用户名: 密码: 验证码:
杏南开发区储层微观孔隙结构研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油阳开发进入高含水期,剩余油挖潜的难度增大,因此,储层研究向精细化、定量化发展,从储层的微观特征入手,搞清流体在储层中的渗流机理无疑是提高剩余油预测精度的有效途径,但储层的宏观特征和微观特征之间差距迥异,如何建立二者之间的联系,实现储层的宏、微观研究成果的有机结合并进一步预测剩余油分行还处于尝试和发展阶段。本论文在沉积岩石学、油层物理、油藏工程等理论的指导下,以杏南油田萨葡油层为例,分别研究了研究区储层的砂体类型、孔隙结构、渗流特点及微观剩余油赋存方式,以砂体类型为研究对象,孔隙结构为细分单元,提出了不同储层内剩余油的分布规律及不同储层挖潜措施。
     论文首先综合岩心、镜下、孔渗分析、压汞、驱替实验和数值模拟等方法对不同储层的微观及渗流特征进行了详细研究。将储层孔隙结构分为五类,从一类到五类孔隙结构的储层,粒度变细,孔隙结构变差。分析了地质作用对孔隙结构的影响,强水动力条件下形成的砂体粒度更粗,平均孔喉半径更大,对渗透率有贡献的大孔喉比例更多;弱水动力条件下形成的砂体特征相反。成岩作用不同程度的改造了各种储层,渗透率越低的储层由压实和胶结作用造成的减孔率越高,而渗透率越高的储层由溶蚀作用造成的增孔率越大。由于孔隙结构特点不同,其渗流特征各异,从一类到五类,束缚水饱和度增加,油相渗透率变化快,油水共存区减少,水相渗透率减小,含水率变化增快。反映孔隙结构较好的储层动用较为均匀,而孔隙结构较差的储层动用程度变差。
     综合岩心驱替实验、微孔渗流模拟及荧光剩余油观察分析,可见不同孔隙结构类型剩余油分布不同:一、二类孔隙结构的剩余油包括:与注水流向垂直的孔喉状剩余油,储层非均质性造成的角隅、吸附状剩余油,孔壁偏亲油所致的孔表薄膜状剩余油等。后三类孔隙结构孔喉较前两类孔隙结构变小,因绕流造成的粒间剩余油增多,除此之外,由于孔喉比增大,润湿性偏亲水,卡断、贾敏效应增加,使簇状剩余油增多。
     不同砂体内孔隙结构组合不同,分流河道砂体以前三类孔隙结构为主,且下部性质好于上部储层,即下部剩余油以孔喉状、角隅状、吸附和膜状等存在,可以通过改变注入方向,注入化学剂提高驱油效率等方法将这部分油挖潜出来;但中上部的油动用相对较少,应单独开采或打水平井开采。席状砂储层三、四、五类孔隙结构增多,孔喉半径减小,由于在此类储层中99%的渗透率贡献是由50-70%的大孔喉提供的,小孔喉内的油未动用,可见粒间剩余油较多;己动用的孔喉内剩余油则多是以角隅状、簇状形式存在的,此类油藏的开发应考虑利用压裂方法使动用程度提高,采用聚合物驱增加采收率。
     论文研究成果对精细确定剩余油分布规律,设计提高采收率方案以及有效挖潜剩余油具有指导意义。
In high water cut period of old field, tapping the potential of remaining oil becomes more and more difficult, therefore, the reservoir research is developing toward the fine and quantitative direction, from the reservoir microscopic features, making clear fluid percolation mechanism in reservoir is effective way to enhance the accuracy of prediction of remaining oil distribution, but the gap between the macro and micro characteristics in reservoir is great, how to establish the link between the two, to integrate macro and micro research findings, and to predict the distribution of residual oil is still in the trying and development stage. In this paper, in the theory of sedimentary petrology, reservoir physics and reservoir engineering, in Xingnan oilfield, the Portuguese formation as an example, the reservoir sandbody types, pore structure, percolation characteristics and mode of occurrence of microscopic remaining oil are studied respectively. The sand body types are as the research object, pore structure types are as unit division, the remaining oil distribution law and potential tapping measures in different reservoir are put forward.
     In the paper, microscopic and flow characteristics of different reservoirs are studied in detail first with the data of integrated core, mirror, porosity and permeability analysis, mercury, displacement experiment and numerical simulation methods. The pore structure of the reservoir is divided into five categories, from one class to five class of the pore structure of the reservoir, particle size becomes finer, pore structure variation. The geological effect on the pore structure is Analysised. The sand body size is more coarse under the conditions of strong hydrodynamic, and average pore throat radius is more greater, the ratio of big pore throat that contribute to permeability is greater. Various reservoirs are modified in different degrees by Diagenesis. The lower the permeability of the reservoir is, the higher the reduction of porosity is by the compaction and cementation. The rate of enhanced hole of reservoir is higher by the dissolution. Since the pore structure characteristics are different, its flow characteristics are varying. From the first class the fifth class, the irreducible water saturation increases, the oil phase permeability changes faster, oil-water coexistence zone is reduced, water permeability decreased, and moisture content increases quickly. It's showed that the reservoirs with better pore structure are more evenly.
     With core displacement experiment, micro percolation simulation and remaining oil study of visible fluorescence, remaining oil distribution in reservoirs with different pore structure is different:residual oil in the reservoir with the first and the second class of pore structure includes:pore throat remaining oil vertical to water flow, corner, adsorption of remaining oil caused by the heterogeneity and partial oil on hole wall. The pore throat radius of the other three kinds of pore structure are smaller than the previous two types of pore structure, intergranular residual oil is increases. In addition, the pore throat ratio increases and the wettability of partial hydrophilic, block, Jia Min effect increases, so that the cluster remaining oil increases.There are different combinations of pore structure in different sand body. The distributary channel sand body have the first, the second and the third class of pore structures, the properties at the lower part is better than the upper reservoir, the type of residual oil include the pore throat shape, corner shape, adsorption and membrane shape in lower part of reservoir. Changing the direction of injection, injection of polymer method can be used to enhance water oil displacement efficiency. There is more residual oil in the upper reservoir; it should be output by separate mining or drilling of horizontal wells. The pore structure type of sheet sand reservoir includes third, fouth and fifth type. In this kind of reservoirs, the pore throat radius decreases and small pore throat increases, but99%permeability contribution is provided by50-70%big pore throat, small throat oil unused, so intergranular residual oil is more. The remaining oil in the pore throat includes the corner shape, clusters form. This kind of reservoir should consider the use of fracturing method to improve the producing degree, increase oil recovery with polymer flooding.
     Research in this paper has guide significance on fine determine remaining oil distribution, designing enhanced oil recovery scheme and tapping the potential of residual oil.
引文
[1]韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨.石油勘探与开发,2010,37(5): 583-591
    [2]Dou Qifeng, Sun Yuefeng; Sullivan, Charlott. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas. Journal of Applied Geophysics,2011,74(1):8-18
    [3]许长福,刘红现,钱根宝,覃建华.克拉玛依砾岩储集层微观水驱油机理,石油勘探与开发,2011,38(6):725-731
    [4]罗蛰潭,王允诚.油气储集层的孔隙结构.北京:科学出版社,1986:23-36
    [5](奥)A.E.Scheidegger著;多孔介质中的渗流物理.王鸿勋等译,北京:石油工业出版社,1982.8:38-46)
    [6]Chen Cheng, Lau Boris L.T, Gaillard, Jean-Francois,Packman, Aaron I. Temporal evolution of pore geometry, fluid flow, and solute transport resulting from colloid deposition. Water Resources Research,2009,45(6):
    [7]Silin Dmitriy, Tomutsa Liviu; Benson Sally M, Patzek Tad W. Micro tomography and Pore-Scale Modeling of Two-Phase Fluid Distribution. Transport in Porous Media,2011,86(2):495-515
    [8]Permadi P, Susilo A. Permeability prediction and characteristics of pore structure and geometry as inferred from core data. Society of Petroleum Engineers - SPE/EAGE Reservoir Characterization and Simulation Conference 2009 - Overcoming Modeling Challenges to Optimize Recovery,2009,1: 385-396
    [9][9]高辉,解伟,杨建鹏.基于恒速压汞技术的特低一超低渗砂岩储层微观孔喉特征.石油实验地质,2011,33(2):206-211
    [10]Yan J, Liu T.Y. NMR application with sphere-cylinder model for petrophysical evaluation[J]. Society of Petroleum Engineers - 73rd European Association of Geoscientists and Engineers Conference and Exhibition,2011,6:4772-4776
    [11]高树生,边晨旭,何书梅.运用压汞法研究低渗岩心的启动压力.石油勘探与开发,2004,31(3):140-142.
    [12]应凤祥,样式生,张敏,等.激光扫描共聚焦显微镜研究储层孔隙结构.沉积学报,2002,20(1):75-77
    [13]孙卫,史承恩,赵惊蛰,等.X-CT扫描成像技术在特低渗透储层微观孔隙及渗流机理研究中的应用-以西峰油田庄19井区长82储层为例.地质学报,2006,80(5):775-778
    [14]何雨丹,毛志强,肖立志,等.核磁共振TZ分布评价岩石孔径分布的改进方法.地球物理学报,2005,48(2):373-378
    [15]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力.石油学报,2001,22(6):40-44
    [16]刘锐娥,孙粉锦,卫孝锋等.鄂尔多斯盆地中东部山2段储集层岩性微观特征差异性的地质意义. 石油勘探与开发,2005,32(5):56-58.
    [17]赵澄林.东濮凹陷下第三系碎屑岩沉积体系与成岩作用.北京:石油工业出版社,1992:32-45.
    [18](加)F.A.L.Dullien著.多孔介质流体渗移与孔隙结构.北京:石油工业出版社,1990:39-55:
    [19]陈涛平,刘金山,刘继军.低渗透均质油层超低界面张力体系驱替毛管数的研究.西安石油大学学报:自然科学版,2007,22(5):33-36.
    [20]蔡忠.储集层孔隙结构与驱油效率关系研究.石油勘探与开发,2000,27(6):45-49.
    [21]王夕宾,钟建华,王勇,杨合山,江林.濮城油田南区沙二上4-7砂层组储层孔隙结构及与驱油效率的关系.应用基础与工程科学学报,2006,14(3):324-331
    [22]王伟锋等:大港枣园油田枣北孔店组砂岩储层微观非均质性与改善开发效果分析,地质论评,1993,39(4):302-306
    [23]高辉,孙卫,路勇,等.特低渗透砂岩储层油水微观渗流通道.油气地质与采收率,2011,18(1): 58-62:
    [24]刘林玉,张龙,王震亮,等.鄂尔多斯盆地镇北地区长3储层微观非均质性的实验分析.沉积学报,2007,25(2):224-228
    [25]刘林玉,曹金舟,王震亮,郑锐等.白豹地区长3储层微观非均质性的实验研究.西北大学学报(自然科学版),2009,39(2):269-272)。
    [26]Derahman Mohd Nawi, Zahoor Muhammad Khurram. Prediction and estimation of capillary pressure for wettability and wettability variations within reservoir. Society of Petroleum Engineers -13th Abu Dhabi International Petroleum Exhibition and Conference, ADIPEC 2008,1:591-609
    [27]Yadali Jamaloei, Benyamin Kharrat, Riyaz Asghari, Koorosh Torabi, Farshid. The influence of pore wettability on the microstructure of residual oil in surfactant-enhanced water flooding in heavy oil reservoirs.Implications for pore-scale flow characterization. Journal of Petroleum Science and Engineering,2011,77(1):121-134
    [28]Kumar Munish, Senden Tim, Knackstedt, Mark A, Latham, Shane J,Pinczewski, Val, Sok Robert M, Sheppard, Adrian P, Turner, Michael L. Imaging of pore scale distribution of fluids and wettability Petrophysics,2009,50(4):311-321
    [29]张绍东,王绍兰,李琴,等.孤岛油田储层微观结构特征及其对驱油效率的影响.石油大学学报(自然科学版),2002,26(3):47-53.
    [30]吴天江,李华斌,刘建东.低渗透率岩石润湿性对驱油效率的影响.油气地质采收率,2009,16(5):66-68
    [31]姚凤英,姚同玉,李继山.油层润湿性反转的特点与影响因素.油气地质与采收率,2007,14(4):76-78.
    [32]刘中云,曾庆辉,唐怀周,等.润湿性对采收率及相对渗透率的影响.石油与天然气地质,2000,21(2):148-150.
    [33]邸世祥.中国碎屑岩储集层的孔隙结构.西安:西北大学出版社,1991:210-220
    [34]朱国华,裘亦楠.成岩作用对砂岩储层孔隙结构的影响.沉积学报,1984,2(1):1-14
    [35]沃克马·施密特V.Schmidt,戴维.A.麦克唐纳D.A.McDonald著.砂岩成岩过程中的次生储集孔隙 [M].陈荷立,汤锡元译.北京:石油工业出版社.1982
    [36]邢顺,姜洪启.松辽盆地陆相砂岩储集层性质与成岩作用.哈尔滨:黑龙江科学技术出版社,1993,7.
    [37]Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity. AAPG Memoir,1984, 37:127-149.
    [38]Surdam R C, Crossey L J, Hagen E S,et al. Organic-inorganic and sandstone diagenesis. AAPG Bulletin,1989,73:1-23.
    [39]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析.沉积学报,1994,12(3):65-75.
    [40]GaoLiping,YangWeidong, Luo Xiaojun.Experimental studiesof fluidmineral interaction in low temperature. Chinese Science Bulletin,1999,44(supp):169-171.
    [41]Blake R E,WalterLM. Effects of organic acids on the dissolution of orthoclase at 80℃ and pH6. Chemical Geology,1996,132:91-102.
    [42]Lisa L Stillings, James I Drever, SusanL. Rates of feldspar dissolution at pH 3-7 with 0-8 mMoxalic acid. Chemical Geology,1996,132:79-89.
    [43]Hellmann R. The albite-water system:Part I. The kinetics of dissolution as a function of pH at 100,200,and 30℃.Geochimica et CosmochimicaActa,1994,58:595-611.
    [44]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析.沉积学报.1994,12(3):67-73
    [45]Oelkers E H, Schott J. Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis.Geochimica et Cosmochimica Acta,1995,59:5039-5053.
    [46]罗孝俊,杨卫东,李荣西,高丽萍.pH值对长石溶解度及次生孔隙发育的影响.矿物岩石地球化学通报.2001,20(2):103-107
    [47]杨俊杰,黄月明,张文正,刘桂霞,黄思静.乙酸对长石砂岩溶蚀作用的实验模拟.石油勘探与开发1995,22(4):82-86
    [48]黄思静,杨俊杰,张文正,黄月明,刘桂霞-不同温度条件下乙酸对长石溶蚀过程的实验研究.沉积学报,1995,13(1):7-17
    [49]黄思静,黄可可,冯文立,佟宏鹏,刘丽红,张雪花.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究.地球化学,2009,38(5):498-506
    [50]黄思静,武文慧,刘洁,沈立成.黄成刚-大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例.地球科学2003,28(4):419-424
    [51]谢渊,王剑,李令喜,谢正温,邓国仕,李明辉,江新胜.鄂尔多斯盆地白垩系粘士矿物的分布特征及其沉积-成岩环境意义.地质通报,2010,29(1):93-104
    [52]黄思静,孙伟,黄培培,佟宏鹏,刘丽红.鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响.矿物岩石.2009,29(4):25-32
    [53]孙治雷,黄思静,张玉修,王庆东,包申旭,孙致学.四川盆地须家河组砂岩储层中自生绿泥石的来 源与成岩演化.沉积学报,2008,26(3):459-467
    [54]罗蛰潭,崔秉荃,黄思静,单钮铭.粘土矿物对碎屑岩储层评价的控制理论探讨及应用实例.成都地质学院学报,1991,18(3):1-11
    [55]程晓玲.粘十矿物转化与储层孔隙演化的规律性研究.大庆石油地质与开发.2006,25(1):43-45
    [56]李健,李红南.油藏开发流体动力地质作用对储集层的改造.石油勘探与开发.2003,30(5):83-89
    [57]王传禹,杨普化,马永海等.大庆油田注水开发过程中油层岩石的润湿性和孔隙结构的变化.石油勘探与开发,1981,8(1):54-67
    [58]杜建涛,纪红梅,赵云飞.喇嘛甸油田不同类型储层微观孔隙结构变化特征.中外能源,2011,16(2): 76-80
    [59]沈平平.油水多孔介质中的运动理论和实践.北京:石油工业出版社,2000:50-64.
    [60]孙卫,曲志浩,李劲峰.安塞特低渗透油田见水后的水驱油机理及开发效果分析.石油实验地质,2007,21(3):256-259
    [61]王传禹,杨普华,马永海等.大庆油田注水开发过程中油层岩石的润湿性和孔隙结构的变化.石油勘探与开发,1981,8(1):54-67
    [62]杜建涛,纪红梅,赵云飞.喇嘛甸油田不同类型储层微观孔隙结构变化特征.中外能源,201 1 16(2): 76-80
    [63]王瑞飞,孙卫.特低渗透砂岩微观模型水驱油实验影响驱油效率的因素.石油实验地质,2010,32(1): 93-97
    [64]欧阳畹町,刘宝平,张章,朱玉双,崔晓庆.不同物性储层微观渗流特征差异研究.中外能源,2009,14(4):57-60
    [65]Knackstedt M A, Arns C H, Limaye A. Digital Core Laboratory:Reservoir-Core Properties Derived from 3D Images.SPE87009,2004:1-7.
    [66]Hu Guangcheng, Ma Qinwei, Ma Shaopeng. Construction of the three-dimensional pore throat structure of reservoir rock using CT images. Proceedings of SPIE - The International Society for Optical Engineering,2009,7375,
    [67]Mohammad P. Pore-Scale Modeling of Three-Phase Flow: PHDthesis. Department of Earth Science and Engineering, Imperial College, London,2003·
    [68][68] Newman M.S, Yin X. Lattice Boltzmann simulation of non-darcy flow in stochastically generated 2D porous media geometries. Proceedings - SPE Annual Technical Conference and Exhibition,2011,3:2347-2364
    [69]Alabi, Olusegun Olalekan Fluid flow in homogeneous and heterogeneous porous media. Electronic Journal of Geotechnical Engineering,2011,16:61-70
    [70](加)F.A.L.Dullien著,.多孔介质流体渗移与孔隙结构.北京:石油工业出版社,1990;
    [71]Hou Jian, Luo Fuquan, Wang Chuanfei, Zhang Yanhui, Zhou Kang, Pan Guangming. Quantitative prediction model for the water-oil relative permeability curve and its application in reservoir numerical simulation. Part 1:Modeling. Energy and Fuels,2011,25(10):4405-4413
    [72]Gunde Akshay C, Mitra Sushanta K, Babadagli, Tayfun. Pore scale simulation of two-phase fluid flow in Berea Sandstone core using Lattice Boltzmann Method. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, PARTS A AND B:1441-1446
    [73]Peng Hao, Ling Xiang. Computational fluid dynamics modelling on flow characteristics of two-phase flow in micro-channels. Micro and Nano Letters,2011,6(6): 372-377
    [74]高慧梅,姜汉桥,陈民锋.储层孔隙结构对油水两相相对渗透率影响微观模拟研究.西安石油大学学报(自然科学版),2007,23(2):56-59
    [75]Qihong F, Yeliang D, Sen, W. A new methodology to characterize wettability alteration in network modeling. Petroleum Science and Technology, 2012,30(6):559-566
    [76]Kumar M, Middleton J.P, Sheppard A.P, Senden T.J, Knackstedt M.A. Quantifying trapped residual oil in reservoir core material at the pore scale: Exploring the role of displacement rate, saturation history and wettability. Society of Petroleum Engineers - International Petroleum Technology Conference 2009,5:3287-3291
    [77]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律.北京:石油工业出版社,1997,1-10
    [78]杨万里等.松辽盆地石油地质特征.北京:石油工业出版社,1985,1-8
    [79]杨继良.松辽盆地断陷盆地的地质结构与油气.北京:石油工业出版社,1983,2-9
    [80]王衡鉴等.松辽盆地白垩纪沉积相模式.石油与天然气地质,1981,2(3):35-42
    [81]王东坡.松辽盆地沉积建造与海平面升降.北京:地质出版社,1993,5-12
    [82]赵翰卿.松辽盆地大型叶状三角洲沉积模式.大庆石油地质与开发,1987,5(4):56-62
    [83]裘亦楠,许仕策,肖敬修.沉积方式与碎屑岩储层的层内非均质性.石油勘探与开发,1985,12(2):72-74
    [84]于兴河,陈永峤.碎屑岩系的八大沉积作用及其油气储层表征.石油实验地质,2004,26(6):517-523
    [85]赵杏媛,张有瑜.粘土矿物与粘土矿物分析.北京:海洋出版社,1990:58-89
    [86]吴小斌,侯加根,孙卫,特低渗砂岩储层微观结构及孔隙演化定量分析.中南大学学报(自然科学版).2011,42(11):3438-3445.
    [87]陈丽华.扫描电镜在石油地质中的应用.北京:石油工业出版社,1990:15-18
    [88]王允诚.油层物理学.成都:四川科学技术出版社.2006:151-200
    [89]张顺康.水驱后剩余油分布微观实验与模拟:[博士学位论文].北京:中国石油大学.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700