例最高。无雨情况下,春、夏季单层云的垂直分布位置最高,秋、冬季位置明显偏低,夏季所有地区云顶均可达15km,高原东部单层云大多主要集中在5-8km,115oE以东的我国东部沿海地区及海洋则集中在7-12km,但在四川盆地集中分布在4km以下。在秋、冬季,不管是青藏高原、四川盆地和东部沿海,单层云都集中分布在近地面5km以下;对于两层云分布而言,在所有季节的底层云主要分布在近地面2-3km,春、秋、冬季的顶层云分布在7-10km,夏季位置最高,达11-15km。
     2.在有雨情况下,沿高原同纬度带所有地区的单层云明显较厚,不管是青藏高原、四川盆地和东部沿海,云顶都可达10km上下,冬季偏低,夏季由于对流旺盛,云顶位置偏高;两层云的位置分布同无雨条件相近,主要区别是底层云明显变厚;随着降水强度的增加,主要表现为单层云和双层云的底层厚度变为更加深厚。
     3.大气中的水云和冰云含量与前面分析云的垂直分布结构相对应,无雨时,沿高原同纬度带大气水云含量主要集中在8km以下,冬季相对于其他季节有所偏低,主要位于6km以下。110oE以西的高原东部和四川盆地水云含量在所有季节都明显大于以东地区。对于冰水含量而言,高原东部仍然是所有季节冰水含量最大的区域。从高原、盆地到以东海洋的所有区域,冰云几乎分布在同一高度位置,但也存在明显的季节性差异,表现为春秋季主要分布在4-12km,夏季分布在5-15km,冬季分布在2-10km,春、夏季的冰水含量比秋、冬季节大;有雨时,液水含量的高度分布与无雨时相近,但盆地及其以东地区低层的液水含量比高原东部要大,不同区域的冰水含量数值几乎相当。随着降水强度的增加,云中液水和冰水含量均有所增加。
     4.评估了7个CMIP5各模式1999-2008年夏季沿高原纬度带云的垂直结构特征,分析表明,模式之间存在很大的差异。MRI-CGCM3,BCC-CSM1.1-m,MPI-ESM-LR三个模式能模拟出单、双层云占主导的特征,其他模式多存在模拟多层云偏多的现象。所模拟的单层云,无雨条件下,云底和云顶高度都与实际存在较大偏差, MPI-ESM-LR相对较好,而MRI-CGCM3和BCC-CSM1.1-m单层云云底过高;有雨时,大部分模式模拟的单层云比实际偏厚。所模拟的两层云,分辨率最高的MRI-CGCM3模式均能清晰的呈现两层云的结构特征,其余大部分模式均存在模拟的上层云偏厚的现象。在云量的模拟上,所有模式模拟的云量均比实际偏少,特别是低层,与实际偏差较大。在云微物理结构方面,多模式模拟的冰水含量均比实际偏少,而在有降雨的时候,沿高原同纬度带上的部分区域模拟的液水含量又比实际偏多。综合而言,除MRI-CGCM3模式外,分辨率较低的MPI-ESM-LR模式对云的模拟能力也相对较好,这说明,分辨率的高低并不是制约云模拟能力的唯一因素。
     5.评估了WRF模式对2008年1月发生在我国南方的一次典型的雨雪冰冻天气过程的模拟,模式能够再现冻雨发生核心区域云中不同种类水凝物(云水,雨水,云冰,雪,霰)随时间的演变特征,结合CloudSat卫星数据,WRF模式能够模拟出高空融化、近地面冻结的独特垂直温度结构,只是在部分区域上空模拟的冰水含量比实际偏多。在此期间,WRF所模拟的单、双层云分布仍占主导,但双层云所占比例最高,不同于CloudSat/CALIPSO观测的气候特征。在无雨、有雨时段单层云的分布与前面基于卫星观测的分析结论基本上吻合,随着降水强度的增加,厚度变厚;对于双层云的分布而言,顶层云位置明显较卫星观测的气候分布位置偏高。
     6.基于CloudSat数据产品,提出云中冰云、水云所占比例计算的参数化修改方案。该方案在BCC_AGCM2.1模式中得到应用,通过2004-2009年的5年AMIP数值模拟试验,与原参数化相比,无论有无降雨的情况,新方案均有效的改善了原方案对沿高原同纬度带高空8-11km水云比例模拟过大的现象,改进了对夏季水云、冰云垂直分布结构的模拟。
The studies about cloud have carried out in the recent decades. However, thecloud is not divided in to the precipitating cloud and non-precipitating cloud. Thecharacteristics of cloud with the totally different underlying height surface andthe precipitation intensity need to be learned. In addition, weather model andclimate model generally can-not simulate well the cloud distribution. In order totreat the cloud process with increasing realism in the model, the microphysicalschemes have to be improved. In this paper, firstly, observations fromCloudSat/CALIPSO satellites and high spatial and temporal resolutionprecipitation dataset are used to analyze the vertical structure and microphysicsfeature of clouds with the different precipitation intensity and underlying heightsurface over the latitude zone which is along the Tibetan Plateau (90o-130oE and27o-33oN). Secondly, based on the observational analysis, the abilities of CMIP5models for simulating the clouds over the same latitude zone have been comparedand evaluated. Thirdly, the WRF is used to simulate the vertical structure and theevolution of hydrometeor species in the freezing rain over the Southern China in2008. Finally, a new microphysics parameterization is proposed. Its performanceis evaluated in the Beijing Climate Center Atmospheric General CirculationModel Version2.1(BCC_AGCM2.1). The main conclusions are summarized asfollows:
     1. The occurrence frequency of single-layer cloud dominates anddouble-layer is relatively more common in the multilayer cloud. In the rainlesscondition, the occurrence height of single-layer is higher in spring and summer,the top of cloud can reach the15km in summer. The occurrence height ofsingle-layer most concentrated between5and8km over the eastern TibetanPlateau, while the height between7and12km over the east coast and oceanarea.The cloud height is mainly below4km over the Sichuan Basin.Thesingle-layer most concentrated below5km over the underlying surface in autumnand winter. In addition, double-layer cloud is thin over the whole latitude zone;the lower layer is mainly between2and3km over the underlying surface. Theupper layer cloud most concentrated beween11and15km in summer, while the height is between7and10km in other seasons.
     2. The single-layer cloud is thicker when the surface precipitation occurred.The top of single layer cloud reaches around10km over the whole latitude zone;the height of cloud top is higher due to the convective activity in summer, while itis obviously lower in winter. Although the distribution of double-layer cloud issimilar, the lower layer is thicker.Nevertheless, the single layer and the lower ofdouble layer cloud becomes thicker with an increasing intensity of precipitation
     3. The analyses on the liquid cloud and ice cloud correspond to the verticalstructure of cloud. The height of liquid water content is located below8km alongthe latitude zone of Tibetan Plateau, while it is lower in winter. The content ofliquid cloud over the eastern Tibetan Plateau and Sichuan Basin is more than thecontent which is over the eastern area. In contrast, the eastern Tibetan Plateau ishigh value area of ice water content in all seasons. Although the ice cloud isobserved in the same layer, the distribution varies with the season. Ice cloud islocated between4and12km in spring,5-15km in summer and2-10km in winter.The ice content which is over the whole latitude zone in spring and summer ismore than other seasons. Compared to the rainless condition, the height of liquidwater content is approximately similar when the surface precipitation occurred.However, the high value region of liquid water is over the Sichuan Basin andeastern area. The ice water and liquid water content become larger with increasedprecipitation intensity.
     4. Comparing with the satellite observations, MRI-CGCM3,BCC-CSM1.1-mand MPI-ESM-LR models can simulate the phenomenon that single-layer anddouble-layer are prevailing over the latitude zone which is along the TibetanPlateau area, however, the occurrence frequency of multilayer cloud in othermodels is higher than observation. In the rainless condition, most models cannotsimulate the appropriate top and base of single-layer cloud, however,MPI-ESM-LR is better than MRI-CGCM3and BCC-CSM1.1-m. Most of CMIP5models overestimate the thickness of single-layer cloud in the rainy condition.MRI-CGCM3with the high resolution can exhibit the vertical structure ofdouble-layer cloud, while others overestimate the thickness of the upper layer. Allof the models underestimate the low-level cloud fraction. In addition, the icewater and liquid water are also underestimated in the rainless condition; latter isoverestimated in the rainy condition. Relatively low resolution MPI-ESM-LRalways shows the better results, it shows that the resolution is not the only factorto restrict the ability on the cloud simulation.
     5. A freezing rain event between Jan11and Feb4in2008over southernChina is studied using the30km-mesh Weather Research and Forecasting (WRF)model simulations with four different microphysics schemes and CloudSatsatellite observations. This3-week-long freezing rain event, the temporalevolution of cloud microphysical structure and icing processing from Jan11toFeb4is also well simulated by WRF. In addition, WRF can capture the followingcharacteristics of an atmospheric vertical thermal structure for forming freezingrain: above-freezing temperature in the middle troposphere and below-freezingtemperature in the lower troposphere. The double-layer cloud is prevailing in thisdisaster; however, it is different from the satellite observation. The distribution ofsingle layer cloud is similar with the observation and becomes more concentratedas an increasing intensity of precipitation. However, the upper layer ofdouble-layer cloud is higher than the satellite observation.
     6. Based on the CloudSat data, a new microphysics parameterization isproposed. The performance is evaluated in the BCC_AGCM2.1. The result showsthat the new parameterization is more realistic in their proportion of ice water andliquid water. The liquid water bias is eliminated between the8and11km
引文
Argüeso, D., J. M. Hidalgo-Mu oz, S. R. Gámiz-Fortis, M. J. Esteban-Parra, J.Dudhia, and Y.Castro-Díez,2011: Evaluation of WRF parameterizations for climate studies oversouthern Spain using a multistep regionalization. J. Climate,24,5633–5651.
    Ahlgrimm, Maike, Richard Forbes,2014: Improving the representation of low clouds anddrizzle in the ecmwf model based on arm observations from the azores.Mon. Wea.Rev.,142,668–685.
    Arora, Vivek K., and Coauthors,2013: Carbon–concentration and carbon–climate feedbacksin cmip5earth system models.J. Climate,26,5289–5314.
    Baum, Bryan A., Richard A. Frey, Gerald G. Mace, Monica K. Harkey, Ping Yang,2003:Nighttime Multilayered Cloud Detection Using MODIS and ARM Data. J. Appl.Meteor.,42,905–919.
    Bony, S., and Coauthors,2006: How well do we understand and evaluate climate changefeedback processes? J. Climate,19,3445–3482.
    Boville, Byron A., Philip J. Rasch, James J. Hack, James R. McCaa,2006: Representation ofclouds and precipitation processes in the community atmosphere model version3(cam3). J. Climate,19,2184–2198.
    Bowden, Jared H., Tanya L. Otte, Christopher G. Nolte, Martin J. Otte,2012: Examininginterior grid nudging techniques using two-way nesting in the wrf model for regionalclimate modeling. J. Climate,25,2805–2823.
    Bukovsky, M. S., and D. J. Karoly,2009: Precipitation simulations using WRF as a nestedregional climate model. J. Appl. Meteor. Climatol.,48,2152–2159.
    Carvalho, Leila M. V., Charles Jones,2013: Cmip5simulations of low-level tropospherictemperature and moisture over the tropical americas.J. Climate,26,6257–6286.
    Cassano, J. J., M. E. Higgins, and M. W. Seefeldt,2011: Performance of the weatherresearch and forecasting model for month-long pan-arctic simulations. Mon. Wea. Rev.,139,3469–3488.
    Cooper, W. A., and C.P.R. Saunders,1980: Winter storms over the San Juan Mountains.J.Appl. Meteor.,19,925-941
    Collins, W.D., P.J. Rasch, B.A. Boville, J.J. Hack, et al.,2004, Description of the NCARCommunity Atmosphere Model (CAM3.0).
    Chaboureau, J.-P., and J.-P. Pinty,2006: Validation of a cirrus parameterization withMeteosat Second Generation observations.Geophys. Res. Lett.,33, L03815,
    Chaboureau, J.-P. Cammas, P. Mascart, J.-P. Pinty, C. Claud, R. Roca, and J.-J. Morcrette,2000: Evaluation of a cloud system lifecycle simulated by Meso-NH during FASTEXusing METEOSAT radiances and TOVS-3I cloud retrievals.Quart. J. Roy. Meteor. Soc.,126,1735–1750.
    Chaboureau,——,——,——, and J.-P. Lafore,2002: Mesoscale model cloud schemeassessment using satellite observations. J. Geophys. Res.,107,4301,
    Chadwick, Robin, Ian Boutle, Gill Martin,2013: Spatial patterns of precipitation change incmip5: why the rich do not get richer in the tropics.J. Climate,26,3803–3822.
    Chen Haoming, Rucong Yu, Jian Li, Xiaoge Xin, Zaizhi Wang, Tongwen Wu.2012,Thecoherent interdecadal changes of East Asia climate in mid-summer simulated byBCC_AGCM2.0.1, Clim Dyn,39:155-163.
    Chen, W.-T., C. P. Woods, J.-L. F. Li, D. E. Waliser, J.-D. Chern,W.-K. Tao, J. H. Jiang, andA. M. Tompkins,2011: Partitioning CloudSat ice water content for comparison withupper tropospheric ice in global atmospheric models. J. Geophys. Res.,116, D19206,doi:10.1029/2010JD015179.
    Chen, F., and J. Dudhia,2001: Coupling an advanced land-surface hydrology model withthe Penn State–NCAR MM5modeling system. Part I: Model description andimplementation. Mon. Wea. Rev.,129,569–585.
    Chen, S. H., and W. Y. Sun,2002: A one-dimensional time dependent cloud model. J. Meteor.Soc. Japan,80,99–118.
    Chen, H., R. Yu, and B. Wu (2012), FY-2C-derived diurnal features of clouds in thesouthern contiguous China, J. Geophys. Res.,117, D18101
    Choi, Y., C. Ho, S. Kim, and R. S. Lindzen,2010: Observational diagnosis of cloud phase inthe winter Antarctic atmosphere for parameterizations in climate models. Adv. Atmos.Sci.,27(6),1233–1245.
    Clark, A. J., W. A. Gallus, and M. L. Weisman,2010: Neighborhood-based verification ofprecipitation forecasts from convection-allowing ncar wrf model simulations and theoperational nam. Wea. Forecasting,25,1495–1509.
    Curry, J. A., and E. E. Ebert,1992: Annual cycle of radiation fluxes over the Arctic Ocean:Sensitivity to cloud optical properties. J. Climate,5,1267–1280.
    Curry, J. A.,, and Coauthors,2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor.Soc.,81,5–29.
    Cui, X. F., and H.-F. Graf,2009, Recent land cover changes on the Tibetan Plateau: Areview, Clim. Change,94,47–61
    Davis, C., and Coauthors,2008: Prediction of landfalling hurricanes with the advancedhurricane wrf model. Mon. Wea. Rev.,136,1990–2005.
    Delano, J., and R. J. Hogan,2010, Combined CloudSat‐CALIPSO MODIS retrievals ofthe properties of ice clouds, J. Geophys. Res.,115
    Dong, X., B. Xi, and P. Minnis,2006, A climatology of midlatitude continental clouds fromthe ARM SGP central facility. Part II: Cloud fraction and surface radiative forcing, J.Clim.,19,1765–1783
    Dong Min, Wu Tongwen, Wang Zaizhi, Cheng Yanjie and Zhang Fang (2012) A simulationstudyon the extreme temperature events of the20th century by using theBCC_AGCM. Acta Meteor. Sinica,26(4):489-506. doi:10.1007/s13351-012-0408-5
    Downes, Stephanie M., Andrew McC. Hogg,2013: Southern ocean circulation and eddycompensation in cmip5models.J. Climate,26,7198–7220.
    Duan, Anmin, Jun Hu, Zhixiang Xiao,2013: The tibetan plateau summer monsoon in thecmip5simulations.J. Climate,26,7747–7766.
    Dudhia, J.,1989: Numerical study of convection observed during the Winter MonsoonExperiment using a mesoscale twodimensional model. J. Atmos. Sci.,46,3077–3107.
    Dirmeyer, Paul A., Yan Jin, Bohar Singh, Xiaoqin Yan,2013: Trends in land–atmosphereinteractions from cmip5simulations.J. Hydrometeor,14,829–849.
    Duan, A. M., and G. X. Wu,2006, Change of cloud amount and the climate warming on theTibetan Plateau, Geophys. Res. Lett.,33
    Dong Min, Wu Tongwen, Wang Zaizhi, Cheng Yanjie and Zhang Fang.2012, A simulationstudy on the extreme temperature events of the20th century by using theBCC_AGCM. Acta Meteor. Sinica,26(4):489-506.
    Dong, Lu, Tianjun Zhou,2014: The indian ocean sea surface temperature warming simulatedby cmip5models during the twentieth century: competing forcing roles of ghgs andanthropogenic aerosols. J. Climate,27,3348–3362.
    Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje,2000: Observed variability and trends in extreme climate events: a brief review. Bull.Amer. Meteor. Soc.,81,417-425.
    Ellis, T. D., T. L'Ecuyer, J. M. Haynes, and G. L. Stephens,2009, How often does it rain overthe global oceans? The perspective from CloudSat, Geophys. Res. Lett.,36
    Fowler, A. M., and K. J. Hennessy,1995: Potential impacts of global warming on thefrequency and magnitude of heavy precipitation. Natural Hazards.,11,283-303.
    Fowler, L., D. A. Randall, and S. A. Rutledge,1996: Liquid and ice cloud microphysics inthe CSU general circulation model. Part I: Model description and simulatedmicrophysical processes. J. Climate,9,489–529.
    Fujinami, Hatsuki, Tetsuzo Yasunari,2002, The Seasonal and Intraseasonal Variability ofDiurnal Cloud Activity over the Tibetan Plateau, Journal of the MeteorologicalSociety of Japan,1207-1227
    Frey, Richard A., Steven A. Ackerman, Yinghui Liu, Kathleen I. Strabala, Hong Zhang,Jeffrey R. Key, Xuangi Wang,2008: Cloud detection with modis. part i:improvements in the modis cloud mask for collection5. J. Atmos. Oceanic Technol.,25,1057–1072.
    Fu, Rong, Anthony D. Del Genio, William B. Rossow,1990: Behavior of Deep ConvectiveClouds in the Tropical Pacific Deduced from ISCCP Radiances. J. Climate,3,1129–1152.
    Field, Paul R., Robert Wood,2007: Precipitation and Cloud Structure in MidlatitudeCyclones. J. Climate,20,233–254.
    Gao, yang, Tongwen Wu, Baode Chen, Jun Wang, Yiming Liu,2013. A numericalsimulation of microphysical structure of cloud associated with the2008winterfreezing rain over southern China. Journal of the Meteorological Society of Japan,91(2)
    Garvert, Matthew F., Christopher P. Woods, Brian A. Colle, Clifford F. Mass, Peter V. Hobbs,Mark T. Stoelinga, Justin B. Wolfe,2005: The13–14december2001improve-2event. part ii: comparisons of mm5model simulations of clouds and precipitationwith observations.J. Atmos. Sci.,62,3520–3534.
    Garand, L., and S. Nadon,1998: High-resolution satellite analysis and model evaluation ofclouds and radiation over the Mackenzie Basin using AVHRR data. J. Climate,11,1976–1996.
    Gaetani, Marco, Elsa Mohino,2013: Decadal prediction of the sahelian precipitation incmip5simulations. J. Climate,26,7708–7719.
    Geerts, Bart, Teferi Dejene,2005: Regional and diurnal variability of the vertical structure ofprecipitation systems in africa based on spaceborne radar data.J. Climate,18,893–916.
    Ghan, S. J., and R. C. Easter,1992: Computationally efficient approximations to stratiformcloud microphysics parameterization.Mon. Wea. Rev.,120,1572–1582.
    Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier,2006:Increasing trend of extreme rain events over India in a warming environment.Science.,314,1442-1444.
    Grecu, Mircea, Emmanouil N. Anagnostou,2001: Overland Precipitation Estimation fromTRMM Passive Microwave Observations. J. Appl. Meteor.,40,1367–1380.
    Gregory, D., and D. Morris,1996: The sensitivity of climate simulationsto the specificationmixed-phase clouds. Climate Dyn.,12,641–651.
    Gupta, Alexander Sen, Nicolas C. Jourdain, Jaclyn N. Brown, Didier Monselesan,2013:Climate drift in the cmip5models*.J. Climate,26,8597–8615.
    Gula, Jonathan, W. Richard Peltier,2012: Dynamical downscaling over the great lakes basinof north america using the wrf regional climate model: the impact of the great lakessystem on regional greenhouse warming.J. Climate,25,7723–7742.
    Hamada, A., and N. Nishi,2010: Development of a cloud-top height estimation method bygeostationary satellite split-window measurements trained with cloudsat data. J. Appl.Meteor. Climatol.,49,2035–2049.
    Hanna, Jay W., David M. Schultz, Antonio R. Irving,2008: Cloud-Top Temperatures forPrecipitating Winter Clouds. J. Appl. Meteor. Climatol.,47,351–359.
    Han, Q. Y., W. B. Rossow, J. Chou, and R. M. Welch,1998: Global survey of therelationships of cloud albedo and liquid water path with droplet size using ISCCP. J.Climate,11,1516–1528.
    Haynes, J. M., and G. L. Stephens,2007, Tropical oceanic cloudiness and the incidence ofprecipitation: Early results from CloudSat, Geophys. Res. Lett.,34
    Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, J. G. Olson, S. A. Klein, C. S.Bretherton, and M. K€ohler,2009: Evaluation of forecasted southeast Pacificstratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate,22,2871–2889.
    Hack J J.1994, Parameterization of moist convection in the National Center for AtmosphericResearch Community Climate Model (CCM2). J. Geophys. Res.,99:5551–5568
    Hartmann, D., and D. A. Short (1980), On the use of Earth radiation budget statistics forstudies of clouds and climate, J. Atmos. Sci.,37(6),1233–1250
    Harrison, E., P. Minnis, B. Barkstrom, V. Ramanathan, R. Cess, and G. Gibson (1990),Seasonal variation of cloud radiative forcing derived from the Earth RadiationBudget Experiment, J. Geophys. Res.,95(D11),18,687–18,703
    He, C., and T. Zhou,2014: The two interannual variability modes of the Western NorthPacific Subtropical High simulated by28CMIP5–AMIP models, Climate Dynamics,DOI10.1007/s00382-014-2068-x
    Hobbs,P.V.,1975: The Nature of Winter Clouds and Precipitation in the Cascade Mountainsand their Modification by Artificial Seeding. Part II: Techniques for the PhysicalEvaluation of Seeding. J.Appl.Meteor.,14,783-804
    Hong, S. Y., and J. O. Lin,2006: The WRF single-moment6-class microphysics scheme(WSM6). J. Korean Meteor. Soc.,42(2),129–151.
    Hong, S. Y., and J. O. J. Lim,2006: The WRF Single-Moment6-Class Microphysics Scheme(WSM6), J. Korean Meteor. Soc.,42,129–151.
    Hong, S. Y., J. Choi, E. C. Chang, H. Park, and Y. J. Kim,2008: Lower-TroposphericEnhancement of Gravity Wave Drag in a Global Spectral Atmospheric ForecastModel.Wea. Forecasting.,23,523–531.
    Hughes, N. A.,1984: Global cloud climatologies: A historical review. J. Climate Appl.Meteor.,23,724–751.
    Huang, Yi, Steven T. Siems, Michael J. Manton, Luke B. Hande, John M. Haynes,2012: TheStructure of Low-Altitude Clouds over the Southern Ocean as Seen by CloudSat. J.Climate,25,2535–2546.
    Huang, Yi, Steven T. Siems, Michael J. Manton, Gregory Thompson,2014: An evaluation ofwrf simulations of clouds over the southern ocean with a-train observations. Mon.Wea. Rev.,142,647–667.
    Hung, Meng-Pai, Jia-Lin Lin, Wanqiu Wang, Daehyun Kim, Toshiaki Shinoda, Scott J.Weaver,2013: Mjo and convectively coupled equatorial waves simulated by cmip5climate models.J. Climate,26,6185–6214.
    Im, E., S. L. Durden, and C. Wu,2005: Cloud profiling radar for the Cloudsat mission, IEEETrans. Aerosp. Electron. Syst.,20,15–18,
    Isaac, G. A., R. A. Stuart,1996: Relationships between Cloud Type and Amount,Precipitation, and Surface Temperature in the Mackenzie River Valley-Beaufort SeaArea. J. Climate,9
    Jakob, C. and Klein, S. A.(1999), The role of vertically varying cloud fraction in theparametrization of microphysical processes in the ECMWF model. Q.J.R. Meteorol.Soc.,125:941–965.
    Jeck, R. K.,2011: Spatial and microphysical characteristics of low-ceiling,temperature-inverted clouds in warm overrunning and freezing-rain conditions: acase study. J. Appl. Meteor. Climatol.,50,2062–2072.
    Jiang, Xianan, Eric D. Maloney, Jui-Lin F. Li, Duane E. Waliser,2013: Simulations of theeastern north pacific intraseasonal variability in cmip5gcms. J. Climate,26,3489–3510.
    Jin, X.,T. Wu,L. Li, and C. Shi,2009,Cloudiness characteristics over Southeast Asia fromsatellite FY-2C and their comparison to three other cloud data sets, J. Geophys.Res.,114
    Kain, J. S., and J. M. Fritsch,1990: A one-dimensional entraining/detraining plume modeland its application in convective parameterization. J. Atmos. Sci.,47,2784–2802.
    Kain, J. S., and J. M. Fritsch,1993: Convective parameterization for mesoscale models: TheKain-Fritcsh scheme, The representation of cumulus convection in numerical models.Amer. Meteor. Soc.,165-170
    Kain, J. S.2004: The Kain–Fritsch convective parameterization: An update. J. Appl.Meteorol.,43,170–181.
    Kalnay, E., and Coauthors,1996: The NCEP/NCAR40-Year Reanalysis Project. Bull. Amer.Meteor. Soc.,77,437–471.
    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter,2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Met. Soc.,83,1631-1643.
    Kawazoe, Sho, William J. Gutowski,2013: Regional, very heavy daily precipitation incmip5simulations.J. Hydrometeor,14,1228–1242.
    Keil, C., A. Tafferner, H. Mannstein, and U. Schattler,2003: Evaluating high-resolutionmodel forecasts of European winterstorms by use of satellite and radar observations.Wea. Forecasting,18,732–747.
    Kiehl, J. T., and K. T. Trenberth,1997: Earth’s annual global meanenergy budget. Bull. Amer.Meteor. Soc.,78,197–209.
    Kim, H., and B. Wang,2011: Sensitivity of the WRF model simulation of the East Asiansummer monsoon in1993to shortwave radiation schemes and ozone absorption.Asia-Pacific Journal of Atmospheric Sciences,47(2):167-180.
    Klein, S. A., and C. Jakob,1999: Validation and sensitivities of frontal clouds simulated bythe ECMWF model. Mon. Wea. Rev.,127,2514–2531.
    Kollias, P.,M. A. Miller,K. L. Johnson,M. P. Jensen, and D. T. Troyan,2009,Cloud,thermodynamic, and precipitation observations in West Africa during2006,J.Geophys. Res.,114
    Kumar, Sanjiv, Venkatesh Merwade, James L. Kinter, Dev Niyogi,2013: Evaluation oftemperature and precipitation trends and long-term persistence in cmip5twentieth-century climate simulations.J. Climate,26,4168–4185.
    Kaiser DP.2000. Decreasing cloudiness over China: an updated analysis examiningadditional variables. Geophys. Res. Lett.27(15):2193–2196.:
    Kawazoe, Sho, William J. Gutowski,2013: Regional, very heavy daily precipitation incmip5simulations. J. Hydrometeor,14,1228–1242.
    Kawazoe, Sho, William J. Gutowski,2013: Regional, very heavy daily precipitation incmip5simulations. J. Hydrometeor,14,1228–1242.
    Kollias, P., M. A. Miller, K. L. Johnson, M. P. Jensen, and D. T. Troyan (2009), Cloud,thermodynamic, and precipitation observations in West Africa during2006, J.Geophys. Res.,114, D00E08
    Kummerow C, Simpson J, Thiele O, et al.2000. The status of the Tropical RainfallMeasuring Mission (TRMM) after two years in orbit., J. Appl. Meteor.,39(12):1965-1982
    KUROSAKI, Yasunori and Fujio KIMURA,2002, Relationship between Topography andDaytime Cloud Activity around Tibetan Plateau, Journal of the MeteorologicalSociety of Japan, Vol.80, No.6,1339—1355
    Lauer, A., K.Hamilton, Y.Wang, V. T. J. Phillips, and R. Bennartz,2010: The impact ofglobal warming on marine boundary layer clouds over the eastern Pacific—Aregional model study. J. Climate,23,5844–5863.
    Lauer, Axel, Kevin Hamilton,2013: Simulating clouds with global climate models: acomparison of cmip5results with cmip3and satellite data.J. Climate,26,3823–3845.
    Leung, L. R., and Y. Qian,2009: Atmospheric rivers induced heavy precipitation andflooding in the western U.S. simulated by the WRF regional climate model. Geophys.Res. Lett.,36, L03820
    Liou, K. N.1986, Influence of cirrus clouds on weather and climate: A global perspective,Mon. Weather Rev.,114,1167–1199
    Li R, Fu Y F.2005. Tropical precipitation estimated by GPCP and TRMM PR observations.Adv. Atmos. Sci.,22(6):852-864
    Liu, X., and B. Chen,2000, Climatic warming in the Tibetan Plateau during recent decades,Int. J. Climate.,20,1729–1742
    Liu, Hailong, Chunzai Wang, Sang-Ki Lee, David Enfield,2013: Atlantic warm poolvariability in the cmip5simulations.J. Climate,26,5315–5336.
    Luo, Yali, Renhe Zhang, Hui Wang,2009: Comparing Occurrences and Vertical Structures ofHydrometeors between Eastern China and the Indian Monsoon Region UsingCloudSat/CALIPSO Data. J. Climate,22,1052–1064.
    Li, Y., X. Liu, and B. Chen,2006, Cloud type climatology over the Tibetan Plateau: Acomparison of ISCCP and MODIS/TERRA measurements with surface observations,Geophys. Res. Lett.,33
    Li, Yuefeng, L. Ruby Leung, Ziniu Xiao, Min Wei, Qingquan Li,2013: Interdecadalconnection between arctic temperature and summer precipitation over the yangtzeriver valley in the cmip5historical simulations J. Climate,26,7464–7488.
    Li, J.-L. F., et al.(2012), An observationally based evaluation of cloud ice water in CMIP3and CMIP5GCMs and contemporary reanalyses using contemporary satellite data, J.Geophys. Res.,117, D16105,
    Lin,Jia-Lin,Taotao Qian,Toshiaki Shinoda, Stratocumulus Clouds in Southeastern PacificSimulated by Eight CMIP5/CFMIP Global Climate Models, J. Climate,(in press)
    Lin, R. R. Farley, and H. D. Orville,1983: Bulk parameterizationof the snow field in a cloudmodel. J. Climate Appl. Meteor.,22,1065–1092.
    Lohmann, U., and E. Roeckner,1996: Design and performance of a new cloud microphysicsscheme developed for the ECHAM general circulation model. Climate Dyn.,12,557–572.
    Lohmann, N. McFarlane, L. Levkov, K. Abdella, and F. Albers,1999: Comparing differentcloud schemes of a single column model by using mesoscale forcing and nudgingtechnique. J. Climate,12,438–461.
    Mace, G. G., and S. Benson,2008, The vertical structure of cloud occurrence and radiativeforcing at the SGPARM site as revealed by8years of continuous data, J. Clim.,21,2591–2610
    Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte,and D.Winker,2009, A description of hydrometeor layer occurrence statistics derived fromthe first year of merged CloudSat and CALIPSO data, J. Geophys. Res.,114
    Mathieu, A., G. Seze, C. Guerin, H. Dupais, and A. Weill,1999: Mesoscale boundary layercloud structures as observed during the SEMAPHORE campaign. Phys. Chem. Earth,8B,933–938.
    Masato, Giacomo, Brian J. Hoskins, Tim Woollings,2013: Winter and summer northernhemisphere blocking in cmip5models. J. Climate,26,7044–7059.
    Marchand, R. T., G. G. Mace, T. Ackerman, and G. Stephens,2008: Hydrometeor detectionusing CloudSat—An earthorbiting94-GHz cloud radar. J. Atmos. Oceanic Technol.,25,519–533.
    Matrosov, S, Y., A. Battaglia, and P. Rodriguez,2008: Effects of multiple scattering onattenuation-based retrievals of stratiform rainfall from cloudsat. J. Atmos. OceanicTechnol.,25,2199–2208.
    Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton,2000: Trends inextreme weather and climate events: issues related to modeling extremes inprojections of future climate change. Bull. Amer. Meteor. Soc.,81,427-436.
    Morrison, H., J. A. Curry, and V. I. Khvorostyanov,2005: A new double-momentmicrophysics parameterization for application in cloud and climate models, Part I:Description. J. Atmos.Sci.,62,1665–1677.
    Morrison, H., and J. O. Pinto,2006: Intercomparison of bulk microphysics schemes inmesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea.Rev.,134,1880–1900.
    Morrison, H., G. Thompson, and V. Tatarskii,2009: Impact of cloud microphysics on thedevelopment of trailing stratiform precipitationin a simulated squall line:Comparison of one-and two-moment schemes. Mon. Wea. Rev.,137,991–1007.
    Niu, T., L. X. Chen, and Z. J. Zhou,2004, The characteristics of climate change over theTibetan Plateau in the last40years and the detection of climatic jumps, Adv. Atmos.Sci.,21,193–203
    Nesbitt, Stephen W., Robert Cifelli, Steven A. Rutledge,2006: Storm Morphology andRainfall Characteristics of TRMM Precipitation Features. Mon. Wea. Rev.,134,2702–2721.
    Naud, C. M., and Y.-H. Chen.2010, Assessment of ISCCP cloudiness over the TibetanPlateau using CloudSat-CALIPSO, J. Geophys. Res.,115,
    Naud, Catherine M., Anthony D. Del Genio, Mike Bauer, William Kovari,2010: Cloudvertical distribution across warm and cold fronts in cloudsat–calipso data and ageneral circulation model. J. Climate,23,3397–3415.
    Norris, J. R., and C. P. Weaver,2001: Improved techniques for evaluating GCM cloudinessapplied to the NCAR CCM3. J.Climate,14,2540–2550.
    Niznik, Matthew J., Benjamin R. Lintner,2013: Circulation, moisture, and precipitationrelationships along the south pacific convergence zone in reanalyses and cmip5models.J. Climate,26,10174–10192.
    Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovich, R. Dickinson, P. Dirmeyer, F. Hoffman, P.Houser, S. Levis, G. Y. Niu, P. Thornton, M. Vertenstein, Z. L. Yang, X. Zeng.2004,Technical Description of the Community Land Model (CLM), NCAR/TN-461+STR,NCAR, Boulder, Colorado.
    Otkin, Jason A., Thomas J. Greenwald,2008: Comparison of wrf model-simulated andmodis-derived cloud data. Mon. Wea. Rev.,136,1957–1970.
    O'Brien, Travis A., Fuyu Li, William D. Collins, Sara A. Rauscher, Todd D. Ringler, MarkTaylor, Samson M. Hagos, L. Ruby Leung,2013: Observed scaling in clouds andprecipitation and scale incognizance in regional to global atmospheric models.J.Climate,26,9313–9333.
    Pavolonis, M. J., and J. R. Key,2003, Antarctic cloud radiative forcing at the surfaceestimated from the AVHRR Polar Pathfinder and ISCCP D1datasets,1985–93, J.Appl. Meteorol.,42,827–840,
    Pithan, Felix, Brian Medeiros, Thorsten Mauritsen,2013:Mixed-phase clouds cause climatemodel biases in Arctic wintertime temperature inversions,Climate Dyn.
    Protat, A., D. Bouniol, E. J. O’Connor, H. K. Baltink, J. Verlinde, and K. Widener,2011:CloudSat as a global radar calibrator. J. Atmos. Oceanic Technol.,28,445–452.
    Purich, Ariaan, Tim Cowan, Seung-Ki Min, Wenju Cai,2013: Autumn precipitation trendsover southern hemisphere midlatitudes as simulated by cmip5models. J. Climate.26,8341–8356.
    Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstorm, and D. Hartman,1989, Cloud radiative forcing and climate: Results from the Earth Radiation BudgetExperiment, Science,243,57–63
    Randall, D. A., and S. Tjemkes (1991), Clouds, the Earth’s radiation budget, and thehydrologic cycle, Global Planet. Change,4(1–3),3–9.
    Rasch, P. J., and J. E. Kristjánsson,1998: A comparison of the CCM3model climate usingdiagnosed and predicted condensate parameterizations. J. Climate,11,1587–1614.
    Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel,2000: The relativeimportance of warm rain and melting processes in freezing precipitation events. J.Appl. Meteor.,39,1185–1195.
    Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and D. Miller,2001: A Synoptic WeatherPattern and Sounding-Based Climatology of Freezing Precipitation in the UnitedStates East of the Rocky Mountains J. Appl. Meteor.,39,1185–1195.
    Rossow, W. B., and A. A. Lacis,1990, Global, seasonal cloud variations from satelliteradiance measurements. Part II: Cloud properties and radiative effects, J. Clim.,3,1204–1253
    Randall, D. A., and Coauthors,2007: Climate models and their evaluation. Climate Change2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge UniversityPress,589–662
    Rauber, Robert M.,1987: Characteristics of Cloud Ice and Precipitation during WintertimeStorms over the Mountains of Northern Colorado. J. Climate Appl. Meteor.,26,488–524.
    Rossow, W. B.,1993: Satellite observations of radiation and clouds to diagnose energyexchanges in the climate: Parts I and II. Energy and Water Cycles in the ClimateSystem, E. Raschke and D. Jacob, Eds., NATO ASI Series, Vol. I5,123–164.
    Rangwala, I., J. R. Miller, and M. Xu,2009, Warming in the Tibetan Plateau: Possibleinfluences of the changes in surface water vapor, Geophys. Res. Lett.,36
    Rasch P J, Kristjansson J E.1998, A comparison of the CCM3model climate usingdiagnosed and predicted condensate parameterizations. J. Climate,11:1587–1614.
    Rutledge, S. A., and P. V. Hobbs,1983: The mesoscale and microscale structure andorganization of clouds and precipitation in midlatitude cyclones. VIII: A model forthe “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci.,40,1185–1206.
    Ryan, B. F., and Coauthors,2000: Simulations of a cold front by cloud-resolving,limited-area, and large-scale models, and a model evaluation using in situ andsatellite observations. Mon. Wea. Rev.,128,3218–3235.
    Sato, T., H. Miura, and M. Satoh,2007, Spring diurnal cycle of clouds over Tibetan Plateau:Global cloud-resolving simulations and satellite observations, Geophys. Res. Lett.,34
    Sedlar, J., M. D. Shupe, and M. Tjernstr€om,2012: On the relationship betweenthermodynamic structure and cloud top, and its climate significance in the Arctic. J.Climate,25,2374–2393.
    Sertel, E., A. Robock, and C. Ormeci,2009: Impacts of land cover data quality on regionalclimate simulations. Int. J. Climatol.,30,1942-1953.
    Seth, Anji, Sara A. Rauscher, Michela Biasutti, Alessandra Giannini, Suzana J. Camargo,Maisa Rojas,2013: Cmip5projected changes in the annual cycle of precipitation inmonsoon regions.J. Climate,26,7328–7351.
    Scoccimarro, Enrico, Silvio Gualdi, Alessio Bellucci, Matteo Zampieri, Antonio Navarra,2013: Heavy precipitation events in a warmer climate: results from cmip5models. J.Climate,26,7902–7911.
    Shen, Y., A. Xiong, Y. Wang, and P. Xie (2010), Performance of high-resolution satelliteprecipitation products over China, J. Geophys. Res.,115, D02114
    Shi, X. H., X. D. Xu, and C. G. Lu,2010: The dynamic and thermodynamic structuresassociated with a series of heavy precipitation events over china during January2008. Wea. Forecasting.,25,1124–1141.
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G.Powers,2008: A description of the advanced research WRF version3. NCARTechnical Note, NCAR/TN-475+STR,125pp.Last revision, June2008. Available at:http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.
    Song, F., T. Zhou, and Y. Qian,2014: Responses of East Asian summer monsoon to naturaland anthropogenic forcings in the17latest CMIP5models. Geophys. Res. Lett.,41,596–603
    Song, Fengfei, Tianjun Zhou,2014: Interannual variability of east asian summer monsoonsimulated by cmip3and cmip5agcms: skill dependence on indian ocean–westernpacific anticyclone teleconnection. J. Climate,27,1679–1697.
    Somerville RCJ, Remer LA (1984) Cloud optical thickness feedbacks in the COz climateproblem. J Geophys Res89(D):9668-9672
    Stephens, G. L., and T. J. Greenwald,1991, The Earth’s radiation budget and its relation toatmospheric hydrology:2. Observations of cloud effects, J. Geophys. Res.,96(D8),15,325–15,340
    Stephens, G. L.,2005, Cloud feedbacks in the climate system: A critical review, J. Clim.,18,237–273
    Stephens, G. L., and C. D. Kummerow,2007, The remote sensing of clouds andprecipitation from space: A review, J. Atmos. Sci.,64(11),3742–3765
    Stein, T. H. M., D. J. Parker, J. Delano, N. S. Dixon, R. J. Hogan, P. Knippertz, R. I.Maidment, and J. H. Marsham.2011, The vertical cloud structure of the West Africanmonsoon: A4year climatology using CloudSat and CALIPSO, J. Geophys. Res.,116
    Stephens, G. L., and Coauthors,2002: The CloudSat mission and the a-train. Bull. Amer.Meteor. Soc.,83,1771–1790.
    Storelvmo, T., J. E. Kristj_ansson, and U. Lohmann,2008: Aerosol influence onmixed-phase clouds in CAM-Oslo. J. Atmos. Sci.,65,3214–3230
    Storelvmo, T., C. Hoose, and P. Eriksson,2011: Global modeling of mixed phase clouds: Thealbedo and lifetime effects of aerosols. J. Geophys. Res.,116, D05207,
    Simpson J, Adler R F, North G R.1988. A proposed Tropical Rainfall Measuring Mission(TRMM) satellite. Bull. Amer. Meteor. Soc.,69(3):278-295
    Su, Fengge, Xiaolan Duan, Deliang Chen, Zhenchun Hao, Lan Cuo,2013: Evaluation of theglobal climate models in the cmip5over the tibetan plateau. J. Climate,26,3187–3208.
    Sun, Yong, Tianjun Zhou,2014: How does el ni o affect the interannual variability of theboreal summer hadley circulation?. J. Climate,27,2622–2642.
    Suzuki, Kentaroh, Graeme L. Stephens, Susan C. van den Heever, Takashi Y. Nakajima,2011: Diagnosis of the warm rain process in cloud-resolving models using jointcloudsat and modis observations.J. Atmos. Sci.,68,2655–2670.
    Sun, J. H., and S. X. Zhao,2010: The impacts of multiscale weather systems on freezing rainand snowstorms over southern china. Wea. Forecasting,25,388–407.
    Szeto, K. K., A. Tremblay, H. Guan, D. R. Hudak, R. E. Stewart, and Z. Cao,1999: Themesoscale dynamics of freezing rain storms over eastern Canada. J. Atmos. Sci.,56,1261–1281.
    Tao W K, Lang S, Simpson J, et al.1993. Retrieval algorithms for estimating the verticalprofiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan,71(6):685-700
    Taylor, Karl E., Ronald J. Stouffer, Gerald A. Meehl,2012: An overview of cmip5and theexperiment design. Bull. Amer. Meteor. Soc.,93,485–498.
    Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall,2008: Explicit forecasts ofwinter precipitation using an improved bulk microphysics scheme. Part II:Implementation of a new snow parameterization. Mon. Wea. Rev.,136,5095–5115.
    Thibeault, Jeanne M., Anji Seth,2014: A framework for evaluating model credibility forwarm-season precipitation in northeastern north america: a case study of cmip5simulations and projections.J. Climate,27,493–510.
    Theriault, J. M. R. E. Stewart, and W. Henson,2010: On the Dependence of WinterPrecipitation Types on Temperature, Precipitation Rate, and Associated Features. J.Appl. Meteor. and Cli.,49,1429-1442.
    Thompson, G., R. M. Rasmussen, and K. Manning,2004: Explicit forecasts of winterprecipitation using an improved bulk microphysics scheme. Part I: Description andsensitivity analysis. Mon. Wea. Rev.,132,519–542.
    Tremblay, A., and A. Glazer,2000: An improved modeling scheme for freezing precipitationforecasts. Mon. Wea. Rev.,128,1289–1308.
    Vavrus, Steve, Duane Waliser,2008: An improved parameterization for simulating arcticcloud amount in the ccsm3climate model. J. Climate,21,5673–5687.
    Villarini, Gabriele, Gabriel A. Vecchi,2013: Projected increases in north atlantic tropicalcyclone intensity from cmip5models.J. Climate,26,3231–3240.
    Wind, Galina, Steven Platnick, Michael D. King, Paul A. Hubanks, Michael J. Pavolonis,Andrew K. Heidinger, Ping Yang, Bryan A. Baum,2010: Multilayer Cloud Detectionwith the MODIS Near-Infrared Water Vapor Absorption Band. J. Appl. Meteor.Climatol.,49,2315–2333.
    Wang, Jianxin, David B. Wolff,2009: Comparisons of Reflectivities from the TRMMPrecipitation Radar and Ground-Based Radars. J. Atmos. Oceanic Technol.,26,857–875.
    Wang Fang,Xin Xiaoge,Wang Zaizhi et al,2014:Evaluation of Cloud Vertical StructureSimulated by Recent BCC_AGCM Versions through Comparison withCALIPSO-GOCCP Data.Adv. Atmos. Sci.29
    Wang, W. C., W. Gong, W. S. Kau, C. T. Chen, H. H. Hsu, and C. H. Tu (2004),Characteristics of cloud radiative forcing over east China, J. Clim.,17,845–853.
    Waliser, D. E., K.-W. Seo, S. Schubert, and E. Njoku,2007: Global water cycle agreement inthe climate models assessed in the IPCC AR4. Geophys. Res. Lett.,34, L16705
    ——, and Coauthors,2009: Cloud ice: A climate model challenge with signs andexpectations of progress. J. Geophys. Res.,114, D00A21
    Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne,1986: Globaldistribution of total cloud cover and cloud type amounts over land. NCAR TechnicalNote TN-273+STR. National Center for Atmospheric Research, Boulder, CO,173pp.
    Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne,1988: Globaldistribution of total cloud cover and cloud type amounts over land. NCAR Technicalnote TN-317+STR. National Center for Atmospheric Research,
    Ward, D., and W. Cotton,2011: A method for forecasting cloud condensation nuclei usingpredictions of aerosol physical and chemical properties from wrf/chem. J. Appl.Meteor. Climatol.,50,1601–1615.
    Weare, B. C.,2004: A comparison of AMIP II model cloud layer properties with ISCCPD2estimates. ClimateDyn.,22,281–292.
    Weller, Evan, Wenju Cai,2013: Realism of the indian ocean dipole in cmip5models: theimplications for climate projections.J. Climate,26,6649–6659.
    Westphal, D. L., and Coauthors,1996: Initialization and validation of a simulation of cirrususing FIRE-II data. J. Atmos. Sci.,53,3397–3429.
    Webb, M., C. Senior, S. Bony, and J.-J. Morcrette,2001: Combining ERBE and ISCCP datato assess clouds in the Hadley Centre, ECMWF, and LMD atmospheric climate models.Climate Dyn.,17,905–922.
    Wen, M., S. Yang, A. Kumar, and P. Q. Zhang,2009: An analysis of the large-scale climateanomalies associated with the snowstorms affecting china in January2008. Mon.Wea. Rev.,137,1111–1131.
    Winker, D. M., J. R. Pelon, and M. P. McCormick (2003), The CALIPSO mission:Spaceborne lidar for observation of aerosols and clouds, Proc.SPIE Int. Soc. Opt.Eng.,4893,1–11.
    Winker, D. M., B. H. Hunt, and M. J. McGill (2007), Initial performance assessment ofCALIOP, Geophys. Res. Lett.,34, L19803
    Wigley, T. M. L.,2009: The effect of changing climate on the frequency of absolute extremeevents. Climatic Change.,97,67-76.
    Wu, Q. B., and T. J. Zhang,2008, Recent permafrost warming on the Qinghai-TibetanPlateau, J. Geophys. Res.,113
    Webb, M.,C. Senior, S. Bony, and J.-J. Morcrette,2001: Combining ERBE and ISCCP datato assess clouds in the Hadley Centre, ECWMF and LMD atmospheric climatemodels. Climate Dyn.,17,905–922.
    Wu Tongwen, Wu Guoxiong.2004, An empirical formula to compute snow cover fraction inGCMs. Adv Atmos Sci,21:529–535
    Wu Tongwen, Rucong Yu, and Fang Zhang.2008, A modified dynamic framework foratmospheric spectral model and its application, J. Atmos.Sci.,65:2235-2253.
    Wu Tongwen, Rucong Yu, Fang Zhang, Zaizhi Wang, Min Dong, Lanning Wang, Xia Jin,Deliang Chen, Laurent Li.2010, The Beijing Climate Center atmospheric generalcirculation model: description and its performance for the present-day climate, ClimDyn,34:123-147,
    Wu Tongwen.2012, A Mass-Flux Cumulus Parameterization Scheme for Large-scale Models:Description and Test with Observations, Clim Dyn,38:725–744
    Wyant, M. C., and Coauthors,2010: The PreVOCA experiment: Modeling the lowertroposphere in the southeast Pacific. Atmos. Chem. Phys.,10,4757–4774,doi:10.5194/acp-10-4757-2010.
    Xu, J., S. Rugg, L. Byerle, and Z. Liu,2009: Weather forecasts by the wrf-arw model withthe gsi data assimilation system in the complex terrain areas of southwest asia. Wea.Forecasting.,24,987-1008.
    Yao, Mao-Sung, Ye Cheng,2012: Cloud simulations in response to turbulenceparameterizations in the giss model e gcm. J. Climate,25,4963–4974.
    You, Q. L., S. C. Kang, E. Aguilar, and Y. P. Yan,2008, Changes in daily climate extremesin the eastern and central Tibetan Plateau during1961–2005, J. Geophys. Res.,113
    Yu, W., M. Doutriaux, G. Seze, H. Le Treut, and M. Desbois,1996: A methodology study ofthe validation of clouds in GCMs using ISCCP satellite observations. Climate Dyn.,12,389–401.
    Yu Rucong, Yu Yongqiang, Zhang Minghua,2001, Comparing cloud radiative propertiesbetween the Eastern China and the Indian monsoon region, Advances in AtmosphericSciences,2001, Volume18, Number6, Page1090
    Zappa, Giuseppe, Len C. Shaffrey, Kevin I. Hodges,2013: The ability of cmip5models tosimulate north atlantic extratropical cyclones*, J. Climate,26,5379–5396.
    Zelinka, Mark D., Stephen A. Klein, Karl E. Taylor, Timothy Andrews, Mark J. Webb,Jonathan M. Gregory, Piers M. Forster,2013: Contributions of different cloud typesto feedbacks and rapid adjustments in cmip5*. J. Climate,26,5007–5027.
    Zhang, M. H., and Coauthors,2005: Comparing clouds and their seasonal variations in10atmospheric general circulation models with satellite measurements. J. Geophys. Res.,110
    Zhang, M, W. Lin, CS Bretherton, JJHack, and P J Rasch,2003: A modeified formulation offractional stratiform condensation rate in the NCAR community atmospheric modelCAM2. J.Geophys.Res.,108(D1).
    Zhang, Chunxi, Yuqing Wang, Axel Lauer, Kevin Hamilton,2012: Configuration andevaluation of the wrf model for the study of hawaiian regional climate. Mon. Wea.Rev.,140,3259–3277.
    Zhang G.J., McFarlane N. A.1995, Sensitivity of climate simulations to theparameterization of cumulus convection in the Canadian Climate Centre generalcirculation model. Atmos Ocean,33:407–446.
    Zhang, Huan, Klaus Fraedrich, Richard Blender, Xiuhua Zhu,2013: Precipitation extremesin cmip5simulations on different time scales. J. Hydrometeor,14,923–928.
    Zhang, G., and N. McFarlane,1995: Sensitivity of climate simulations to the parameterizationof cumulus convection in the canadian climate centre general circulation model.Atmosphere Ocean,33,407-407.
    Zhang, M. H., and Coauthors,2005: Comparing clouds and their seasonal variations in10atmospheric general circulation models with satellite measurements. J. Geophys. Res.,110, D15S02,doi:10.1029/2004JD005021.
    Zhang, Y., B. Rockel, R. Stuhlmann, R. Hollmann, and U.Karstens,2001: REMO cloudmodeling: Improvements and validation with ISCCP DX data. J. Appl. Meteor.,40,389–408.
    Zhang, Y. X., V. Dulière, P. W. Mote, and E. P. Salathé,2009: Evaluation of wrf and hadrmmesoscale climate simulations over the U.S. pacific northwest. J. Climate.,22,5511–5526.
    Zheng, Xiao-Tong, Shang-Ping Xie, Yan Du, Lin Liu, Gang Huang, Qinyu Liu,2013: Indianocean dipole response to global warming in the cmip5multimodel ensemble*.J.Climate,26,6067–6080.
    Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao,2009: Synoptic-scalecontrols of persistent low temperature and icy weather over southern china in January2008. Mon. Wea. Rev.,137,3978–3991.
    World Meteorological Organization (WMO),2004: Workshop on Severe and Extreme EventsForecasting. Toulouse,25pp
    陈海山、施恩、周晶.2011, BCC气候模式对中国近50a极端气候事件的模拟评估,大气科学学报.34(5):513-528.
    董敏,吴统文,王在志,张芳.2009,北京气候中心大气环流模式对季节内震荡的模拟,气象学报.67(6):912-922.
    丁一汇,王遵娅,宋亚芳等.2008:中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及与气候变暖的关系.气象学报,66(5):808-825
    傅云飞,李宏图,自勇等.2007,TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象,26(1):98-106.
    高洋,吴统文,陈葆德等.2008年1月我国南方冻雨过程的热力异常及其形成原因[J].高原气象,2011,30(6):1526-1533.
    郭准,吴春强,周天军,吴统文.2011, LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较,大气科学.35(4):739-752.
    颉卫华,吴统文.2010,全球大气环流模式BCC_AGCM2.0.1对1998年夏季江淮流域强降水过程的回报试验研究,大气科学,34(5):962-978.
    任芝花,赵平,张强,等,适用于全国自动站小时降水资料的质量控制方法[J].气象,2010,36(7):123-132
    沈瑱,张耀存,肖卉,周孝评.2011,BCC_AGCM2.0.1模式系统对江淮梅雨期降水的模拟能力,气象.27(11):1336-1342.
    沈艳,冯明农,张洪政,高峰.我国逐日降水量格点化方法.应用气象学报,2010,21(3):279~286
    沈艳,潘旸,宇婧婧等.2013.中国区域小时降水量融合产品的质量评估.大气科学学报,,36(1):37-46.
    尚博,周毓荃,刘建朝等.基于Cloudsat的降水云和非降水云垂直特征[J].应用气象学报,2012,23(1):1-9.DOI:10.3969/j.issn.1001-7313.2012.01.001.
    杨大生,2009.基于星载云廓线雷达观测资料对中国地区云属性参量的时空分布特征分析,博士论文
    杨贵名,孔期,毛冬艳等.2008:2008年初"低温雨雪冰冻"灾害天气的持续性原因分析.气象学报,66(5):836-849
    尹金方,王东海,翟国庆等.基于星载云雷达资料的东亚大陆云垂直结构特征分析[J].气象学报,2013,71(1):121-133
    王胜杰,何文英等.2010,利用Cloudsat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量.高原气象,29(1):l-9
    王帅辉,韩志刚等.2011,基于Cloudsat资料的中国及周边地区云垂直结构统计分析.高原气象,30(1):38-52.
    王亚非,李琰,李萍云等.2008:2008年初中国南方雪灾大尺度环流背景分析[J].气象报,66(5):826-835
    王东海,柳崇健,刘英等.2008:2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析.气象学报,66(3):405-422
    仲凌志,刘黎平等.2010,星载毫米波雷达在研究冰雪天气形成的云物理机制方面的应用潜力.气象学报,68(5):705-716.
    汪会,罗亚丽,张人禾等.2011, CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学,,35(6):1117-1131
    汪宏七,赵高祥,1994:云和辐射(I)云气候学和云的辐射作用,大气科学,18,910-932
    王璐,周天军,吴统文,吴波.2009,BCC大气环流模式对亚澳季风年际变率主导模态的模拟,气象学报.67(6):973-982.
    吴春强,周天军.CFMIP大气环流模式模拟的东亚云辐射强迫特征[J].气象学报,2011,69(3):381-399.
    张志红,周毓荃.一次降水过程云液态水和降水演变特征的综合观测分析[J].气象,2010,36(3):83-89.
    宇婧婧,沈艳,潘旸,徐宾,2011:基于地面观测降水订正卫星反演降水系统误差(PDF)方法在中国地区的应用,2011年中国气象学会气象通信与信息技术委员会暨国家气象信息中心科技年会论文摘要
    张祎,王在志,宇如聪,2012, BCC_AGCM2.1对中国东部地区云辐射特征模拟的偏差分析,气象学报,70(6)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700