用户名: 密码: 验证码:
缅甸硬玉岩地区钠长石岩的矿物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钠长石岩是一种以单一矿物钠长石为主要组成的矿物,在世界上比较少见。产于俯冲带内低温高压环境下的由单矿物构成的硬玉岩通常伴有钠长石岩,目前对于硬玉岩研究的关注度较高,而对于钠长石岩的研究则相对较少,很少有相关论文报导。产于缅甸翡翠矿区的钠长石岩,经常与硬玉岩相伴而生,是良好的研究样品。
     缅甸硬玉岩地区钠长石岩的主要矿物成分是钠长石,X射线粉晶衍射结合电子探针分析的结果得到其有序度高,属于低温钠长石,形成温度小于300℃。其次含有硬玉、绿辉石、透辉石等辉石类矿物和钠透闪石、蓝透闪石、镁钠闪石等闪石类矿物,此外还有钠沸石、针钠钙石、含钡和锶的矿物等。钠长石岩沿着解理和裂隙交代硬玉,说明钠长石形成晚于硬玉岩。钠长石岩中的透辉石有两种类型,一类可能是随着被交代的硬玉中的透辉石组分增加而形成的透辉石,另一类是被绿辉石包裹的透辉石残留,其很有可能是早期来自地幔楔或俯冲带岩石中的矿物残留,即异剥钙榴岩类或辉石岩类,可以视作硬玉化绿辉石岩和硬玉化异剥钙榴岩的矿物学证据。钠长石沿着针钠钙石边缘的交代现象,说明钠长石形成于针钠钙石之后。钠沸石、含钡的沸石类矿物和含锶的矿物作为后期矿物出现在钠长石和硬玉颗粒之间。
     大量钠长石交代硬玉的现象表明缅甸硬玉岩地区钠长石岩是由富钠流体交代硬玉岩而形成,在交代结构不发育的钠长石岩中,并不能排除钠长石岩直接从流体中结晶而形成。对钠长石岩中流体包裹体的成分和阴阳离子含量进行分析,结果表明钠长石岩中的流体包裹体以H2O为主,四级质谱仪测量结果显示H2O的含量在93.01-98.37mol.%,没有发现类似硬玉岩中富CH4的流体包裹体;其中含量最多的阳离子为Na+,其次为Ca2+和Mg2+,含量最多的阴离子为F﹣和Cl﹣。结合钠长石岩中后期含钡和锶矿物的出现,说明形成钠长石岩的流体与形成硬玉岩的流体有一定的继承关系,流体可能来自硬玉岩之后的残余流体。热液型钠长石岩的存在进一步说明缅甸翡翠矿区钠化热液存在现象的普遍性与穿越性。
     通过对不同外观钠长石岩的结构和显微构造进行研究,将缅甸地区的钠长石岩的结构分为两种类型:原生结构和变质变形结构。其中变质重结晶结构包括:晶体结晶定向、机械双晶、亚颗粒、锯齿状高角度缝合边以及恢复结构。钠长石岩通过亚颗粒旋转、颗粒边界迁移等方式将钠长石颗粒细化并定向,形成透明度高的钠长石玉。这些结构的存在说明钠长石岩形成之后经历了持续、强烈的地质力,而这种地质力最有可能的提供者是实皆走滑断裂。
Albitite, a type of rock composed principally of albite, is rare to find.Albitite isfound in several geolocal settings, one of which is in assocation with jadeitite, a rockmade up almost entirely of jadeitic pyroxene and forms under a relatively high-P/Tcondition in the subduction zones. Jadeitites have attracted much attention fromgeologists and gemologists internationally, and many sites of jadeitites have been welldocumented. However, there has been little understanding about the albitites, whichare always associated with jadeitites. The Myanmar jadeite deposit, where someclassic mineral relationships are preserved, is also home to the best samples ofalbitite.
     Albitite is mainly composed of low-temperature albite, pyroxene minerals such asjadeite, omphacite and dioside and amphibole minerals such as richterite, winchiteand magnesio-riebeckite, natrolite, pectolite, Ba and Sr minerals. Replacement of thejadeite by albite in the albitite along its cleavage and crack indicates that albite formslater than the jadeite. Diopside in the albitite consists of two types: one formed byreplacement of jadeite which contains some components of dioside, the other isinferred to be the residual which was part of the replaced rocks like rodingite orpyroxenite belonging the host serpentine mélange. The latter can be used asmineralogical evidence for confirmation of jadeitized pyroxenite and jadeitizedrondingite.
     Replacement of the jadeite by albite indicates the metasomatic origin of albitite.However, we can not exclude the origin of vein crystallization from fluids in thesamples that do not have replacement texture. Micro-Raman spectroscopy,QMS(Quadrupole mass spectrometry) and ion chromatograph were used to detectcomponents in the fluid inclusions, obtain information about additional volatiles andmeasure the bulk cation and anion contents of the fluid inclusions. The fluidinclusions in the albitites are mainly composed of H2O,QMS measurements haveshown that the bulk fluids contain93.01-98.37mol.%H2O. The samples arecharacterized by ionic contents higher than that of in the jadeitites, the most abundantcation being Na+, Ca2+and Mg2+and the most abundant anion are F﹣and Cl﹣.Combined with the Ba and Sr minerals in the albitites, it can be speculated that the albitite-forming fluids might be derived from the residual fluids of the jadeitites.Existence of the albite shows that Na-rich fluids are thorugh and traversing.
     Similar to jadeitite, albitite from Myanmar can be classified into two types:undeformed albitite and deformed albitite. The deformed textures include crystallineorientation, mechanical twin, sub-grain, serrated high-angle sutured grain boundariesand recovery textures. Transformation of coarse albitite into the transparentgem-quality albite jade, should have undergone at least two coupled processes ofgrain size reduction and crystallographic orientation. The main processes causingthese are progressive misorientaion of sub-grains and grain-boundary migration. Theexistence of these deformation textures indicate that the most transparent albite jadehas undergone long-lasting and intensive, localized geological forces. It is very likelythat the source of these forces is linked to the major Sagaing stike-slip faults.
引文
Acharyya SK, Ray KK, Sengupta S. Tectonics of ophiolite belt from Naga Hills andAndamanIslands, India. NationalAcademy of Science India (Earth and Planetary Sciences),99:187-199
    Allen DE, Seyfried J, WE. Compositional controls on vent fluids from ultramatie-hostedhydrothermal systems at mid-ocean ridges: an experimental study at400℃,500bars.Geochimica et Cosmochimica Acta,2003,67(8):1531-1542
    Altherr R, HollA, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the Europeanvariscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos,2000,50:51-73
    Altherr R, Topuz G, Siebel W, et al. Geochemical and Sr-Nd-Pb isotopic characteristics ofPaleocene plagioleucitites from the Eastern Pnitides (NE Turkey). Lithos,2008,105:149-161
    Angiboust S,Agard P, Raimbourg H, et al. Subduction interface processes recorded byeclogite-facies shear zones (Monviso, W.Alps). Lithos,2011,127:222-238
    Angiboust S, Langdon R,Agard P, et al. Eclogitization of the Monviso ophiolite and implicationson subduction dynamics. Journal of Metamorphic Geology,2012,30:37-61
    Angus NS&Kanavis-Sotiriou R.Adinoles revisited: hydrothermal Na (Ca)-metasomatism ofpolite screens adjacent to tholeiitic dykes in the Dublin Terrene, Ireland. Mineral Mag,1995,59(369):369-382
    Attoh K, Evans MJ, Bickford ME. Geochemistry of an ultramafic-rodingite rock association in thePaleoproterozoic Dixcove greenstone belt, southwestern Ghana. Journal ofAfrican EarthSciences,2006,45,333-346
    Austrheim H&Prestvik T. Rodingitization and hydration of the oceanic lithosphere as developedin the Leka ophiolite, north-central Norway. Lithos,2008,104:177-198
    Bach W&Klein F. The petrology of seafloor rodingites: insights from geochemical reaction pathmodelling. Lithos,2009,112:103-117
    Barriga F&Fyfe WS. Development of rodingite in basaltic rocks in serpentinites, East Liguria,Italy. Contribution to Mineralogy and Petrology,1983,84:146-151
    Barthel FH. Uranium occurrence in albitised rocks. Monograph series on mineral deposits,1987,27:1-9
    Barton MD. Granitic magmatism and metallogeny of southwestern NorthAmerica. Transactionsof the Royal Society of Edinburgh Earth Sciences,1996,87:261-280
    Bauer M. On the jadeite and other rocks from Tawmaw in Upper Burma. Rec. Geol. Surv. India,1895,28:91-105
    Bebout GE. Volatile transfer and recycling at convergent margins: Mass-balance and insights fromhigh-P/T metamorphic rocks.American Geophysical Union Geophysical Monograph,1996,96:179-193
    Bebout GE. Metamorthic chemical dynamics of subduction zones. Earth and Planetary ScienceLetters,2007a,260:373-393
    Bebout GE. Trace element and isotopic fluxes/subducted slab, in Rudnik R, eds. Treatise onGeochemisty. Electronic Update,2007b, ISBNN (set):0-08-04351-6, Elsevier
    Beout GE, BeboutAE, Graham CM. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) intosubduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem.Geol.,2007c,239:284-304
    Bender F. Geology of Burma. Berlin: Gebruder Borntrager,1983.293
    Bertrand G&Rangin C. Tectonics of the western margin of the Shan plateau (Central Myanmar),implications for the India-Indochina oblique convergence since Oligocene. Journal ofAsianEarth Sciences,2003,21:1139-1157
    Bertrand G, Rangin C, Maury R, et al. Les basalts de Singu (Myanmar): nouvelles contraintes surle taux de decrochement recent de la faille de Sagaing. Comptes Rendus delAcademie desSciences, Paris,1998,327:479-484
    Besse J&Courtillot V. Paleogeographic maps of the continents bordering the Indian Ocean sincethe Early Jurassic. Journal of Geophysical Research,1984,93(B10):11791-11808
    Biddau R, Cidu R, Frau F. Rare earth elements in waters from the albitite-bearing granodiorites ofCentral Sardinia, Italy. Chemical Geology,2002,182:1-14
    Bischoff JL, Rosenbauser RJ,Aruscavage PT et al. Sea-floor massive sulfide deposits from21°NEast Pasific Rises, Juan De Fuca Ridge and Galapagos Rift: bulk chemical composition andeconomic implication. Econ Geol,1983,(3):1711-1720
    BleeckAWG. Die Jadeitlagerstatten in Upper Burma. Z. Prakt. Geol.,1907,15:341-365
    BleeckAWG. Jadeite in Kachin Hills, Upper Burma. Rec. Geol. Surv. India,1908,36,4:254-285
    Boari E, Tommasini S, Laurenzi MA, et al. Transition from ultrapotassic kamafugitic tosub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and40Ar/39Ar-age data from theMiddle Latin Valley Volcanic Field, Roman Magmatic Province, Central Italy. J. Petrol.,2009a,50:1327-1357
    Boari E,Avanzinelli R, Melluso L, et al. Isotope geochemistry (Sr-Nd-Pb) and petrogenesis ofleucite-bearing volcanic rocks from “ColliAlbani” volcano, Roman Magmatic Province,Central Italy: inferences on volcano evolution and magma genesis. Bull. Volcanol.,2009b,71:977-1005
    Bonev N, Stampfli G. Gabbro, plagiogranite and associated dykes in the supra-subduction zoneEvros Ophiolites, NE Greece. Geological Magazine,2009,146:72-91
    Bornioli R, Fadda S, Fiori M, et al. Genetic aspects of albitite deposits from Central Sardinia:mineralogical and geochemical evidence. Expl.And Min. Geol.,1996,5:61-72
    Bornioli R, Carcangiu G, Palomba M, et al. REE-mineralization in the albite deposit of CentralSardinia (Italy): Geological, mineralogical and petrological aspect, REE-bearing minerals.Proceed of Rare Earth Minerals: Chemistry, origin and ore deposits, London1-2April,1993:15-17
    Bornioli B, Carcangiu G, Palomba M, et al. Rare earth elements in the albitites of Central Sardinia(Italy). Note I: the mineralization of Ottana. Per. di Min.,1997,66:269-285
    Bottomley DJ, KatzA, Chan LH, et al. The origin and evolution of Canadian Shield brines:evaporation or freezing of seawater? New lithium isotope and geochemical evidence from theSlave Craton. Chemical Geology,1999,155(3-4):295-320
    Browne BL, Eichelberger JC, Patino LC, et al. Magma mingling as indicated by texture and Sr/Baratios of plagioclase phenocrysts from Unzen volcano, SW Japan. J. Volcanol. Geotherm.Res.,2006,154:103-116
    Buslov MM. Tectonics and geodynamics of the CentralAsian Fold belt: the role of Late Paleozoiclarge-amplitude strike-slip faults. Russian Geol. Geophys.,2011:52:52-71
    Castelli D, Rostagno C, Lombardi B. Jd-Qtz-bearing metaplagiogranite from the Monvisometa-ophiolite (WesternAlps). Ofioliti,2002,27:81-90
    Castorina F, Masi U, Padalino G, et al. Constraints from geochemistry and Sr-Nd isotopes for theorigin of albitite deposits from Central Sardinia (Italy). Miner Deposita,2006,41:323-338
    Cathelineau M. U-Th-Ree mobility during albitization and quartz dissolution in granitoids:evidence from southeast French Massif Central. Bull Min.,1987,110:249-259
    Cathelineau M.Accessory mineral alteration in peraluminous granites at the hydrothermal stage:Areview. Rendiconti della societa Italiana di Mineralogia e Petrologia,1988,43:499-508
    Catlos EJ&Sorensen SS. Phengite-based chronology of K-and Ba-rich fluid flow in twopaleosubduction zones. Science,2003,299:92-95
    Charlou JL, Donval JP, FouquetY, et al. Geochemistry of high H2and CH4vent fluids ssuing fromultramafic rocks at the Rainbow hydrothermal field. Chem. Geol.2002,191:345-359
    Chhibber HL. The mineal resources of Burma. London: MacMillan and Co. Ltd,1934:309
    Chihara K. Mineralogy and paragenesis of jadeites from the Omi-Kotaki area, Central Japan.Mineralogical Society of Japan, Special Paper,1971,1:147-156
    Coleman RG. Jadeite deposit of the Clear Creek area, New Idria district, San Benito County,California. J. Petrol.,1961,2:209-247
    Coleman RG&Peterman ZE. Oceanic plaiogranite. Journal of Geophysical Research,1975,80:1099-1108
    Coleman RG&Donato MM. Oceanic plagiogranite revisited. In: Barker F, ed. Trondhjemites,Dacites and Related Rocks.Amsterdam: Elsevier,1979:149-168
    Compagnoni R, Rolfo R, Manavella F, Salusso F. Jadeitite in the Monviso meta-ophiolite,Piemonte Zone, Italian westernAlps. Per. Mineral.,2007,76:79-89
    Conticelli S, D’Antonio M, Pinarelli L, et al. Source contamination and mantle heterogeneity inthe genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data fromRoman Province and Southern Tuscany. Mineral. Petrol.,2002,74:189-222
    Conticelli S, Carlson RW, Widom E, et al. Chemical and isotopic composition (Os, Pb, Nd, and Sr)of Neogene to Quaternary Calc-alkalic, Shoshonitic and Ultrapotassic mafic rocks from theItalian Peninsula: inferences on the nature of their mantle sources. In “Cenozoic Volcanism inthe MediterraneanArea”, L. Beccaluva, G. Bianchini, M. Wilson, eds. Geol Soc.Am. Spec.Pap.,2007,418:171-202
    Conticelli S, Guarnieri L, FarinelliA, et al. Trace elements and Sr-Nd-Pb isotopes of K-rich,shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis ofultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting.Lithos,2009,107:68-92
    Compagnoni R, Rolfo F, Manavella F, et al. Jadeitite in the Monviso meta-ophiolite, PiemonteZone, Italian westernAlps. Per. Mineral.,2007,76:79-89
    Compagnoni R, Rolfo F, Castelli D. Jadeitite from the Monviso meta-ophiolite, westernAlps:occurrence and genesis. European Journal of Mineralogy,2012,24:333-343
    Coveney RM&Kelly WC. Dawsonite as a daughtermineral in hydrothermal fluid inclusions.Contr. Mineral. and Petrol.,1971,32(4):334-342
    Curray JR, Moore DG, Lawver LAet al. Tectonics of theAndaman Sea and Burma. in Watkins J,Montadert L, Dickenson PW eds. Geological and Geophysical Investigations of ContinentalMargins,1979:8-23
    Curray JR. Tectonics and history of theAndaman Sea region. Journal ofAsian Earth Science,2005,25:1-42
    Deng J, Yang LQ, Gao BF, et al. Fluid evolution and metallogenic dynamics during tectonicregime transition: example from the Jiapigou gold belt in Northeast China. Resource Geology,2009,59:140–152
    Dewey JF, Cande S, Pitman WC. Tectonic evolution of the India/Eurasia Collision Zone. Eclogae.Geol. Helv.,1989,82(3):717-734
    Dobretsov NL. Mineralogy, petrography and genesis of ultrabasic rocks, jadeitites, and albititesfrom the Borus Mountain Range (the West Sayan). Proceed. Inst. Geol. Geophys.Acad. Sci.USSR (Siberian Branch), Trudy,1963,15:242-316
    Dobretsov NL&Ponomareva LG. Comparative characteristics of jadeite and associated rocksfrom Polar Ural and Near-Balkhash Region.Acad. Sci. USSR (Siberian Branch) Trudy Inst.Geol. Geophys.,1965,31:178-243
    Dobretsov NL&TatarinovAV. Jadeite and nephrite in ophiolites. Nauka, Novosibirsk, Russia,1983:125
    Dobretsov NL. Problem of the jadeite rocks, associating with ophiolites. Mineral. Slov.,1984,16:3-12
    Dobretsov NL&Sobolev NV. Glaucophane schists and eclogites in the folded system of northernAsia. Ofioliti,1984,9:401-424
    Dobretsov NL&Buslov MM. Serpentinitic mélanges associated with HP and UHP rocks inCentraAsia. Int. Geol. Review,2004,46:957-980
    Dobrzhinetskaya LF, Schweinehage R, Massonne HJ, Green HW. Silica precipitates in omphacitefrom eclogite atAlpeArami, Switzerland: evidence of deep subduction. Journal ofMetamorphic Geology,2002,20:481-492
    Draper DS, BrandonAD, Becker H. Interactions between slab and sub-arc mantle dehydration,melting and element transport, in subduction zones. Chem Geol,1999,160:251-253
    Drury, M.R., et al. Deformation-related recrystallization processes. Tectonophysics,1990,172:235-253
    Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc.J. Geophys. Res.,1997,102:14991-15019
    EllisAJ. Explored geothermal system. in: Barnes HL, eds. Geochemistry of hydrothermal oredeposits. New Yourk:AWiley-Interscience Publication, John Wiley and Sons,1979.632-638
    Essene EJ.An occurrence of cymrite in the Franciscan Formation, California.Am. Mineral.,1967,52:1885-1890
    Essene EJ&Fyfe WS. Omphacite in Californian metamorphic rocks. Contributions to Mineralogyand Petrology,1967,15:1-23
    Eugster HP&Jones BF. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya.Science,1968,16:160-163
    Fliervoet, T.F., et al. Evidence for dominant grain-boundary sliding deformation in greenschist-and amphibolites-grade polymineralic ultramylonites from the Redbank Deformed Zone,CentralAustralia. Journal of Structural Geology,1997,19(12):1495-1520
    Fisher DM, Brantley SL, Everett M, et al. Cyclic fluid flow through a regionally extensive fracturenet work within the Kodiak accretionary prism, Journal of Geophysical Research,1995,100:12881-12894
    Fitz Gerald JD, Etheridge MA, Vernon RH. Dynamic recrystallization in naturally deformedalbite. Textures and Microstrutures,1983,5:219-237.
    Frost BR&Beard JS. On silica activity and serpentinization. Journal of Petrology,2007,48:1351-1368
    Frost BR, Beard JS, McCaig A, et al. The formation of micro-rodingites from IODP Hole U1309D:key to understanding the process of serpentinization. Journal of Petrology,2008,49:1579-1588
    Fryer P, Wheat CG, Mottl MJ. Mariana blueschist mud volcanism: implications for conditionswithin the subduction zone. Geology,1998,27:103-106
    Fryer P, Lockwood JP, Becker N, et al. in DilekY, Moores E, eds. Significance of Serpentine MudVolcanism in Convergent Margins. Geological Society of America Special Publication349,Ophiolites and Oceanic Crust,2000
    Gao J&Klemd R. Formation of HP-LP rocks and their tectonic implications in the westernTinshan Orogen, NW China: geochemical and age constraints. Lithos,2003,66:1-22
    Garcia-CascoA, VegaAR, Parraga JC, et al.Anew jadeitite jade locality (Sierra del Convento,Cuba): firs report and some petrological and archeological implications. Contrib. Mineral.Petrol.,2009,158:1-16
    Giaramita MJ&Sorensen SS. Primary fluids in low-temperature eclogites: evidence from twosubduction complexes (Dominican Republic and California). Contributions to Mineralogyand Petrology,1994,117:279-292
    Goffé B, Rangin C, Maluski H. Jade and associated rocks from jade mines area, northernMyanmar as record of a polyphased high-pressure metamorphism. Eos,2000,81: F1365.
    Groppo C&Castelli D. Prograde P-T evolution of a lawsonite eclogite from the Monvisometa-ophiolite (WesternAlps): dehydration and redox Reactions during subduction ofoceanic FeTi-Oxide gabbro. Journal of Petrology.2010,51:2489-2514
    Guo ZF, Wilson M, Liu JQ, Mao Q. Post-collisional, potassic and ultrapotassic magmatism of theNorthern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamicsetting and uplift mechanisms. J. Petrol.,2006,47:1177-1220
    Haninington MD, Peter JM, Scott SD. Gold in sea-floor polymetallic sulfide deposits. Econ Geol,1986,(8):1867-1883
    Harlow GE&Olds EP. Observations on terrestrial ureyite and ureyitic pyroxene.Am. Mineral.,1987,72:126-136
    Harlow GE. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala.Journal of Metamorphic Geology,1994,12:49-68
    Harlow GE. Crystal chemistry of barian enrichment in micas from metasomatized inclusions inserpentinite, Motagua Valley, Guatemala. Eur. J. Mineral.,1995,7:775-789
    Harlow GE, Sisson VB,Ave Lallemant HG, Sorensen SS. High-pressure metasomatic rocks alongthe Motagua Fault Zone, Guatemala. Ofioliti,2003,28:115-120
    Harlow GE&Sorensen SS. Jade (Nephrite and Jadeitite) and Serpentinite: MetasomaticConnections. International Geology Review,2005,47:113-146
    Harlow GE, Sorensen SS, Sisson VB. Jade. in: Groat LA, eds. The Geology of Gem Deposits,Short Course Handbook Series37. Quebec: MineralogicalAssociation of Canada,2007.207-254
    Harlow GE, Sisson VB, Sorensen SS. Jadeitite from Guatemala: Distinctions among multipleoccurrences. GeologicaActa,2011,9(3):363-387
    Harlow GE, Summerhayes GR, Davies H, Matisoo-Smith L.Ajade gouge from Emirau Island,Papua New Guinea (Early Lapita context,3300BP): a unique jadeitite. Eur. J. Mineral.,2012,24:391-399
    Harlow GE, Sorensen SS, Sisson VB. The Geology of jade deposits. in TucsonAZ, eds.MineralogicalAssociation of Canada Short Course44. Quebec: MineralogicalAssociation ofCanada,2014.
    Hatzipanagiotou K&Tsikouras B. Rodingite formation from diorite in the Samothraki ophiolite,NEAegean, Gerrce. Geological Journal,2001,36:93-109
    Helper, MA. Deformation and high P/T metamorphism in the central part of the CondreyMountain window, north central Klamath Mountains. Geology Society ofAmerica Memoirs.,1986,164,125-141
    Hirth G&Tullis J. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology.1992,14:145-159
    Holloway JR. Graphite-CH4-H2O-CO2equilibria at low-grade metamorphic conditions. Geology,1984,12:455-458
    Iwao S.Albitite and associated jadeite rock from Kotaki District, Japan:Astudy in ceramic rawmaterial. Reports of the Geological Survey of Japan,1953,153:26
    Johnson CA&Harlow GE. Guatemala jadeitites and albitites were formed by deuterium-richserpentinizing fluids deep within a subduction-channel. Geology,1999,27:629-632
    Johnson MC&Plank T. Dehydration and melting experiments constrain the fate of subductedsediments. Geochem. Geophys. Geosyst.,1999,1(12):1007
    Kawano Y.Anew occurrence of jade (jadeite) in Japan and its chemical properties. J. JapaneseAssoc. Mineral., Petrol. Econ. Geol.1939,22:195-201(in Japanese)
    Kelley DS&Fruh-Green GL.Abiogenic methane in deep-seated mid-ocean ridge enviroments:insights from stable isotope analyses. J. Geophys. Res.,1999,104:39-60
    Kobayshi S, Miyake H, Shoji T.Ajadeite rock from Oosa-cho, Okayma Prefecture, southwesternJapan. Mineralogical Journal,1987,6:314-327
    Kovalenko IV&SviridenkoAF. Tectonic conditions for the formation of the jadeite fields of theBalkhash Region and the Polar Urals. Vestnid Moslvskogo Universiteta, Geologiya,1981,36:52-59(in Russian)
    Kovalenko I,Aerov G, Bagrova Z. Geological and structural conditions localizing ornamentalstone occurrence in the ophiolites of Itmurunda Zone, Kazakhstan. In IshiwatariA, Malpas J,Ishizuka H, eds. Circum-Pacific Ophiolites. VSP, Utrecht, Netherlands,1994,255-262
    Kovalenko VI. The genesis of rare metal granitoids and related ore deposit, in Stemprok, M., et al.,eds. Metallization associated with acid magmatism. Prague: Czech Geological Survey,1978,235-247
    Koutsovitis P, MagganasA, Pomonis P. Rodingites within scattered ophiolitic occurrences fromthe northern and eastern Othris area, Greece.2008, http://www.minsoc.ru/2008-1-52-1:243-246
    Kruse R, Stunitz H, Kunze K. Dynamic recrystallization processs in plagioclase porphyroclasts.Journal of Structural Geology.2001,23:1781-1820
    Kunugiza K, Nakamura E, Miyajima H, GotoA, Kobayashi K. Formation of jadeite-natroliterocks in the Itoigawa-Ohmi area of the Hida marginal belt inferred from U-Pb zircon dating.2002JointAnn. Meet. Japan.Assoc. Mineral., Petrol., Econ. Geol., Mineral Soc. Jappan,Abstracts,2002.
    Kuster M&Stockhert B. Density changes of fluid inclusions in high pressure low temperaturemetamorphic rock from Crete:Athermobarometric approach based on the creep strength ofthe host minerals. Lithos,1997,41:151-167
    Larson KM, Burgmann N, Bilham R, et al. Kinematics of the India-Eurasia collision zone fromGPS measurements. Geophys. Res.,1999,104:1077-1093
    Leake BE, Farrow CM., Chao F, et al. Winchite re-discovered from the type locality in India.Mineralogical Magazine.,1986,50,173-175
    Leat PT, Pearce JA, Barker RF, et al. Magma genesis and mantle flow at a subducting slab edge:the South Sandwich arc-basin system. Earth Planet. Sci. Lett.,2004,227:17-35
    LeDainAY, Tapponnier PG, Molnar P.Active faulting and tectonics of Burma and surroundingareas. Journal of Geophysical Research,1984,89(1):453-472
    Li XP, Rahn M, Bucher K. Metamorphic processes of rodingites of the Zermatt-Saas ophiolites,CentralAlps. International Geology Review,2004,46:28-51
    Li XP, Zhang L, Wei C,Ai YL, Chen J. Petrology of rodingite derived from eclogite in westernTianshan, China. Journal of Metamorphic Geology,2007,25(3):363-382
    Li XP, Zhang LF, Wilde SA, Song B, Liu XM. Zircons from rodingite in the western Tianshanserpentinite complex: Mineral chemistry and U-Pb ages define nature and timing ofrodingitization. Lithos,2010,118:17-34
    Liu J&Ye K. Transformation of garnet epidote amphibolites to eclogite, western DabieMountains, China. Journal of Metamorphic Geology,2004,22:383-394
    Maekawa H, Fryer P, OzakiA. Incipient Blueschist-facies metamorphism in the active subductionzone beneath the Mariana Forearc, in Taylor B, ed.,AGU MONOGRAPHS,1995,88:281-289
    Maresch W, Grevel C, Stanek KP, et al. Multiple growth mechanisms of jadeite in Cubanmetabasite. European Journal of Mineralogy,2012,24:217-235
    Maresch WV, Medenbach O, RudolphA. Winchite and the glaucophane-actinolite miscibility gap.Nature,1982,296:731-733
    Marshall P. The geology of the Dun Mountain subduction, Nelson. Bull. Geology Survey NewZealand,1911,12:31-35
    Manning CE. Fluid composition at the blueschist-eclogite transition in the model systemNa2O-MgO-Al2O3-SiO2-H2O-HCl. Schweizerische Mineralogische and PetrographischeMitteilungen,1998,78(2):225-242
    Manning CE. The Chemistry of subduction-zone fluids. Earth Planet. Sci. Lett.,2004,223:1-16
    MaziniA, Svensen h,Akhmanov GG,Aloisi G, Planke S, Malthe-SorenssenA, Istadi B.Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth and PlanetaryScience Letters,2007,261:375-388
    McBirneyAR, Aoki KI, Bass M. Eclogites and jadeite from the Motagua fault zone, Guatemala.American Mineralogist,1967,52:908-918
    Mevel C&Kienast JR. Jadeite-kosmochlor solid solution and chromite, sodic amphiboles injadeitites and associated rocks from Tawmaw (Burma). Bull. Mineral.,1986,109:617-633
    MitchellAHG. Cretaceous-Cenozoic tectonic events in western Myanmar (Burma)-Assam region.Journal of the Geological Society of London,1993,150:1089-1102
    Miyajima H, Matsubara S, Miyawaki R, et al. Itoigawaite, a new mineral, the Sr analogue oflawsonite, in jadeitite from the Itoigawa-Ohmi district, central Japan. MineralogicalMagazine,1999,63:909-916
    Miyajima H, Matsubara S, Miyawaki R, et al. Rengeite, Sr4Zr4Ti4Si4O22, a new mineral, the Sr-Zranalogue of perrierite from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan.Mineralogical Magazine,2001,65:111-120
    Miyajima H, Miyawaki R, Ito K. Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Tianalogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan.European Journal of Mineralogy,2002,14,1119-1128
    Mohammad YO, Maekawa H, Lawa FA. Mineralogy and origin of Mlakawa albitite fromKurdistan region, Northeastern Iraq. Geosphere,2007,3(6):624-645
    Mokhles KA, Robert JS, Jun-Ichi K. Origin of a late Neoproterozoic (605±13Ma)intrusivecarbonate-albitite complex in Southern Sinai, Egypt. Int J Earth Sci (Geol Rundsch),2010,99:245-267
    Molnor P&Tapponnier P. Cenozoic tectonics ofAsia: Effects of a continental collision. Science.1975,189:419-426
    Moore JC&Vrilojk P. Fluids in accretionary prisms. Reviews of Geophysics,1992,30,113-135
    Morad S&Felitsyn S. Identificaiton of primary Ce-anomaly signatures in fossil biogenic apatite:implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology,2001,143:259-264
    Morley CK. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogenetransperessional tectonics before and during India-Eurasia collision, in Thailand, Myanmarand Malaysia. J. Geol. Soc.,2004,161:799-812
    Morishita T. Occurrence and chemical composition of barian feldspars in a jadeitite from theItoigawa-Omi District in the Renge high-P/T-type metamorphic belt, Japan. Mineral. Mag.,2005,69:39-51
    Morishita T,Arai S, Ishida Y. Trace element compositions of jadeite (+omphacite) in jadeititesfrom the Itoigawa-Ohmi district, Japan: Implications for fluid processes in subduction zones.IslandAre,2007,16(1):40-56
    Morkovkina VF. Jadeitites in the hyperbasites of the Polar Urals. Izv.Akad. Nauk SSSR SeriyaGeol.,1960,4:78-82(in Russian)
    Morris JD.Applications of cosmogenic10Be to problems in the earth sciences.Ann. Rev. EarthPlanet Sci Lett.,1991,19:313-350
    Morley CK.Atectonic model for the Tertiary evolution of strike-slip faults and rift basins in SEAsia. Tectonophysics,2002,347(1):189-215
    Moskaleva VN. Towards the mineralogy of the PreBalkash jadeitites. Zap. Vses. Mineral. Ob-va,1962,91(1):38-49
    Mposkos ED.&Kostopoulos DK. Diamond, former coesite and supersilicic garnet inmetasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphicevidence established. Earth and Planetary Science Letters.,2001,192:497-506
    Myint T, Kyaw T,Aye KA. On the lateral displacement of the Sagaing fault. Georeports,1991,1:23-34
    Nesbitt HW, Young GM. Early Proterozoic climates and plate motions inferred from majorelement chemistry of lutites. Nature,1982,299:715-717
    Noetling F. Note on the occurrence of jadeite in Upper Burma. Rec. Geol. Surv. India,1893,26:26-31
    Noetling F. Uber das Vorkommen von jadeit in Ober-Birma. Neu. Jahrb. Mineral.,1896,1:1-17
    Nyunt TT, Theye T, Massonne HJ. Na-rich vesuvianite in jadeitite of the Tawmaw jade district,northern Myanmar. Per. Mineral.,2009,78:5-18
    Nyunt TT. Petrological and geochemical contribution to the origin of jadeitite and associated rocksof the TawmawArea, Kachin State, Myanmar. Doctoral Dissertation. Institut fur Mineralogieund Kristallchemie der Universitat Stuttgart,2009
    Oberhansli R, Bousquet R, Moinzadeh H, et al. The field of stability of blue jadeite: a newoccurrence of jadeitite from Sorkhan, Iran, as a case study. Canadian Mineralogist,2007,45:1705-1713
    Och DJ, Leitch EC, Caprarelli G, et al. Blueschist and eclogite in tectonic mélange, PortMacquarie, New South Wales,Australia. Mineralogical Magazine,2003,67:609-624
    Omori K. Optical properties of jadeites in Japan. J. Japan.Assoc. Mineral. Petrol. Econ. Geol.,1939,22:201-212
    Ou Yang CM.Aterrestrial source of ureyite.Am. Mineral.,1984,69:1180-1183
    Passchier CV&Trouw R. Microtectonics. Springer.2005:40-43
    Patriat P&Achache J. India-Eurasia collision chronology has implications for crustal shorteningand driving mechanisms of plates. Nature,1984,311:615-621
    Petersson J&Eliasson TH. Mineral evolution and element mobility during episyenitization(dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden.Lithos,1997,42:123-146
    Philippot PP&Selverstone J. Trace-element-rich brines in eclogitic veins: implications for fluidcomposition and transport during subduction. Contributions to Mineralogy and Petrology,1991,106:417-430
    Piepenbreier D&Stockhert B. Plastic flow of omphacite in eclogites at temperatures blow500℃:implications for interpolate coupling in subduction zones. International Journal of EarthSciences,2001,90:197-210
    Pivnik DA, Nahm J, Tucker RS, et al. Polyphase deformation in a fore-arc/back-arc basin, Salinsubbasin, Myanmar (Burma). AAPG Bulletin,1998,82(10):1837-1856
    Pivnik DA, Nahm J, Tucker RS, et al. Polyphase deformation in a fore-arc/back-arc basin, Salinsub-basin, Myanmar (Burma). AmericanAssociation of Petroleum Geologists Bulletin,1998,82:1837-1856
    Plank T&Langmuir CH. The chemical composition of subducting sediment and its consequencesfor the crust and mantle. Chem. Geol.,1998,145,325-394
    Plank T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and theevolution of the continents. J. Petrol.,2005,46:921-944
    Plimer IR. The origin of the albite-rich rocks enclosing the cobaltian pyrite deposite atThackaringa, NSW,Australia. Mineralium Deposita,1977,12:175-187
    Pomonis P, Tsikouras B, Karipi S, et al. Rodingite formation in ultramafic rocks from theKoziakas ophiolite, western Thessaly, Greece: Conditions of metasomatic alteration,geochemical exchanges and T-X (CO2) evolutionary path. The Canadian Mineralogist,2008,46:569-581
    Powell, C.M., Conaghan, P. J., Klootwijk, C.T. India-Eurasia collision chronology. Nature,1985,316:86
    Roller, K., Kuster, M. and Stockhert, B., Quadrupol-mass-spectrometeric (QMS) analysis of fluidinclusions-application and perspectives. XVI ECROFI European Current Research On FluidInclusions (Porto),2001,7:383-386
    Rudnick PL, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link betweencontinents and depleted mantle. Science,2000,287:278-281
    Sasada M, Sawaki T, Takeno N.Analysis of fluid inclusion gases from geothermal system, using arapid-scanning quadrupole mass spectrometer. European Journal of Mineral,1992,4:895-906
    Schandl ES, O’Hanley DS, Wicks FJ. Rodingites in serpentinized ultramafic rocks of theAbitibigreenstone belt, Ontario. The Canadian Mineralogist,1989,27:579-591
    Schertl, HP, Maresch WV, Stanek KP, et al. New occurrences of jadeitite, jadeite quartzite andjadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological andgeochronological overview. Eur. J. Mineral.,2012,24:199-216
    Schmidt MW&Poli S. Experimentally based water budgets for dehydrating slabs andconsequences for arc magma generation. Earth and Planetary Science Letters,1998,163(1-4):361-379
    SchochAE&Scheeper R. The distribution of uranium and thorium in the Cape Columbine granitefrom the southwestern Cape Province, SouthAfrica. Ore Geol Rev.,1990,5:223-246
    Schoell M. Multiple origins of methane in the Earth. Chem. Geol.,1988,71:1-10
    Schwartz MO. Geochemical criteria for distinguishing magmatic and metasomaticalbite-enrichment in granitoids: Examples from Ta-Li granite Yichun (China) and the Sn-Wdeposit Tikus (Indonesia). Mineralium Deposita,1992,27:101-108
    Shi GH, Cui WY, Tropper P, Wang CQ, Shu GM,Yu HX. The petrology of a complex sodic andsodic-calcic amphibole association and its implications for the metasomatic processes in thejadeitite area in northwestern Myanmar, formerly Burma. Contrib. Mineral. Petrol.,2003,145:355-376
    Shi GH, Tropper P, Cui WY, Tan J, Wang CQ. Methane(CH4)-bearing fluid inclusions in theMyanmar jadeitite. Geochemical Journal,2005,39(6):503-516
    Shi GH, Cui WY, Cao SM, Jiang N, Jian P, Liu DY, Miao LC, Chu BB. Ion microprobe zirconU-Pb age and geochemistry of the Myanmar jadeitite. J. Geol. Sco.,2008,165,221-234
    Shi GH, Jiang N, Liu Y, et al. Zircon Hf isotope signature of the depleted mantle in the Myanmarjadeitite: implications for Mesozoic intra-oceanic subduction between the Eastern IndianPlate and the Burmese Platelet. Lithos,2009a,112:342-350
    Shi GH, Wang X, Chu BB, Cui WY. Jadeitite jade from Myanmar: its texture and gemologicalimplications. Journal of Gemology,2009b,31(5-8),185-195
    Shi GH, Jiang N, WangYW, et al. Ba minerals in clinopyroxene rocks from the Myanmar jadeititearea: implications for Ba recycling in subduction zones. European Journal of Mineralogy,2010,22:199–214
    Shi GH, Zhu XK, Deng J, et al. Spherules with pure iron cores from Myanmar jadeitite: Type-Ideep-sea spherules? Geochimica et CosmochemicaActa,2011,75:1608-1620
    Shi GH, Harlow GE, Wang J, et al. Mineralogy of jadeitite and related rocks from Myanmar:Areview with new data. Eur. J. Mineral,2012,24:345-370
    Shido F. Calciferous amphibole rich in sodium from jadeite~bearing albitite of Kotaki, NiigataPrefecture. Journal of the Geological Society of Japan,1958,64:595-600
    Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as palaeoseawater redoxproxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology,2001,175:29-48
    Shigeno M, MoriY, Nishiyama T. Reaction microtextures in jadeitites from the Nishisonogimetamorphic rocks, Kyushu, Japan. J. Mineral. Petrol. Sciences,2005,100:237-246
    Shigeno M, MoriY, Shimada K, et al. Jadeitites with retrograde metasomatic zoning from theNishisonogi metamorphic rocks, western Japan: fluid-tectonic block interaction duringexhumation. Eur. J. Mineral.,2012,24:289-311
    Silva ZCG, DA. Studies on jadeites and albitites from Guatemala:[M.A. dissertation]. Houston:TX, Rice University.1967
    Silva ZCG, DA. Origin of albitites from eastern Guatemala. Bol. Servicos Geol. Minas (Brazil),1970,22:23-32
    Simons KK, Harlow GE, Brueckner HK, et al. Lithium isotopes in Guatemalan and FranciscanHP-LT rocks: insights into the role of sediment-derived fluids during subduction. Geochimicaet CosmochemicaActa,2010,74:3621-3641
    Sklyarov YV, MazukabzovAM, Donskaya TA, et al. Metamorphic core complex in the ZaganRange, Transbaikali. DokladyAcademica Nauk,1994,339:83-86
    Slack JF. Palmer MR, Steven BR, et al Origin and significance of tourmaline-rich rocks in theBroken hill District,Australia. Econ Geol,1993,88(3):505-541
    Stunitz H, et al. Dislocation generation, slip systems, and dynamic recrystallization inexperimentally deformed plagioclase single crystals. Tectonophysics,2003,372:215-233
    Sorensen SS, Grossman JN, Perfic MR. Phengite-hosted LILE enrichment in eclogite and relatedrocks: implications for fluid-mediated mass transfer in subduction zones and arc magmagenesis. J. Petrol.,1997,38:3-34
    Sorensen SS&Harlow GE. The jadeitites of Nansibon, Myanmar: records of the geochemistry ofsubduction zone fluids. EleventhAnnual V. M. Goldschmidt Conference,2001:3800
    Sorensen SS, Harlow GE, Rumble III D. The origin of jadeitite-forming subduction zone fluids:CL-guided SIMS oxygen isotope and trace element evidence.American Mineralogist,2006,91:979-996
    Sokolova EV&Hawthorne FC. Ferrian winchite from the Ilmen Mountains, southern Urals,Russia, and some problems with the current scheme for amphibole nomenclature. TheCanadian Mineralogist.,2001,39:171-177
    Stephenson D&Marshall TR. The petrology and mineralogy of Mt. Popa Volcano and the natureof the late-Cenozoic Burma VolcanicArc. Geological Society of London,1984,141:747-762
    Straub SM and Layne GD. The systematic of chlorine, fluorine and water in Izu arc front rocks:implications for volatile cycling in subduction zones. Geochimica et CosmochimicaActa,2003,67:4179-4203
    Su W, Xu ST, Jiang LL, et al. Coesite from quartz-jadeitite in the Dabie Mountains, Eastern China.Mineral Mag,1996,60:659-662
    Sun X, Deng J, Zhao ZY, et al. Geochronology, petrogenesis and tectonic implications of granitesfrom the Fuxin area, Western Liaoning, NE China. Gondwana Research,2010,17:642–652
    Tazaki K&Ishiuchi K. Coexisting jadeite and paragonite in albitite. J. Mineral. Soc. Japan.1976,12:184-194
    Tapponnier P, Peltzer,Armijo R. On the mechanics of the collision between India andAsia, incollision tectonics. Geol. Soc. Spec. Publ. London,1986,19:115-157
    Tapponnier P, Lacassin R, Leloup PH. TheAilao Shan/Red River metamorphic belt: Tertiary leftlateral shear between Indochina and South China. Nature,1990,343:431-437
    Tapponnier PG, PeltzerAY, LeDainAY. Propagating extrusion tectonics inAsia: new insights fromsimple experiments in plasticene. Geology,1982,10(2):611-616
    Tsikouras B, Karipi S, Rigopoulos I, et al. Geochemical processes and petrogenetic evolution ofrodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos,2009,113:540-554
    Tsujimori T&Itaya T. Blueschist-facies metamorphism during Paleozoic orogeny in southwesternJapan: Phengite KAr ages of blueschist-facies tectonic blocks in a serpentinite mélangebeneath early Paleozoic Oeyama ophiolite. The IslandArc,1999,8:190-205
    Tsujimori T. Prograde and retrograde P-T paths of the late Paleozoic glaucophane eclogite fromthe Renge metamorphic belt, Hida Mountains, southwestern Japan. Int. Geol. Rev.,2002,44:797-818
    Tsujimori T, Liou JG. Wooden J, et al. U-Pb dating of large zircons in low-temperature jadeititefrom the Osayama serpentinite mélange, southwest Japan: insight into timing ofserpentinization. Int. Geol. Rev.,2005,47:1048-1057
    Tsujimori T&Harlow GE. Petrogenetic relationships between jadeitite and associatedhigh-pressure and low-temprature metamorphic rocks in worldwide jadeitite localites:Areview. Eur. J. Mineral.,2012,24:371-390
    Tullis, J., Dell’Angelo, L.N., Yund, R.A. Ductile shear zones from brittle precursors in feldspathicrocks; the possible role of dynamic recrystallization. In: Duba,A., Durham, W., Handin, J.,Wang, H.(Eds.), The Brittle-Ductile Transition: The Heard Volume.Am.Geophys.Monograph, Wanshington, DC,1990,67-82
    Tullis J, Yund RA. Diffusion creep in feldspar aggregates: experimental evidence. Journal ofstructural geology,1991,13(9):987-1000
    Vigny C, SocquetA, Rangin C, et al. Present-day crustal deformation around Sagaing fault,Myanmar. Journal of Geophysical Research,2003,108(B11):2533
    Vine JD and Tourtelot EB. Geochemistry of black shale deposits–a summary report. EconomicGeology,1970,65:253-273
    Wang X, Shi GH, Qiu DF, Wang J, Cui WY. Grossular-bearing jadeite omphacite rock in theMyanmar jadeite area: a kind of jadeitized rodingite? European Journal of Mineralogy,2012,24:237-246
    Wheat CG, Fryer P, FisherAT, et al. Borehole observations of fluid flow from south ChamorroSeamount, an active serpentinite mud volcan in the Mariana forearc. Earth and PlanetaryScience Letters,2008,267:401-409
    Wiese K&Kvenvolden KA. Introduction to microbial and thermal methane. in Howell DG, eds,The Future of Energy Gases, U.S. Geol. Surv. Prof. Paper,1570:13-20
    Win S.Amajor strike-slip fault in Burma. Contributions to Burmese Geology,1981,1(1):63-72
    Windley BF,Alexeiev DV, Xiao W, et al. Tectonic modeals for accretion of the CentralAsianOrogenic belt. J. Geol. Soc., London,2007,164:31-47
    Yang LQ, Deng J, Guo CY, et al. Ore-Forming Fluid Characteristics of the Dayingezhuang GoldDeposit, Jiaodong Gold Province, China. Resource Geology,2009,59(2):181–193
    Yermolov PV&Kotelnikov P. Composition and origin of Itmurundinskii mélange jadeitites(North Balkhash region). Russian Geol.&Geophys.,1991,2:49-58
    Yudin MI. Origin of jadeite and natrolite rocks in hyperbasites of Borus Ridge West Sayan. Int.Geol. Rev.,1965,7:427-441
    Zack T&Timm J. An evaluation of reactive fluid flow and trace element mobility in subductingslabs. Chemical Geology,2007,239, Special Issue “Geochemical processes responsible forelement mobility form the slab to the surface”:199-216
    Zhang LF, Ellis Dj, Williams S, et al. Ultra-high pressure metamorphism in western Tianshan,China: Part II. Evidence from magnesite in eclogite. American Mineralogist,2002,87:861-6
    Zhang ZC, Mahoney JJ, Mao JW, et al. Geochemistry of picritic and associated basalt flows of thewestern Emeishan flood basalt province, China. J. Petrol.,2006,47:1997-2019
    Zhang RY, Liou JG, Yang JS et al. Petrochemical constraints for dual origin of garnet peridotitesfrom the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology,2000,18:149-166
    白鸽,袁忠信,吴澄宇,等.白云鄂博矿床地质特征和成因论证.北京:地质出版社.1996
    鲍佩生,王希斌,陈克樵.西藏大竹区蛇绿岩中的钠长花岗岩.岩石矿物及测试,1985,4(1):11-15
    沈立成,刘洁,张萌,王奖臻,陆彦.四川会理小青山地区钠长(石)岩成因初探.沉积与特提斯地质,2002,22(3):60-68
    宋叔和.中国一些主要金属矿床类型及其时空分布规律问题.矿床地质,1991,10(1):10-18
    崔文元,施光海,杨富绪,张利春.一种新观点—翡翠新的岩浆成因说.宝石和宝石学杂志,2000,2(3):16-21
    陈骏,陆建军,陈卫峰,等.南岭地区钨锡钽铌花岗岩及其成矿作用.高校地质学报,2008,14(4):459-473
    樊硕诚,王之贤,周敏忠.陕西凤州—商南矿化角砾岩(双王型)地质特征及含金性评价标志.中国东部金矿地质研究文集,4.秦岭东部地区.北京:地质出版社,1994:69-96
    高媛.缅甸翡翠显微构造的研究.地质找矿论丛,2009,24(2):152-155
    高媛,肖渊甫,管琪.翡翠的结构特征及其对宝石质量的影响.地质找矿论丛,2006,21(2):120-124
    黄德志,高俊,戴塔根.俯冲带流体作用的地球化学示踪.地学前缘,2001,8(3):131-139
    李强南秦岭富钠长石岩石的岩石学和地球化学研究[J].岩石矿物学志,2011,(2):199-207
    李旭平,张立飞,王泽利.西天山异剥钙榴岩的地球化学研究.岩石学报,2008,24(4):71-717
    李旭平,张立飞,艾永亮.新疆西天山长阿吾子蛇绿混杂岩中与榴辉岩伴生的异剥钙榴岩的发现及其地质意义.自然科学进展,2003,13(7):754-760
    李旭平和张立飞.蛇纹岩中的硬玉岩和异剥钙榴岩.岩石学报,2004,20:1477-1484
    李武显和李献华.蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展,2003,18(3):392-397
    卢焕章,范瑞宏,倪培等,流体包裹体.北京:科学出版社,2004
    勒西祥.会理县小青山铜金矿区硅质钠长石岩研究.矿物岩石,1992,12(4):48-56
    梁华英,王秀璋,程景平.粤北大沟谷热水沉积钠长石岩岩石化学及稀土元素.沉积学报,2001,19(3):415-420
    梁华英,王秀璋,程景平.粤西大沟谷钠长石岩型金矿床成矿物质来源研究.地球化学,1997,26(3):67-7
    刘淑文,王涛,曾荣,薛春纪,唐永忠.南秦岭旬阳志留系热水沉积钠长石岩地质地球化学特征.地质与勘察,2008,44(3):40-46
    林默青,洛美美,施光海.透明度较高翡翠中似棉絮状白色物质的结构、成分及宝石学意义.中国宝石,2009,(4):108-109
    林德松和谢世业.广西水溪庙矿床的带状分布研究.矿床与地质,1989,3(1):17-23
    马昌前,Guillot F.西阿尔卑斯Piemont-Ligurian大洋斜长花岗岩(钠长岩)成因的地质证据.2006年全国岩石学与地球动力学研讨会:151-152
    欧阳秋眉.翡翠结构类型及其成因意义.宝石和宝石学杂志,2000,2(2):1-6
    仇定茂.四川会理地区前寒武系层状钠长石岩特征及其成因分析.矿物岩石,1985,5(3):23-28
    祁敏,向华,钟增球,周汉文.流体—超镁铁质岩相互作用与硬玉岩的形成.地球科学—中国地质大学学报,2011,36(3):511-520
    祁思敬,李英等.秦岭泥盆系铅锌成矿带.北京:地质出版社,1993
    丘志力,吴福元,杨树辉,等.缅甸翡翠形成时代和成因的锆石U-Pb年龄与Hf同位素制约.科学通报,2008,53(24):3104-3111
    史明魁和孙恭安.广西栗木稀有金属花岗岩的岩石学和地球化学特征.宜昌地质研究所刊,1981,12(3):96-107
    施光海和崔文元.世界不同地区的硬玉岩的共性与个性.地学前缘,2000,7(1):42
    施光海,崔文元,刘晶,于海侠.缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究.岩石学报,2001,17(3):483-490
    施光海和崔文元.缅甸硬玉岩的结构与显微构造:硬玉质翡翠的成因意义.宝石和宝石学杂志,2004,6(3):8-11
    申婷婷,张立飞,李旭平.新疆西天山异剥钙榴岩地球化学特征及其对俯冲带流体的指示意义.岩石学报,2012,28(7):2235-2249
    苏文,徐树桐,江来利,等.安徽潜山韩长冲—苗竹园一带硬玉石英岩及其伴生榴辉岩特征.安徽地质,1995,5(2):7-21
    苏文,徐树桐,吴维平,等.大别山菖蒲硬玉石英岩退变质作用过程中岩石地球化学的变异.矿物岩石,2000,20(2):8-13
    苏文,刘景波,陈能松,等.东秦岭—大别山及其两侧的岩浆和变质事件年代学及其形成的大地构造背景.岩石学报,2013,29(5):1573-1594
    孙海田,葛朝华,冀树楷.中条山地区胡篦型层控铜矿术角砾岩的特征及成因研究.矿床地质,1989,8(1):19-27
    陕西省地质矿产局第三地质大队等.陕西双王金矿床地质特征及其成因.西安:陕西科学技术出版社,1989,1-114
    王秀璋和梁华英.层状钠长石岩的基本特征及成因分析[J].矿物岩石,2001,(2):16-21
    王奖臻和陆彦.四川会理小青山铜(金)矿钠长石英板岩的发现及其意义.地质评论,1999,45(3):323-327
    王君.缅甸钠长石玉的显微构造及宝石学意义:【硕士学位论文】.北京:中国地质大学(北京),2012
    王宏,林方成,李兴振,施美凤,刘朝基,石洪召.缅甸中北部及邻区构造单元划分及新特提斯构造演化.中国地质,2012,39(4):912-922
    王濮,潘兆橹,翁玲宝,等.系统矿物学.北京:地质出版社,1984,266-360
    温春齐和慕记录.四川会理小青山铜矿床地球化学特征.矿物岩石,1994,14(2):74-82
    肖荣阁,张汉城,陈卉泉,等.热水沉积岩及矿物岩石标志.地学前缘,2001,8(4):379-386
    肖荣阁,刘敬党,费红彩,等.白云鄂博REE-Nb-Fe矿床的富钠岩石类型及成因分析.现代地质,2006,20(1):151-164
    肖荣阁,费红彩,王安建,杨帆,颜开.白云鄂博含矿碱性火山岩建造及其地球化学.地质学报,2012,86(5):735-752
    薛春纪,祁思敬,隗合明等.基础矿床学.北京:地质出版社,2006
    叶大年和金成伟. X射线粉末法及其在岩石学中的应用.北京:地质出版社,1984:223-265
    易晓,施光海,何明跃.缅甸硬玉岩区的硬玉化绿辉岩.岩石学报,2006,22:971-976
    杨敏之和吕古贤.胶东绿岩带地质地球化学.北京:地质出版社,1996:1-26
    杨敏之和黄国君.胶东乳东乳山钠长浅粒岩型金矿床地质地球化学研究.地质找矿论丛.1992,7(2):1-13
    杨经绥,许志琴,段向东,李静,熊发挥,刘钊,蔡志慧,李化启.缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩.岩石学报,2012,28(6):1710-1730
    喻良桂.雅山花岗岩演化与钽锂成矿.江西有色金属,2007,21(2):7-10
    喻良桂.钠长石化、锂云母化花岗岩型钽铌矿床特征及其成矿地质规律.有色金属,2006,58(3):24-27
    徐树桐,苏文,刘贻灿,等.大别山东段高压变质岩中的金刚石.科学通报,1991,(17):1318-1321
    许志琴,杨经绥,姜枚等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6(3):139-151
    许志琴,杨经绥,李海兵,等.印度—亚洲碰撞大地构造.地质学报,2011,85(1):1-33
    谢星.翡翠的结构特征及其对翡翠质量的影响.地质科学与环境学报,2005,27(3):15-18
    谢楠,姜烨,朱光辉,杨松岭,李爱山,张科.缅甸Sagaing走滑断裂及对睡宝盆地构造演化的控制和影响.现代地质,2010,24(2):268-272朱和平和王莉娟.四级质谱仪测定流体包裹体中的气相成分.中国科学,2000, D31(7):586-590
    夏卫华,陈紫英.黄玉、石英钟熔浆包裹体的发现及其在华南钽铌花岗岩成因上的意义.武汉地质学院学报:地球科学,1984,9(2):79-83
    朱和平,王丽娟,刘建明.不同成矿阶段流体包裹体气相成分的四级质谱测定.岩石学报,2003,19(2):314-318
    赵志丹,莫宣学,罗照华,周肃,董国臣,王亮亮,张凤琴.印度—亚洲俯冲带结构——岩浆作用证据.地学前缘,2003,10(3):149-156
    张立成,周耀武,金海龙,等.武当地块基性岩墙群及跃岭河群基性火山岩的Sr, Nd, Pb, O同位素研究.岩石学报,1999,15(3):430-437
    张立飞,吕增,李旭平,等.西阿尔卑斯Zermatt-Saas洋壳深俯冲超高压变质带与我国新疆西南天山超高压变质带的比较.高校地质学报,2007,13(3):498-506
    翟明国,从柏林,赵中岩,等.大别山榴辉岩带中的高压硬玉石英岩块体及其地质意义.科学通报,1992,(11):1013-1015
    中条山铜矿地质编写组.中条山铜矿地质.北京:地质出版社,1978:1-168
    中国科学院地球化学研究所.白云鄂博矿床地球化学.北京:科学出版社.1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700