用户名: 密码: 验证码:
华南和江淮地区夏季风期间降水和对流的一些统计特征和个例研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往关于亚洲-太平洋夏季风的研究主要集中于大尺度环流、天气系统和降水分布,而对其降水和对流特征的研究很少,尤其对东亚夏季风降水和对流特征的研究更少。本研究是对东亚夏季风降水特征和对流特性的研究的一个补充,以东亚夏季风区内南北相邻的两个子区域——中国东南部的华南和江淮地区为研究区域,利用多年的热带测雨卫星(TRMM)资料、地面降水资料对比分析了华南和江淮地区季风降水活跃期的降水特征和对流特性来揭示东亚夏季风季节性北进时季风降水系统的变化特点,并且还分别对比了两个地区从季风降水前期、活跃期、停滞期到后期的降水特征和对流特征的季节内变化来研究降水系统的季节内变化特点。同时也研究了夏季风影响下华南和江淮地区极端对流的特征,基于多年TRMM资料统计了中国东南部地区极端对流的地理分布和日变化特征,并对重点区域江淮平原地区的极端宽对流(相邻的高于40dBZ且有近地面降水的回波面积1000km2)的天气形势分类和地面强对流天气现象特征。最后利用华南季风降水试验(SCMREX)收集的丰富观测数据分析了2013年5月10日发生在广东西部沿海地区的一次极端强降水过程的发生发展过程和机制、以及对流特性。主要结论如下:
     (1)通过对比分析1998-2010年华南季风降水活跃期和江淮梅雨活跃期的降水特征和对流特性可知,华南季风降水活跃期和江淮梅雨活跃期的降水特征和对流特性的差异与这两个地区的地形特征、环境大气条件和主要天气系统有密切的关系。一方面,江淮梅雨活跃期降水系统的对流强度更强是与该地区降水系统发生时伴随着更多和更强的地面锋面和850hPa低涡是一致的。另一方面,华南季风降水活跃期降水系统的发生频率和总累积降水量更多,这主要是由于华南地区内有更多山脉地形和更临近海洋的原因。
     (2)通过对比分析1998-2010年华南和江淮地区从季风降水前期、活跃期、停滞期到后期的降水特征和对流特性的季节内变化特征,发现华南和江淮地区这四个时期的降水在形成机制上存在着尺度差异:季风降水活跃期和前期降水系统的形成更多地与大尺度天气系统(动力驱动)有关,而季风降水后期和停滞期降水系统的形成则更多地决定于太阳加热造成的局地不稳定(热力驱动)。这种形成机制的尺度差异可以用来解释季风降水后期和停滞期降水系统的面积比其他两个时期较小,以及季风降水后期的对流系统的日变化有明显的午后峰值。
     (3)利用1998-2010年TRMM资料定义了两种类型的极端对流:基于对流强度因子和基于对流三维回波结构(深对流、宽对流和宽广层云)的极端对流,并分析了中国东南部地区极端对流的地理分布和日变化,发现江淮平原地区是中国东南部地区夏季风期间各种类型极端对流(宽对流层云除外)最大面积的发生频率极大值中心。从日变化来看,极端深对流和基于对流强度因子定义的极端对流都有一个明显的午后峰值,而极端宽对流有凌晨和午后两个峰值,说明它们有着不同的形成机制。对比极端深对流,极端宽对流有更大的面积和更强的降水强度,这主要是由于极端宽对流对应有更有利于大面积强降水发展的大气环流条件,但深对流有更强的对流不稳定条件。
     (4)基于ERA-interim资料提供的500hPa高度场资料,并利用客观分析方法将1998-2010年夏季风期间江淮平原地区的极端宽对流的天气形势分为三类:深槽控制型、副高维持型和台风影响型,其中副高维持型是最常见的。深槽控制型出现最早(5月),副高维持型在7月上半月出现最频繁,台风影响型主要在7-8月。几乎所有的极端宽对流都对应有雷暴出现,这主要是与CAPE大和水汽充足有关。在这三种天气型中,深槽控制型出现时江淮平原地区大气最干冷,因此造成了其短时强降水发生最少。大风在深槽控制型发生最频繁,这主要是与该天气型的中、低层的空气湿度差异最大有关。冰雹在这三种天气型中很少发生,这是由于三种天气型的江淮平原地区太湿润,以及副高维持型的零度层高度过高(>5km)造成的。
     (5)对SCMREX期间2013年5月10日造成广东西部沿海地区的极端降水(19小时累积降水量为451mm)的一次长生命史的中尺度对流系统发生发展过程进行研究表明:该暴雨发生的天气条件特征是小对流抑制能量、中等对流有效位能、中等可降水量、低抬升凝结高度以及缺少来自热带洋面的低空急流。在中尺度对流发展的早期和成熟阶段都是重复的对流后向建立和持续地向东北方向移动的对流单体回波火车列。然而这两个阶段对流触发和维持的机制以及对流的组织形态是有差异的:在对流发展的早期阶段(午夜到清晨),近地层的东南风和南风受到龙高山和鹅凰嶂(最高海拔高度分别为800和1300m左右)东侧的抬升作用而持续地触发对流,对流产生后向东北方向移动,因此形成了两条准静止的雨带;在对流发展的成熟阶段(清晨到下午),降水造成的冷池出流边界上一直重复触发产生新对流,并形成了几条雨带,这些雨带最开始是准静止的,几个小时后向东移动。每条雨带都是由向东北方向移动的对流单体火车列和在东北方向的层状性降水区组成的。在对流消散阶段,一条从西边移来的强盛飑线系统自西向东影响广东西部沿海地区,历经3.5个小时,但是对总降水量的贡献只有10%-15%。总体来说,地形、近地面风场和降水产生的冷池出流在这次暴雨中尺度对流系统的初生和维持过程中起着重要的作用。
Largescale circulation, weather systems, and horizontal distribution of rainfallassociated with the Asian-Pacific summer monsoon have been extensively studied, but therehave been few studies on characteristics of rainfall and convection of the Asian-Pacificsummer monsoon, especially fewer for the East Asian summer monsoon. The present studymakes compensation to previous studies on characteristics of precipitation and convectionover the East Asian summer monsoon region, and focus on two north and south adjacentsubregions of the East Asian summer monsoon region: South China (SC) and Yangtze-HuaiRiver Basin (YHRB) in the southeastern China. Comparisons of rainfall characteristics andconvective properties of precipitation systems over SC and YHRB regions during theirmonsoon active periods are made to reveal variations of monsoonal precipitation systemsalong with the northward march of the East Asian summer monsoon. In each region, thesubseasonal variations of rainfall characteristics and convective properties of precipitationsystems during from pre-monsoon, monsoon active and break, further to post-monsoonperiod are also compared to unveil subseasonal transitions of precipitation systems, based onmultiple years of the Tropical Rainfall Measuring Mission (TRMM) dataset and stationrainfall observation. Meanwhile, the characteristics of extreme convection over SC andYHRB, spatial distribution and diurnal variations of extreme convection in the southeasternChina are studied based on multiple years of TRMM dataset. Moreover, the synoptic patternand weather phenomena is associated with extreme wide convection (WC in short, defined asTSYN ZTZX TS\YN\40dBZ echo with near surface rainfall exceeding1000km2) overthe key region, Yangtze-Huai Plain, are further investigated. In the last, the process andmechanism of initiation and evolution and convective properties of a long-lived extremerainfall producing mesoscale convective system (MCS) developed over western coastalregion of Guangdong on10May2013are analyzed using multiple observations from SouthChina Monsoon Rainfall Experiment (SCMREX). The main conclusions are as follows.
     (1) By comparisons of rainfall characteristics and convective properties of precipitationsystems over SC and YHRB regions during their monsoon active periods of1998-2010, it is found that the differences in precipitation characteristics and convective properties betweenSC and YHRB are closely related to the topographic features, environmental atmosphericconditions and major weather systems in the two regions. The stronger convection in theYHRB during the monsoon active period is found to coincide with higher concurrentpresence and stronger intensity of the surface front and lower-level vortex in that region. Onthe other hand, the more frequent occurrence of precipitation systems and larger rainfallaccumulation in SC can be traced to the more mountainous land closer proximity to theocean.
     (2) Comparisons of subseasonal variations of rainfall characteristics and convectiveproperties of precipitation systems over SC and YHRB regions from pre-monsoon, monsoonactive and break, further to post-monsoon period suggest that there is a scale difference in thedriving mechanisms for rainfall production during the four periods over both SC and YHRB:the precipitation systems are more controlled by larger-scale weather systems (dynamicallydriven) during pre-monsoon and monsoon active periods, but more by local instability due tosolar heating (thermodynamically driven) during the post-monsoon and monsoon breakperiods. This scale difference can largely explain the smaller horizontal extents of theprecipitation systems in the post-monsoon and monsoon break periods. It can also contributeto the more pronounced afternoon-peaks in the diurnal cycles of the occurrence of thepost-monsoon convective storms.
     (3) By utilizing TRMM dataset of1998-2010, two definition methods of extremeconvection are applied according to proxies of convective intensity and three dimensionstructure of convection (classified into extreme deep convection, WC, and broad stratiform).The geographical distributions and diurnal variations of these kinds of extreme convectionsshow that the Yangtze-Huai Plain is the largest area with the maximal frequency ofoccurrences of all extreme convections (exclude broad stratiform) over the southeast Chinaduring the summer monsoon period. Diurnal variations of extreme deep convection andextreme convections defined according to proxies of convective intensity are all with asignificant peak in the afternoon, while extreme WC has two peaks in early morning andafternoon, suggesting the different formation mechanism between the two kinds of extremeconvections. Compared with the extreme deep convection, the extreme deep convection is with larger area and stronger rainfall intensity due to more favorable atmospheric circulationconditions for the formation of precipitation with larger area and stronger rainfall intensity,however, the extreme deep convection is with stronger convective instability condition.
     (4) Based on geopotential height on500hPa from ERA-interim dataset, an impersonalanalysis method is adopt to classified the environmental fields of extreme WCs inYangtze-Huai Plain during summer monsoon periods of1998-2010into three weatherpatterns: deep-trough-control (DTr), subtropical-high-maintenance (STH) and typhoon-effect(Typh), and the STH is the most popular. Among the three patterns, the extreme WCs underthe DTr pattern start to emerge the earliest (16-31May); the extreme WCs under the STHpattern have a significant peak in the first half of July; Those under the Typh pattern mainlyoccur in July and August. Nearly all of the extreme WCs in this region accompany withthunderstorms supported by large convective available potential energy and abundantmoisture. Among the three synoptic patterns, the DTr pattern features the driest and coldestair in the region, leading to the least occurrences of short-duration heavy rainfall. Gales occurthe most often under the DTr pattern, probably owing to the largest difference in air humiditybetween mid-and low-level layers. Hail at the surface is rare for all extreme WCs, which isrelated to the humid environmental air under all weather patterns and the high (>5km)freezing level under the STH pattern.
     (5) A long-lived mesoscale convective system (MCS) with extreme rainfall (451mm in19hours) over the western coastal region of Guangdong on10May2013during theSouthern China Monsoon Rainfall Experiment (SCMREX) is studied. The environmentalconditions are characterized by little convective inhibition, moderate convective availablepotential energy, moderate precipitable water, low lifting condensation level, and lack oflow-level jets from the tropical ocean. Repeated convective back-building and subsequentnortheastward "echo training" of convective cells are found during the MCS’s earlydevelopment and mature stages. However, the earlier and later stages possess distinctiveinitiation/maintenance factors and organization of convection. During the earlier stage frommidnight to early-morning, convection is continuously initiated when weak southeasterly andsoutherly flows near the surface impinge on the east sides of Mts. Longgao and Ehuangzhang(with their respective peaks of approximately800and1300m) and moves northeastward, leading to formation of two quasi-stationary rainbands. During the mature stage fromearly-morning to early-afternoon, new convection is repeatedly triggered along aprecipitation-induced cold outflow boundary, resulting in the formation of several rainbandsthat are quasi-stationary and move eastward in later times. Individual rainbands during thestages similarly consist of northeastward training of convective cells and a stratiform regionto the northeast. While the MCS dissipates, a stronger squall line moves into the region fromthe west and passes over within about3.5hours, contributing about10%-15%to the totalrainfall amount. It is concluded that terrain, near surface winds, and convectively generatedcold outflows play important roles in initiating and maintaining the extreme-rain-producingMCS.
引文
包澄澜.华南前汛期暴雨研究的进展.1986,8(1):31-40.
    鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背景.2007,31(5):779-792.
    陈泰然.东亚梅雨系统的天气-气候特征.大气科学(台湾出版).1988,16:435-336.
    曹春燕,江崟,孙向明.一次大暴雨过程低空急流与强降水关系分析.气象,2006,32(6):102-106.
    楚荣忠,王致君,刘黎平,等.双线偏振雷达降雨估测分析。气象学报,1997,55(1):103-109.
    丁一汇,柳俊杰,孙颖,柳艳菊,何金海,宋亚芳.东亚梅雨系统的天气-气候学研究.大气科学,2007,31(6):1082-1101.
    丁一汇,张建云.暴雨洪涝,北京:气象出版社,2009:5-6.
    丁治英,刘彩虹,沈新勇.2005-2008年5、6月华南暖区暴雨与高、低空急流和南亚高压关系的统计分析.热带气象学报,2011,27(3):307-316.
    谷德军,梁建茵,郑彬,林爱兰,李春辉.华南夏季风降水开始日的异常与前冬大气环流和海温的关系.大气科学,2008,32(1):155-164.
    李柏,曹性善,周昆等.江淮梅雨锋暴雨过程中尺度系统的演变及结构特征分析与研究.气候与环境研究,2001,6(2):168-173.
    毛江玉,吴国雄.基于TRMM卫星资料揭示的亚洲季风区夏季降雨日变化.中国科学:地球科学,2012,42(4):564-576.
    倪允琪,周秀骥.中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究,气象学报,2004,62(5):647-662.
    倪允琪,张人禾,刘黎平,等.2013:南方暴雨野外科学试验与研究(SCHeREX).北京:气象出版社,299pp.
    洪毅,李玉柱,陈智源,李新芳.2006年6月10日浙江飑线FY-2C卫星云图特征.气象,2007,33(9):47-51.
    胡江林,张人禾,牛涛.长江流域0.1度网格逐日降水数据集及精度.自然资源学报,2008,23(1):136-149.
    胡亚敏,丁一汇,廖菲.江淮地区梅雨的新定义及其气候特征.大气科学,2008,32(1):101-112.
    胡志群,刘黎平,肖艳姣,2008:降水粒子空间取向对双线偏振雷达观测影响模拟研究。应用气象学报,19(3):362–366.
    黄士松等.华南前汛期暴雨.广东科技出版社,1986,244pp.
    金荣花,矫梅燕,徐晶.2003年淮河多雨期西太平洋副高活动特征及其成因分析.热带气象学报,2006,22(1):60-66.
    鞠晓慧,曹丽娟,朱建华.地面自动站气压的台站极值检查方法研究.气象与环境学报,2010a,26(3):48-52.
    鞠晓慧,任芝花,张强:自动站小时气压的质量控制方法研究.安徽农业科学,2010b,38(27):15130-15133.
    梁萍,丁一汇.2009年是空梅吗?高原气象,2011,30(1):53-64.
    潘旸,沈艳,宇婧婧等.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验.气象学报,2012,70(6):1381-1389.
    强学民,杨修群.华南前汛期开始和结束日期的划分.地球物理学报,2008,51(5):1333-1345.
    丘文,先沈伟,吴杰,等.东北冷涡影响下宿迁地区强对流天气特征分析.第六届长三角科技论坛-长三角气象科技论坛第六届长三角科技论坛-长三角气象科技论坛论文集,2009.
    任芝花,赵平,张强,等:适用于全国自动站小时降水资料的质量控制方法.气象,2010,36(7):123-132.
    沈如桂,罗绍华,陈隆勋.盛夏季风环流与我国降水的关系.云南大学学报(自然科学版),1982,2:105-114.
    沈晓玲,朱健.一次梅雨锋强降水过程中MCS数值模拟与分析.气象科学,2007,27(5):564-570.
    施望芝,张萍萍,吴涛,等.湖北省两次区域性暴雨过程的对比分析.暴雨灾害,2008,27(3):219-224.
    孙虎林,罗亚丽,张人禾.2009年6月3-4日黄淮地区强飑线天气过程成熟阶段特征分析.大气科学,2011,35(1):1-16.
    孙建华,赵思雄.华南“94·6”特大暴雨的中尺度对流系统及其环境场研究I.引发暴雨的β中尺度对流系统的数值模拟研究.大气科学,2002a,26(4):541-557.
    孙建华,赵思雄.华南“94·6”特大暴雨的中尺度对流系统及其环境场研究II.物理过程、环境场以及地形对中尺度对流系统的作用.大气科学,2002b,26(5):633-646.
    陶诗言.中国的梅雨.中国气象局气象论文集,1958,36-40.
    陶诗言.中国之暴雨.北京,科学出版社,1980.
    陶诗言,张小玲,张顺利等.长江流域梅雨锋暴雨灾害研究.气象出版社,2004,192pp.
    陶诗言,卫捷,张小玲.2007年梅雨锋降水的大尺度特征分析.气象,2008,34(4):3-15.
    王遵娅,丁一汇.中国雨季的气候学特征.大气科学,2008,32(1):1-13.
    吴丹娃,潘益农,吴林林,严小静.2011年6月23日沿淮强对流中尺度辐合特征模拟研究.热带气象学报,2013,29(4):672-680.
    吴剑坤.我国强冰雹发生的环境条件和雷达回波特征的初步分析.中国气象科学研究院硕士学位论文,2010,113pp.
    项续康,江吉喜.我国南方地区的中尺度对流复合体.应用气象学报,1995,6(1):9-17.
    严华生,吕俊梅,琚建华等.冬季太平洋海温变化对中国5月降水的影响.气象科学,2002,22(4):410-415.
    宇婧婧,沈艳,潘旸等.基于地面观测降水订正卫星反演降水系统误差(PDF)方法在中国地区的应用.2011年中国气象学会气象通信与信息技术委员会暨国家气象中心科技年会论文摘要,2011:461-471.
    余志豪,陆汉诚.梅雨锋暴雨的中尺度雨带和雨峰团.中国科学B辑,1988,9:1002-1010.
    张锦标.华南前汛期锋面降水和季风降水的特征分析.中山大学研究生学刊(自然科学、医学版),2008,29(4):65-71.
    张蒙蒙,江志红.我国高分辨率降水融合资料的适用性评估.气候与环境研究,2013,18(4):461-471.
    张敏锋,冯霞.我国雷暴天气的气候特征.热带气象学报,1998,14(2):156-162.
    张庆红,刘启汉,王洪庆,陈受钧.华南梅雨锋上中尺度对流系统的数值模拟.科学通报,2000,45(18):1988-1992.
    张顺利,陶诗言,张庆云,等.长江中下游致洪暴雨的多尺度条件.科学通报,2002,47(6):467-473.
    张晓惠,倪允琪.华南前汛期锋面对流系统与暖区对流系统的个例分析与对比研究.气象学报,2009,67(1):108-121.
    赵思雄,张立生,孙建华.2007年淮河流域致洪暴雨及其中尺度系统特征的分析.气候与环境研究,2007,12(6):713-727.
    赵玉春,王叶红.近30年华南前汛期暴雨研究概述.暴雨灾害,2009,28(3):193-228.
    赵玉春,李泽椿,肖子牛.华南锋面与暖区暴雨个例对比分析.气象科技,2008,36(1):47-54.
    赵煜飞,任芝花,张强.适用于全国气象自动站正点相对湿度资料的质量控制方法.气象科学,2011,31(6):687-693.
    赵振国.中国夏季旱涝环境场.北京:气象出版社,1999,10-13.
    郑彬,梁建茵,林爱兰,李春晖,谷德军.华南前汛期的锋面降水和夏季风降水I.划分日期的确定.大气科学,2006,30(6):1207-1216.
    郑彬,谷德军,李春晖,林爱兰,梁建茵.华南前汛期的锋面降水和夏季风降水II.空间分布特征.大气科学,2007,31(3):495-504.
    郑淋淋.我国江淮和黄淮流域中尺度对流系统的特征研究.中国科学院大气物理研究所博士论文,2013,152pp.
    郑淋淋,孙建华.干、湿环境下中尺度对流系统发生的环流背景和地面特征分析.大气科学,2013(4):891-904.
    郑永光,陈炯,葛国庆等.梅雨锋的典型结构、多样性和多尺度特征.气象学报,2007,65(5):760-772.
    郑永光,陈炯,葛国庆等.梅雨锋的天气尺度研究综述及其天气学定义.北京大学学报(自然科学版),2008,44(1).
    周秀骥,薛纪善,陶祖钰,赵思雄,仪清菊、苏百兴等:’98华南暴雨科学试验研究[M].北京:气象出版社,2003,220pp.
    Adler, Robert F., Douglas D. Fenn,1979: Thunderstorm Intensity as Determined from Satellite Data. J. Appl. Meteor.,18,502–517.
    Akiyama T,Large synoptic and meso-scale variations of Baiu front during July1982. Part Ⅲ: Space-timescale and structure of frontal disturbances. J. Meteor. Soc., Japan,1990,68:705-727.
    Arakawa, A.2004: The cumulus parameterization problem: Past, present, and future. J. Climate,17,2493-2525.
    Awaka, J., T. Iguchi, and K. Okamoto,1998: Early results on rain type classification by the TropicalRainfall Measuring Mission (TRMM) precipitation radar, Proc.8th URSI Commision F Open Symp.,Aveiro, Portugal, pp.143-146.
    Barnes,1964: A technique for maximizing details in a numerical weather map analysis. J. Appl. Meteorol.,3,396-409.
    Battan L. Radar Observation of the Atmosphere. University of Chicago Press,1993,234pp.
    Cecil, Daniel J., Edward J. Zipser, Stephen W. Nesbitt,2002: Reflectivity, Ice Scattering, and LightningCharacteristics of Hurricane Eyewalls and Rainbands. Part I: Quantitative Description. Mon. Wea.Rev.,130,769–784.
    Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt,2005: Three years of TRMMprecipitation features. Part I: radar, radiometric, and lightning characteristics. Mon. Wea. Rev.,133,543-566.
    Chang, C P, Hou S C, Kuo H C, et al.1980: The development of an intense East Asia summer monsoondisturbance with strong vertical coupling. Mon. Wea. Rev.,1980,108:942-953.
    Chang, C.P., Y. H. Ding, N.-C. Lau, R. H. Johnson, B. Wang, and T. Yasunari,2010: World ScoentificSeries on Asia-Pacific Weather and Climate–Vol.5. The Global Monsoon System: Research andForecast.594pp.
    Chen, G. T.-J.,1988: On the synoptic climatological characteristics of the East Asian Meiyu front (inChinese with English abstract). Atmos. Sci.,16,435–446.
    Chen, H., R. Yu, J. Li, W. Yuan, and T. Zhou,2010: Why nocturnal long-duration rainfall presents aneastward-delayed diurnal phase of rainfall down the Yangtze River Valley. J. Climate,23,905-917.
    Chen, G T J.,2004: Research on the phenomena of Meiyu during the past quarter century: An overview.East Asian Monsoon. Chang C P, Ed. Singapore: World Scientific,564pp.
    Chen, G., C. Wang, and D. Lin,2005: Characteristics of low-level jets over Northern Taiwan in meiyuseason and their relationship to heavy rain. Mon. Wea. Rev.,133(1),20-43.
    Das, P.,1962: Influence of wind shear on the growth of hail. J. Atmos. Sci.,19,407–414.
    Davis, R. S.,2001: Flash flood forecast and detection methods. Severe Convective Storms, Meteor.Monogr., No.50, Amer. Meteor. Soc.,481–525.
    Dee, D.P., with35co-authors,2011: The ERA-Interim reanalysis: configuration and performance of thedata assimilation system. Quarterly J. Royal Meteor. Soc.,137,553-597(DOI:10.1002/qj.828).
    Ding, Y.,1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan.,70,373-396.
    Ding, Y.,1994: Monsoons over China. Kluwer Academic Publishers, The Netherlands.419pp.
    Ding, Y. H., and Y. J. Liu,2001: Onset and the evolution of the summer monsoon over south China duringSCSMEX field experiment in1998. J. Meteor. Soc. Japan,78,367-380.
    Ding, Y. H., Y. Zhang, Q. Ma, and G. Q. Hu,2001: Analysis of the large-scale circulation features andsynoptic systems in East Asia during the intensive observation period of GAME/HUBEX. J. Meteor.Soc. Japan,79,277-300.
    Ding, Y.,2004: Seasonal march of the East-Asian summer monsoon. In: Chang C-P (ed) East Asianmonsoon. World Scientific, Singapore, pp3-53.
    Ding, Y. and J. C. L. Chan,2005: The East Asian summer monsoon: an overview. Meterol. Atmos. Phys.,89,117-142.
    Ding, Y., and C. He,2006: The Summer Monsoon Onset over the Tropical Eastern Indian Ocean: TheEarliest Onset Process of the Asian Summer Monsoon. Adv. Atmos. Sci.,23(6),940-950.
    Ding, Y.,2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan,85B,21-54.
    Ding, Y., Y. Liu, L. Zhang, J. Liu, L. Zhao, and Y. Song,2011: The Meiyu weather system in East Asia:Build-up, maintenance and structures. In The Global Monsoon System: Research and Forecast (2ndEdition), edited by Chih-Pei Chang et al. World Scientific Publishing Co.,205-221pp.
    Ding, Y. and Z. Wang,2008: A study of rainy seasons in China. Meterol. Atmos. Phys.,100,121-138.
    Doswell, C. A., III, H. E. Brooks, and R. A. Maddox,1996: Flash flood forecasting: An ingredients-basedmethodology. Wea. Forecasting,11,560–581.
    Dye J E, Winn W P, Jones J J, et al. The electrification of New Mexico thunderstorms.1. Relationshipbetween precipitation development and the onset of electrification. J. Geophys. Res.,1989,94:8643-8656.
    Fujinami, H. and T. Yasunari,2009: The effects of midlatitude waves over and around the Tibetan Plateauon submonthly variability of the East Asian summer monsoon. Mon. Wea. Rev.,137,2286-2304.
    Groenemeijer, P., and A. Delden,2007: Sounding-derived parameters associated with large hail andtornadoes in the Netherlands. Atmospheric Research,83,473-487.
    Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull,1989: Interpretation of Dopplerweather radar displays in midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc.,70,608–619.
    Houze, R. A.,2004: Mesoscale convective systems. Rev. Geophys.,42, RG4003,doi:10.1029/2004RG000150.
    Houze, R. A. Jr., D. C. Wilton, and B. F. Smull,2007: Monsoon convection in the Himalayan region asseen by the TRMM Precipitation Radar. Quarterly J. Royal Meteor. Soc.,133,1389-1411.
    Hu, Y. M., and Y. H. Ding,2010: SimulaYNTS T19912005M N_Z X aXTSX NS Y YaS Y-Huaihe regionusing BCC_RegCM1.0. Chinese Science Bulletin,55(11),1077-1083.
    Hu, Z.Q., L.P. Liu, R.Z. Chu, and R.H. Jin,2010: Study of different attenuation correction methods inassociation with rainfall estimation for X-band polarimetric radars. Acta Meteor. Sinica,24(5),602-613.
    Hu, Z.Q., L.P. Liu, and L.R. Wang,2012: A quality assurance procedure and evaluation of rainfallestimates for C-band polarimetric radar. Adv. Atmos. Sci.,29(1),144-156.
    Huang, C., C.-K. Yu, J.-Y. Lee, L.-W. Cheng, T.-Y. Lee, and S.-J. Kao,2012: Lingking typhoon tracksand spatial rainfall patterns for improving flood lead time predictions over a mesoscale mountainouswatershed. Water Resources Res.,48, W09540, doi:10.1029/2011WR011508.
    Huang, R., G. Huang, and Z. Wei,2004: Climate variations of the summer monsoon over China. EastAsian Monsoon, C. P. Chang Ed, World Scientific,213pp.
    Iguchi, T., T. Kozu, R. Meneghin, J. Awaka, and K. Okamoto,2000: Rain-profiling algorithm for theTRMM precipitaton radar. J. Appl. Meteor.,39,2038-2052.
    Islam, M. N., and H. Uyeda,2006: TRMM observed vertical structure and diurnal variation ofprecipitation in south Asia. Preprints in the proceedings of International Geoscience and RemoteSensing Symposium (IGARSS)2006, Denver, USA,31July-4August, p.4.
    Jiang J., and Y. Ni,2004: Diagnostic study on the structural characteristics of a typical Mei-yu frontsystem and its maintenance mechanism. Adv. Atmos. Sci.,21,802-813.
    Johns, R., C. Doswell,1992: Severe Local Storms Forecasting. Wea. Forecasting,7,588–612.
    Joyce R., J. Janowiak, P. Arkin, and P. Xie: CMORPH: A method that produces global precipitationestimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydro.,2004,5(3),487-503.
    Kalnay, E., et al.,1996: The NCEP/NCAR40-Year Reanalysis Project, Bull. Am. Meteorol. Soc.,77,437–471, doi:10.1175/1520-0477.
    Kawanishi, T., H. Kuroiwa, M. Kojima, K. Oikawa, T. Kozu, H. Kumagai, K. Okamoto, M. Okumura, H.Nakatsuka, and K. Nishikawa,2000: TRMM Precipitation Radar. Adv. Space Res.,25,969-972.
    Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpron,1998: The Tropical Rainfall MeasuringMission (TRMM) sensor package. J. Atmos. Oceanic Technol.,15,809-817.
    Kummerow, C., Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D.-B.Shin, and T. T. Wilheit,2001: The Evolution of the Goddard Profiling Algorithm (GPROF) forrainfall estimation from passive microwave sensors. J. Appl. Meteor.,40,1801-1820.
    Li, J., R. Yu, and W. Sun,2013: Duration and seasonality of hourly extreme rainfall in the central easternChina. Acta Meteor. Sinica,27,799-807.
    Li, L., R. Zhang, and M. Wen,2011: Diagnostic analysis of the evolution mechanism of a vortex over theTibetan Plateau in June2008. Adv. Atmos. Sci.,28(4),797-808.
    Liu, C.,2007: University of Utah TRMM precipitation and cloud feature database: Description version1.0.University of Utah,22pp.[Available online at http://trmm.chpc.utah.edu/docs/trmm_database_description_v1.0.pdf.]
    Liu C, and Zipser E J. Global distribution of convection penetrating the tropical tropopause. J. Geophys.Res.,2005, doi:10.1029/2005JD00006063.
    Liu C., Zipser E. J., Cecil D. J., et al.2008, A coud and precipitation feature database from9years ofTRMM observations. J. Appli. Meteor. Climatol.,47,2712-2728.
    Liu, L.P., Z.Q. Hu, W.G. Fang, and Coauthors,2010: Calibration and data quality analysis with mobileC-band polarimetric Radar. Acta Meteor. Sinica,24(4):501–509.
    Liu, S., Y. Zheng, and Z. Tao,2003: The analysis of the relationship between pulse of LLJ and heavy rainusing wind profiler data. J. Tropic. Meteor.,19(3),285-290.
    Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo,2013: Comparison of rainfall characteristics andconvective properties of monsoon precipitation systems over south China and the Yangtze and HuaiRiver Basin. J. Climate,26,110-132.
    Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison,2010: Modeling convective-stratiformprecipitation processes on a Mei-Yu front with the Weather Research and Forecasting model:Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys.Res.,115, D18117, doi:10.1029/2010JD013873.
    Luo, Y., R. Zhang, W. Qian, Z. Luo, X. Hu,2011: Intercomparison of deep convection over the TibetanPlateau-Asian Monsoon Region and subtropical North America in boreal summer usingCloudSat/CALIPSO data. Journal of Climate.24,2164-2177.
    Luo, Y., Y. Gong, and D.-L. Zhang,2014: Initiation and organizational modes of anextreme-rain-producing mesoscale convective system along a Mei-Yu front in east China. Mon. Wea.Rev.,142,203-221.
    Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens (2007), Global hydrometeor occurrence asobserved by CloudSat: Initial observations from summer2006. Geophys. Res. Lett.,34, L09808,doi:10.1029/2006GL029017.
    Mao, J. Y. and G. X. Wu,2006: Intraseasonal variations of the Yangtze rainfall and its related atmosphericcirculation features during the1991summer. Climate Dyn.,27,815-830.
    Mapes, B. E., and R. A. Houze Jr.,1993: Cloud Clusters and superclusters over the oceanic warm pool.Mon. Wea. Rev.,121,1398-1415.
    Mapes, B. E., and R. A. Houze Jr.,1995: Diabatic divergence profiles in western Pacific mesoscaleconvective systems. J. Atmos. Sci.,52,1807-1828.
    Matejka, T., and R. C. Srivastava,1991: An improved version of the extended velocity-azimuth displayanalysis of single-Doppler radar data. J. Atmos. Ocean. Tech.,8,453-466.
    Matrosov S. Y, Clark K.A., Martner B. E., and Coauthors,2002: X-band polarimetric radar measurementsof rainfall. J Appl Meteor,41,941–952.
    McGregor, P. K.1993. Signaling in territorial systems: a context for individual identification, ranging andeavesdropping. Philosophical Transactions of the Royal Society of London, Series B,340,237–244.
    Medina, S., R. A. Houze, A. Kumar, and D. Niyogi,2010: Summer monsoon convection in the Himalayanregion: Terrain and land cover effects. Q. J. R. Meteorl. Soc.,136,593-616.
    Meng, Z. and Y. Zhang,2012: On the squall lines preceding landfalling tropical cyclones in China. Mon.Wea. Rev.,140,445-469.
    Meng, Z., D. Yan, and Y. Zhang,2013: Genernal feathers of squall lines in East China. Mon. Wea. Rev.,141,1629-1647.
    Nesbitt, S. W., E. J. Zipser, and D. J. Cecil,2000: A census of precipitation features in the tropics usingTRMM: radar, ice scattering, and lightning observations. J. Climate,13,4087-4106.
    Nesbitt S W, and Zipser E J. The diurnal cycle of rainfall and convective intensity according to three yearsof TRMM measurements. J. Climate,2003,16,1456-1475.
    Nesbitt S W, Zipser E J, and Kummerow C D. An examination of version-5rainfall estimates from theTRMM microwave imager, precipitation radar, and rain gauges on global, regional, and storm scales.J. Appli. Meteor.,2004,43,1016-1036.
    Nesbitt S W, Cifelli R, and Rutledge S A. Storm morphology and rainfall characteristics of TRMMprecipitation features. Mon. Wea. Rev.,2006,134,2702-2721
    Negri, A. J., T. L. Bell, and L. Xu,2002: Sampling of the diurnal cycle of precipitation using TRMM. J.Atmos. Oceanic Technol.,19,1333-1344.
    Ninomiya, K.,2004: Large-and meso-scale features of Meiyu-Baiu front associated with intense rainfalls.East Asian Monsoon. Chang C. P. Ed. Singapore: World.
    Ninomiya, K., and Y. Shibagaki,2007: Multi-scale features of the Meiyu-Baiu front and associatedprecipitation systems. J. Meteor. Soc. Japan,85B,103-122.
    Oye, D., and M. Case,1995: REORDER: A program for gridding radar data: Installation and use manualfor the UNIX version. NCAR/ATD,30pp.
    Park, M. D., and R. H. Johnson,2000: Organizational modes of midlatitude mesoscae convective systems.Mon. Wea. Rev.,128,3413-3436.
    Pontrelli, M. D., G. Bryan, and J. M. Fritsch,1999: The Madison County, Virginia, flash flood of27June1995. Wea. Forecasting,14,384–404.
    Raymond, D. J., and H. Jiang,1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci.,47,3067–3077.
    Ren, F., G. B_WTS aS E. Da\N2002: T_U TTS NRUa YX TS C NSa’X UW NUNYaYNTS ZWNS1957-1996. Adv.Atmos. Sci.,19,943-952.
    Riehl, H., and J. S. Malkus,1958: On the heat balance in the equatorial trough zone. Geophysica,6,503-538.
    Rasmussen, K., and R. A. Houze,2011: Orogenic convection in subtropical south America as seen byTRMM satellite. Mon. Wea. Rev.,139,2399-2420.
    Romatschke, U., S. Medina, and R. A. Houze,2010: Regional, seasonal, and diurnal variations of extremeconvection in the south Asian Region. J. Climate,23,419-439.
    Romatschke, U., and R. A. Houze,2010: Extreme summer convection in South America. J. Climate,23,3761-3791.
    Romatschke, U., and R. A. Houze,2011: Characteristics of precipitating convective systems in the southAsian monsoon. J. Hydrometeor,12,3–26.
    Saunders, C. P. R.,1993: A review of the thunderstorm electrification processes. J. Applied Meteor.,32,624-655.
    Sanders, F.,2000: Frontal focusing of a flooding rainstorm. Mon. Wea. Rev.,128,4155–4159.
    Schumacher, R. S., and R. H. Johnson,2005: Organization and environmental properties ofextreme-rain-producing mesoscale convective systems. Mon. Wea. Rev.,133,961-976.
    ——, and——,2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-seasonflash flood. Mon. Wea. Rev.,136,3964–3986.
    ——, and——,2009: Quasi-stationary, extreme-rain-producing convective systems associated withmidlevel cyclonic circulations. Wea. Forecasting,24,555–574.
    Seliga, T. A., and V. N. Bringi,1976: Potential use of radar differential reflectivity measurements atorthogonal polarizations for measuring precipitation. J. Appl. Meteor.,197615:69-76.
    Shen, S.S.P., P. Dzikowski, G. Li and D. Griffith,2001: Interpolation of1961-1997daily climate dataonto Alberta polygons of ecodistrict and soil landscape of Canada. J. Applied Meteo.,40,2162-2177.
    Shen, S.S.P., H. Yin, K. Cannon, A. Howard, S. Chetner, and T. R. Karl,2005: Temporal and Spatialchanges of the Agroclimate in Alberta, Canada, from1901to2002. J. Applied Meteo.,44,1090-1105.
    Sherwood, S.C., V. T.J. Phillips, and J.S. Wettlaufer,2006: Small ice crystals and the climatology oflightning. Geophy. Res. Lett.,33, L05804, doi:10.1029/2005GL025242.
    Simmons, A., S. Uppala, D. Dee, and S. Kobayashi,2007: ERA-Interim: New ECMWF reanalysisproducts from1989onwards. Newsletter110-Winter2006/07, ECMWF,11pp.
    Sioutas, M., and H. Flocas,2003: Hailstorms in northern Greece: synoptic patterns and thermodynamicenvironment. Theor. Appl. Climatol.,75,189-202.
    Srivastava, R. C., T. J. Matejka, and T. J. Lorello,1986: Doppler radar study of the trainling anvil regionassociated with a squall line. J. Atmos. Sci.,43,356-377.
    Stephens, G. L., and co-authors,2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc.,83,1771–1790.
    ——, and co-authors,2008a: CloudSat mission: Performance and early science after the first year ofoperation. J. Geophys. Res.,113, D00A18, doi:10.1029/2008JD009982.
    Stephens, G. L., S. van den Heever and L. Pakula,2008b: Radiative-convective feedbacks in idealizedstates of radiative-convective equilibrium. J. Atmos. Sci.,65,3899–3916.
    Sun J. H., Zhang X. L., Qi L. L., S. X. Zhao,2005: An analysis of a meso-βX_XY R NS a M N-yu front usingthe intensive observation data during CHeRES2002. Adv. Atmos. Sci.,22,278-289.
    Sun, J., and F. Zhang,2012: Impact of mountain-plain solenoid on diurnal variations of rainfall along theMei-Yu front over the East China Plains. Mon. Wea. Rev.,140,379-397.
    Takahashi, T.,1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos.Sci.,35,1536-1548.
    Tao, S., and L. Chen,1987: A review of recent research on the East Asian summer monsoon in China.Monsoon Meteorology, C.-P. Change and T. N. Krishnamurti, Ed., Oxford University Press,60-92.
    Varble, A., A. M. Fridlind, E. J. Zipser, A. S. Ackerman, J.-P. Chaboureau, J. Fan, A. Hill, S. A.McFarlane, J.-P. Pinty, and B. Shipway,2011: Evaluation of cloud-resolving model intercomparisonsimulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res.,116,D12206, doi:10.1029/2010JD015180.
    Wang, B., LinHo, Y. Zhang, and M-M. Lu,2004: Definition of South China Sea Monsoon Onset andCommencement of the East Asia Summer Monsoon. J. Climate,17,699–710.
    Wang, J., J. He, X. Liu, and B. Wu,2008: Interannual variability of the Meiyu onset over Yangtze-HuaiheRiver Valley and analyses of its previous strong influence signal. Chinese Science Bulletin,54,687-695.
    Weisman, M. L., and J. B. Klemp,1982: The dependence of numerically simulated convective storms onvertical wind shear and buoyancy. Mon. Wea. Rev.,110,504–520.
    Williams, M., and R. A. Houze Jr.,1987: Satellte-observed characteristics of winter monsoon cloudclusters. Mon. Wea. Rev.,115,505-519.
    Xie, A., Y. Chung, X. Liu, and Q. Ye,1998: The interannual variations of the summer monsoon onset overthe South China Sea. Theoretical and Applied Climatology,59,201-213.
    Xie, B., Q. Zhang, and Y. Wang,2008: Trends in hail in China during1960-2005. Geophy. Res. Lett.,35,L13801, doi:10.1029/2008GL0304067.
    Xu, W., E. J. Zipser, and C. Liu,2009: Rainfall characteristics and convective properties of Mei-Yuprecipitation systems over South China, Taiwan and the South China Sea PartI: TRMM observations.Mon. Wea. Rev.,137,4261-4275.
    Xu W, and E J.Zipser,2010: Diurnal variations of precipitation, deep convection and lightning over anddownstream of the eastern Tibetan Plateau. J. Climate,24,448-465.
    Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.C. Lee, and B. Jou,2012: Anorography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, andmaintenance. Mon. Wea. Rev.,140,2555-2574.
    Yang, J., B. Wang, B. Wang and Q. Bao,2010: Biweekly and21-30-Day Variations of the SubtropicalSummer Monsoon Rainfall over the Lower Reach of the Yangtze River Basin, J. Climate,23,1146-1159.
    Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki,2007: Thermodynamic inpact of the heated landmass onthe nocturnal evolution of a cloud cluster over a Meiyu-Baiu front. Journal of the MeteorologicalSociety of Japan,85(5):663-685.
    Yasunari, T., and T. Miwa,2006: Convective cloud systems over the Tibetan Plateau and their impact onmeso-scale disturbances in the Meiyu/Baiu frontal zone-A case study in1998. J.Meteor. Soc. Japan,84,783-803.
    Yu, R., Y. Xu, T. Zhou, and J. Li,2007a: Relation between rainfall duration and diurnal variation in thewarm season precipitation over central China. Geophy. Res. Lett.,34, L13703,doi:10.1029/2007GL030315.
    Yu. R., T. Zhou, A. Xiong, Y. Zhu, and J. Li,2007b: Diurnal variations of summer precipitation overcontiguous China. Geophy. Res. Lett.,34, L01704, doi:10.1029/2006GL028129.
    Yuan, W., R. Yu, H. Chen, J. Li, and M. Zhang,2010: Subseasonal characteristics of diurnal variation insummer monsoon rainfall over central eastern China. J. Climate,23,6684-6695.
    Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li,2012: Regimes of diurnal variation of summerrainfall over subtropical East Asia. J. Climate,25,3307-3320.
    Yuan, T., and X. Qie,2008: Study on lightning activity and precipitation characteristics before and afterthe onset of the South China Sea summer monsoon. J. Geophys. Res.,113, D14101,doi:10.1029/2007JD009382.
    Zhang C., H. Uyeda, H. Yamada, et al. Characteristics of mesoscale convective systems over the east partof continental China during the Meiyu from2001-2003. J. Meteor. Soc., Japan,2006,84:763-782.
    Zhang, C., Q. Zhang, and Y. Wang,2008: Climatology of hail in China:1961-2005. J. Appl. Meteorol.,47,795-804.
    Zhang, R., Y. Ni, L. Liu, Y. Luo, and Y. Wang,2011: South China heavy rainfall experiments(SCHeREX). J. Meteor. Soc. Japan,89A,153-166.
    Zhang, X., and Y. Ni,2009: A comparative study of a frontal and a non-frontal convective systems. ActaMeteorologica Sinica,67(1),108-121.
    Zhao, P., R. Zhang, J. P. Liu, X. Zhou, J. He,2007: Onset of southwesterly wind over eastern China andassociated atmospheric circulation and rainfall. Climate Dynamics,28, DOI10.1007/s00382-006-0212-y,797-811.
    Zhao, S., N. Bei, and J. Sun,2007: Mesoscale analysis of a heavy rainfall event over Hong Kong during apre-rainy season in South China. Adv. Atmos. Sci.,24,555-572.
    Zhao, Y, Z. Li, and Z. Xiao,2008: A diagnostic and numerical study on a rainstorm in South Chinainfluenced by a northward-propagating tropical system. Acta Meteor. Sinica,22(3),284-302.
    Zheng, Y., J. Chen, M. Chen, Y. Wang, and Q. Ding,2007: Statistics characteristics and weathersignificance of infrared TBB during May-August in Beijing and its vicinity. Chinese Science Bulletin,52,3428-3435.
    Zhou H. G.,2009: Study on the mesoscale structure of the heavy rainfall on Meiyu front withdual-Doppler RADAR. Atmos. Res.,2009,93,335-357.
    Zhou T., R. Yu, H. Chen, A. Dai, and Y. Pan,2008: Summer precipitation frequency, intensity, anddiurnal cycle over China: a comparison of satellite data with rain gauge observations. J. Climate,21,3397-4010.
    Zipser, E. J., and K. R. Lutz,1994: The vertical profile of radar reflectivity of convective cells: A strongindicator of storm intensity and lightning probability? Mon. Wea. Rev.,122,1751-1759.
    Zipser, E., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. Yorty,2006: Where are the most intensethunderstorms on Earth? Bull. Amer. M eteor. Soc.,87,1057-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700