用户名: 密码: 验证码:
马海盆地荒漠绿洲区生态地下水位对人类活动响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马海盆地位于青海省柴达木盆地北缘,属于中国西北地区典型的内陆干旱盆地,由于降水稀少,蒸发强烈、水资源匮乏,生态环境极为脆弱。荒漠绿洲区植被覆盖程度低,其生长状况与生态地下水位埋深关系密切。随着近年来人类活动的加剧,地下水的大量开采利用已经引起了绿洲区植被退化。因此,研究绿洲区生态地下水位对人类活动的响应,为马海盆地合理利用地下水资源、制定有效的生态环境保护政策以及我国西北地区的可持续发展提供理论支持。
     本文利用MODIS NDVI和GIMMS NDVI遥感数据,分析荒漠绿洲区植被年际和年内的变化趋势以及空间分布特征;通过小波分析法、距平分析法对马海盆地1970~2010年41年间降水、气温数据进行分析,揭示研究区降水、气温的周期、趋势等特征,并结合植被变化趋势特征分析了研究区植被与降水的相关性;根据研究区水文地质信息,利用GMS软件建立地下水数值模型,预测地下水不同开采情景下马海盆地地下水流场的变化;利用ArcGIS软件中Spatial Analyst模块,基于相同分辨率的地下水位埋深数据和NDVI数据,分析不同埋深区间NDVI均值与地下水位埋深的关系,确定荒漠绿洲区生态地下水位埋深,并根据二者间关系的数学拟合方程,预测绿洲区植被的变化。
     本研究获得的主要结论如下:
     1、马海盆地荒漠绿洲区植被在1982~2009年近30年间,植被生长趋势总体呈现下降趋势;在空间分布上,近1/3面积的绿洲区植被出现了缓慢衰退的生长迹象;
     2、马海盆地41年间(1970~2010)降水的总体变化趋势呈波动状态,2000~2009年降水显著增加;在气温变化方面,41年间马海盆地气温总体呈上升趋势,升温率为0.32℃/10a;在多年尺度上,马海盆地荒漠绿洲区植被指数年际变化与降水、气温年际变化无相关性;
     3、定量化得出马海盆地荒漠绿洲区适宜植被生长的生态地下水位埋深为3~4.5m,与前人在额济纳和银川平原的研究结果有所区别,其原因可能与不同的气象、水文、土壤的条件有关;
     4、通过构建马海盆地地下水数值模型,分析地下水不同开采情景下研究区地下水位的变化。结果显示:在未来鱼卡煤矿与电厂生产用水情景、钾盐矿区山前洪水资源化情景下,对马海盆地的地下水流场的影响较小;而在盐湖钾盐无论采用浅层溶采还是盐湖深层承压卤水开采情景下,均对马海盆地的地下水流场影响较大;
     5、对马海盆地地下水不同开采情景下的荒漠绿洲区植被生长变化进行预测,结果表明:在盐湖未开采情景下,马海绿洲区的植被的总体长势较好,NDVI值在0.3~0.5之间;在鱼卡河中游煤矿、电厂工业生产情景以及西北山区洪水资源化利用情景下,绿洲区的植被指数变化不大;在盐湖钾盐浅层溶采和盐湖钾盐深层承压卤水开采情景下,绿洲区植被指数降低,植被生长出现退化。
Mahai basin, an inland basin in Northwest China, is located at the northern marginof Qaidam Basinin, Qinghai Province. Due to the lack of rainfall and the strongevaporation, water resource shortage, ecological environment is extremely fragile.The low vegetation cover in desert oasis, its growth is closely related to groundwaterdepth and ecological conditions. Along with the increasing human activities in recentyears, a lot of exploitation of groundwater has caused degradation of oasis vegetation.Therefore, the study on the effect of the level of oasis ecological groundwater onhuman’s activities is essential for providing a theoretical support on the sustainableutilization of water resources in Mahai basin, establishing effective protection policyof ecological environment and sustainable development in Northwest China
     This article, by means of MODIS and GIMMS NDVI remote sensor data, analyzesthe annual and seasonal trend of changes on oasis vegetation of dessert, and does theanalysis on the spatial distribution characteristics. We analyze the rainfalls andtemperature records of this area in41years that from the year1970~2010bywavelet-analysis technique and distance-average analysis technique, to discloserecords’ characteristics, comparing with the analysis on the changing trends.According to hydrology information and models established by GMS software, weforecasted how the flowing field of Mahai basin would be changed by different meansof exploitation. Using the Spatial Analyst Module under ArcGIS software system, weanalyze the relationship between the average data with different depths ofgroundwater, to make sure the location of groundwater under oasis and to predicatethe changes of oasis on basis of equation module in kinds of excavating situation.
     The major conclusions from this article could be stated as below:
     (1) The vegetation growth trend of the oasis in Mahai basin shows a declining trendin recent30years from1982to2009. In the spatial distribution aspect, almost1/3area of the oasis vegetation appeares signs of slowly growth recession.
     (2) The rainfalls data showed a wavelike appearance in the past41years, therainfall increased significantly from2000to2009. In terms of temperature changes,Mahai basin showed a raising trend in the past41years and the raising rate was0.32℃/10a. In dimensions by years, the changes of oasis of Mahai showed anirrelevancy to rainfalls and temperature.
     (3) The ecological groundwater depth which is suitable for vegetation growth isabout3-4.5m through quantitative study in deser oasis of Mahai Basin. The resultdiffered from the previous studies in Ejina and the Yinchuan plain results, whichmaybe most probably caused by different climate, hydrology and the soil.
     (4) By constructing the numerical model for Mahai basin groundwater, andanalyzing groundwater level changes in different mining scenarios in the study areas,the results showed that: the usages of Yuka coal mine and power plant had a limiteffect to the groundwater resource and groundwater’s flowing field, for their usedquantity was small. The expoitation of postassium salts had a large effect onto thegroundwater system, no matter whether we took ashallow-solving excavating methodor a deep-confined brine exploitation method.
     (5) Forecasting the growing changes of oasis in different mining sceneria, the resultshowed that: in case of the salt lake had not been exploited, the oasis would have ahealthy growth and its NDVI was among0.3-0.5. The Yuka coal mine, together withpower plant and the waterflood utilization in northwest zone, the oasis index numberchanged slightly, while, the deep-confined water exploitation method in salt lake, hada large affect on oasis’growth.
引文
Ahmad M. U. D.,Bastiaanssen W. G. M.,Feddes R. A. Sustainable use of groundwater forirrigation:a numerical analysis of the subsoil water fluxes. Irrigation and Drainage,2002,51(3):227~241.
    Andrew J. Baid,Robert L. Wilby. Eco-Hydrology-Plants and Water in Terrestrial and AquaticEnvironments. Routledge in the USA and Canada,1999.
    Antonellini M,Mollema P N. Impact of groundwater salinity on vegetation species richness inthe coastal pine forests and wetlands of Ravenna,Italy. Ecological Engineering,2010,36(4):1202~1210.
    Bradshaw G A,Spies T A. Characterizing Canopy Gap Structure in Forests Using WaveletAnalysis. Journal of Ecology,1992,80(2):205~215.
    Chen Ya ning,Li Wei hong,Chen Yap eng,et al. Water Resources and Ecological Problemsin Tarim River Basin, Xinjiang,China. Water And Environmental Management Series(Water inChina),2003IWA Publishing,UK.1~12.
    Chimner R A,Cooper D J. Using stable oxygen isotopes to quantify the water source used fortranspiration by native shrubs in the San Luis valley,Colorado U.S.A. Plant and Soil,2004,260:225~236.
    Costelloe J F,Payne E,Woodrow I E,et al. Water sources accessed by arid zone riparian treesin highly saline environments. Oecologia,2008,156(1):43~52.
    D. Mao et al. Integrating AVHRR and MODIS data to monitor NDVI changes and theirrelationships with climatic parameters in Northeast China. International Journal of Applied EarthObservation and Geoinformation,2012(18):528~536.
    Derek E.,Ray F.,Robyn L.,et al. A functional methodology for determining the groundwaterregime needed to maintain the health of groundwater-dependent vegetation. Australian Journal ofBotany,2006,54(2):97~114.
    Elmore AJ,Manning SJ,Mustard JF,et al. Decline in alkali meadow vegetation cover inCalifornia:the effects of groundwater extraction and drought. Journal of AppliedEcology,2006,43(4):770~779.
    Esteller M.V.,Diaz-Delgado C.. Environmental effects of aquifer overexploitation: A case studyin the highlands of Mexico. Environmental Management,2002,29(2):266~278.
    Gong P,Miao X,Tate K,et al. Water table level in relation to EO-1ALI and ETM+data overa mountainous meadow in California. Canadian Journal of Remote Sensing,2004,30:691~696.
    Gries D,Zeng F,Foetzki A,et al. Growth and water relations of Tamarix ramosissima andPopuluseuphraticaon Taklamakan desert dunes in relation to depth to a permanent water table.Plant,Celland Environment,2003,26:725~736.
    Jonathan L,Horton. Physiological response to groundwater depth varies among species andwith river flow regulation. Ecological Applications,2011,11(4):1046-1059.
    Jonathan L.,Horton. Physiological response to groundwater depth varies among species andwith river flow regulation. Ecological Applications,2001,11(4):1046~1059.
    Klijn F.,Witte J. P. M.,Eco-hydrology:Groundwater flow and site factors in plant ecology.Hydrogeology Journal,1999,7(1):65~77.
    Levin M. A.,el al. EPA developing methods to assess environment release. Bio. Techonolgy,1987,(5):65~77.
    Li X Z. Assessment of Land Use Change Using GIS: A Case Study in the Uanos de Orinoco.Wagemigen University Press,1999.
    M.J. Pringle,R.J. Denham,R. Devadas. Identification of cropping activity in central andsouthern Queensland,Australia,with the aid of MODIS MOD13Q1imagery. InternationalJournal of Applied Earth Observation and Geoinformation,2012(19):276~285.
    M.K. Raynolds,et al. Relationship between satellite-derived land surface temperatures, arcticvegetation types, and NDVI. Remote Sensing of Environment,2008(112):1884~1894.
    Maitre D C,Scott D F,Colvin C.. A review of information on interactions between vegetationand groundwater. Water S A,1999,25(2):137~152.
    Mark T. Schnur,Hongjie Xie,Xianwei Wang. Estimating root zone soil moisture at distantsites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. EcologicalInformatics,2010(5):400~409.
    Middelkoop H,Daamen K,Gellens D,et al.Impact of Climate Change on HydrologicalRegimes and Water Resources Management in the Rhine Basin. Climate Change.2001,49(1):105.
    Milzow C,Burg V,Kinzelbach W. Estimating future eco-region distributions within theOkavango Delta Wetlands based on hydrological simulations and future climate and developmentscenarios. Journal of Hydrology,2010,381(1-2):89~100.
    Mimikou M. Impact of climate change on hydrological regimes and European community,EV5V-CT93-0293Report. UK:University of Southampton,1996.
    Nielsen D L,Brock M A,Rees G N,et al. Effects of increasing salinity on freshwaterecosystems in Australia. Australia Journal and Botany,2003,51(6):655~665.
    Nuttle W K. Eco-hydrology’s past and future in focus. Ecos,2002,83:205.
    R. Ali,R. Elliott,J. Ayars,et al. Soil salinity modeling over shallow water tables.II:Application of LEACHC. Journal of irrigation and drainage engineering,2000,12(6)::219~234.
    R. Taylor,B. Kelbe,S. Haldorsen,et al. Groundwater-dependent ecology of the shoreline ofthe subtropical Lake St Lucia estuary. Environmental Geology,2006,49(4):586~600.
    Roerink G J,Menenti M. Reconstructing cloudfree NDVI composites using Fourier analysis oftime series. International Journal of Remote Sensing,2000,21(9):1911~1917.
    Snyder K A,Williams D G. Water sources used by riparian trees varies among stream types onthe San Pedro River,Arizona. Agricultural and Forest Meteorology,2010,105(1/3):227~240.
    Sudipta S,Menas K. Interannual Variability of Vegetation over the Indian Sub-continent and itsRelation to the Different Meteorological Parameters. Remote Sensing of Environment,2004,90:268~280.
    Sun H Y,Wang C Y,Niu Z,et al. Analysis of the Vegetation Cover Change and theRelationship between NDVI and Environmental Factors by Using NOAA Time Series Data. Journalof Remote Sensing,1998,2(3):205~210.
    Verhoef W,Menenti M,Azzah S.A colour composite of NOAA AVHRR NDVI based ontime series analysis1981~1992. International Journal of Remote Sensing,1996,17:231~235.
    X. M. Jin,M. E. Schaepmanb,J. G. P. W. Cleversb,et al. Groundwater Depth and Vegetationin the Ejina Area,China. Arid Land Research andManagement,2011,25(2):194~199.
    Xia Jun,David Y. Chen,Water problems and opportunities in hydrological Sciences in China.Hydrological Science Journal,2001,46(6):907~921.
    Y. Julien et al. Changes in land surface temperatures and NDVI values over Europe between1982and1999. Remote Sensing of Environment2006(103):43~55.
    Yang Jian feng,Wan Shugin,Deng Wei,et al. Water fluxes at a fluctuating water table andgroundwater contributions to wheat water use in the lower Yellow River flood plain,China.Hydrological Processes,2007,21(6):717~724.
    Zalewski M,et al. Ecohydrology-A new paradigm for the sustainable use of aquatic resources.International Hydrological Programme IHP-V,1997.
    Zalewski M. Ecohydrology. The scientific background to use ecosystem properties asmanagement tools toward sustainability of water resources. Eco Engng,2000,16:1~8.
    白生海,田景春,张森琦,等.柴达木盆地北缘鱼卡河流域水资源的合理利用.地质通报,2007,26(6):756~763.
    才红梅.柴达木盆地温性荒漠灌丛草地的分布及基本特征.青海草业,2011,20(3):19~21.
    才红梅.柴达木盆地温性荒漠灌丛草地的分布及基本特征.青海草业,2011,20(3):19~21.
    曹剑峰,迟宝明,王文科,等.专门水文地质(第3版).北京:科学出版社,2006.
    曾秀俐,朱霞,王维,等.邕江流域植被和四孔分布及演变研究.环境工程技术学报,2014,4(1),67~72.
    陈崇希,唐仲华.地下水流动问题数值方法.湖北:中国地质大学出版社,1990.
    陈海,康慕谊,范一大.北方农牧交错带植被覆盖的动态变化及其与气候因子关系.地理与地理信息科学,2004,20(5):54~57.
    陈亚宁,陈亚鹏,李卫红,等.塔里木河下游胡杨脯氨酸累积对地下水位变化的响应.科学通报,2003,48(9):958~961.
    陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响.地理学报,2003,58(4):542~549.
    陈荫祥.地植物学方法在水文地质和工程地质中的应用.水文地质工程地质,1957(6):24~27.
    成礼智,郭汉伟.小波与离散变换理论及工程实践.北京:清华大学出版社,2005.
    崔林丽,史军,肖风劲,等.中国东部NDVI的变化趋势及其与气候因子的相关分析.资源科学,2010,32(1):124~131.
    崔亚莉,邵景力.西北地区地下水位的地质生态环境调节作用研究.地学前缘,2001,8(1):191~192.
    丁明军,张镱锂,刘林山,等.青藏高原植物返青期变化及其对气候变化的响应.2011,7(5):317~323.
    丁明军,张镱锂,孙晓敏,等.近10年青藏高原高寒草地物候时空变化特征分析.科学通报,2012,57(33):3185~3194.
    董英,张茂省,卢娜,等.陕北能源化工基地资源开发引起的植被生态风险.2008,27(8):1313~1322.
    樊自立,陈亚宁,李和平,等.中国西北干旱区生态地下水埋深适宜深度的确定.干旱区资源与环境,2008,22(2):1~5.
    樊自立,马英杰,张宏,等.塔里木河流域生态地下水位及合理深度确定.干旱区理,2004,27(01):8~13.
    房世波,谭凯炎,刘建栋,等.鄂尔多斯植被盖度分布与环境因素的关系.植物生态学报,2009,33(1):25~33.
    龚斌,甘小莉,刘伟玲,等.基于EOF分析的三江源区植被覆盖变化时空分布特征.地学前缘,2013,20(3):234~239.
    管孝艳,王少丽,高占义,等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系.生态学报,2012,32(4):1202~1210.
    郭铌.植被及其指数研究进展.干旱气象,2003,21(4):71~75.
    韩国军,王玉兰,房世波.近50年青藏高原气候变化及其对农牧业的影响.资源科学,2011,33(10):1969~1975.
    侯光雷,张洪岩,王野乔,等.基于时间序列谐波分析法的东北地区耕地资源提取.自然资源学报,2010,25(9):1607~1617.
    侯印伟,王常明.论水文地质环境在土地沙漠化发展过程中的控制作用.水文地质工程地质,1992,19(5):25~28.
    黄强,赵雪花.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008,127~142.
    纪忠萍,谷德军.广州近百年来气候变化的多时间尺度分析.热带气象学报,1999,15(1):48~55.
    季凤玲,高海明.对黑河下游额济纳绿洲抢救与生态保护的思考.内蒙古水利,2001,86(4):34~35.
    贾艳红,赵传燕,南忠仁.西北干旱区黑河下游植被覆盖变化研究综述.地理科学进展,2007,26(4):64~74.
    金晟业.承德地区植被参数多角度遥感反演:[硕士论文].长春:吉林大学,2009.
    金晓媚,胡光成,史晓杰.银川平原土壤盐渍化与植被发育和地下水埋深关系.现代地质,2009,23(1):23~27.
    金晓媚,万力,薛中歧.基于遥感方法的银川盆地植被发育与地下水关系研究.干旱区资源与环境,2008,22(1):129~132.
    金晓媚,张强,杨春杰,等.海流兔河流域植被分布与地形地貌及地下水位关系研究.地学前缘,2013,20(3):227~232.
    金晓媚.黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系.地学前缘,2010,17(6):181~186.
    李杭燕.时间序列NDVI数据集重建方法研究:[硕士论文].甘肃:兰州大学,2010.
    李红梅,马玉寿,王彦龙.气候变暖对青海高原地区植物物候期的影响.2010,21(4):500~505.
    李林,陈晓光,王振宇,等.青藏高原区域气候变化及其差异性研究.气候变化研究进展,2010,6(3):181~186.
    李林,陈晓光,王振宇,等.青藏高原区域气候变化及其差异性研究.气候变化研究进展,2010,6(3):181~186.
    李林,李凤霞,郭安红,等.近43年来三江源地区气候变化趋势及其突变研究.自然资源学报,2006,21(1):79~85.
    李琳.北京郊区植被覆盖度变化动态遥感监测:[硕士论文].北京:北京林业大学,2008.
    李森,李凡等.黑河下游额济纳绿洲现代荒漠化过程及其驱动机制.地理科学,2004,24(1):61~67
    李新.塔里木河水资源利用与土地荒漠化效应分析.中国沙漠,1998,18(增刊):46~54.
    李永飞,杨太保.近50年来柴达木盆地升温与全球变暖.上饶师范学院学报,2005,2(3):105~109.
    梁守真,邢前国,施平,等.山东省典型地表覆被NDVI时间序列谐波分析.生态学杂志,2011,30(1):59~65
    刘广明,杨劲松.地下水作用条件下土壤积盐规律研究.土壤学报,2003,40(1):65~69.
    刘绿柳,肖风劲.黄河流域植被NDVI与温度、降水关系的时空变化.生态学杂志,2006,25(5):477~481.
    刘亚传.试论水文地质环境与绿洲农业生态.水文地质工程地质,1984,11(6):28~30.
    刘艳,李杨,崔彩霞,等. MODIS MOD13Q1数据在北疆荒漠化监测中的应用评价.草业学报,2013,19(3):14~21.
    陆佩玲,于强,贺庆棠,等.植物物候对气候变化的响应.生态学报,2006,26(3):923~929.
    罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评,生态科学,2005,24(1):75~79.
    吕爱锋,贾绍凤,燕华云,等.三江源地区融雪径流时间变化特征与趋势分析.资源科学,2009,31(10):1704~1709.
    马金珠,朱中华,李吉均.塔克拉玛干沙漠南缘地下水在脆弱生态环境中的作用.兰州大学学报,2000,36(4):88~95.
    马玉蕾,王德,刘俊民,等.地下水与植被关系的研究进展.水资源与水工程学报,2013,24(5):36~44.
    牛婷.基于中低分辨遥感数据的塔里木河下游植被恢复分析:[硕士学位论文].新疆乌鲁木齐:新疆农业大学,2008.
    祁如英,王启兰,申红艳,等.青海草本植物物候变化与气象条件影响分析,气象科技,2006,34(3):306~310.
    《气候变化国家评估报告》编写委员会.《气候变化国家评估报告》(摘要).世界环境,2007,2(2):23~33.
    青海省柴达木综合地质勘查大队.巴伦马海钾矿区水文地质勘查报告.2003.
    青海省地质矿产局编.青海省区域地质志.北京:地质出版社,1991.
    任朝霞,杨达源.近50a西北干旱区气候变化趋势研究.第四纪研究,2006,26(2):47~56.
    任国玉.近50年中国地面气候变化基本特征.气象学报,2005,63(6):942~953.
    时兴合,赵燕宁,戴升,等.柴达木盆地40多年来的气候变化研究.中国沙漠,2005,25(1):123~128.
    宋国强.黄河三角洲湿地生态系统地下水运动的数值模拟:[硕士学位论文].山东:青岛大学,2008.
    苏永红,冯起等.额济纳旗生态环境退化及成因分析.高原气象,2004,23(2):264~270.
    孙宪春,金晓媚,万力.地下水对银川平原植被生长的影响.现代地质,2008,22(2):321~324.
    田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327~333.
    涂小萍.宁波市年降水量分析及消除小波变换边界影响的比较试验.北京:气象出版社,2004.
    王丹,姜小光.利用NOAA数据分析中国地区植被覆盖变化周期.中国图象图形学报,2006,11(4):516~520.
    王发科,苟日多杰,祁贵明,等.柴达木盆地气候变化对荒漠化的影响.干旱气象,2007,25(3):28~33.
    王发科,王胜仓,祁贵明,等.柴达木盆地气候的变化对水资源的影响.青海科技,2007,25(6):15~19.
    王根绪,程国栋等.干旱区受水资源胁迫的下游绿洲动态变化趋势分析.应用生态学报,2002,13(5):564~568.
    王菊英.青海省三江源区水资源特征分析.水资源与水工程学报,2007,18(1):91~94.
    王连喜,陈怀亮,李琪,等.植物物候与气候研究进展.生态学报,2010,30(2):447~454.
    王朋岭,唐国利,曹丽娟,等.1981-2010年青藏高原地区气温变化与高程及纬度的关系.气候变化研究进展,2012,8(5):313~319.
    王水献,吴彬,杨鹏年,等.焉耆盆地绿洲灌区生态安全下的地下水埋深合理界定.资源科学,2011,33(3):422~430.
    王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社,2005.
    王威.鄂尔多斯乌兰淖地区地下水开采下的植被生态风险评价与预测:[博士学位论文].吉林:吉林大学,2009.
    王秀辉,王文,高中信.中国荒漠地区野生动物生态学特征及管理对策.东北林业大学学报,1997,25(6):26~29.
    吴明辉,宁虎森,王让会,等.克拉玛依地区减排林地下水动态变化及合理生态水位分析.水土保持通报,2010,(04):129~133.
    吴媛.若尔盖湿地保护区地下水流数值模拟:[硕士论文].四川:四川大学,2006.
    吴征镒,王献溥等.中国植被.北京:科学出版社,1980.
    肖志国.多种水文时间序列周期分析方法的比较研究:[博士学位论文].江苏:河海大学,2006.
    徐海量,宋郁东等.塔里木河中下游地区不同地下水位对植被的影响.植物生态学报,2004,28(3):400~405.
    徐浩杰,杨太保.1981-2010年柴达木盆地气候要素变化特征及湖泊和植被响应.地理科学进展,2013,32(6):868~879.
    徐建华.现代地理学中的数学方法.北京:高等教育出版社,2002.
    徐茜,任志远,杨忍.黄土高原地区归一化植被指数时空动态变化及其与气候因子的关系.陕西师范大学学报(自然科学版),2012,40(1):82~87.
    薛小杰,王煜.小波分析在水文序列趋势分析中的应用.应用科学学报,2002,20(4):426~428.
    薛禹群,吴吉春.面临21世纪的中国地下水模拟问题.水文地质工程地质,1999,(5):1~3.
    薛禹群,谢春红,吴吉春.水文地质数值法存在的问题及其对策.地球科学进展,1999,11(5):472~474.
    薛禹群,谢春红.地下水数值模拟.北京:科学出版社,2007.
    薛禹群,谢春红.水文地质学的数值法.北京:煤炭工业出版社,1979.
    薛禹群.地下水动力学.北京:地质出版社,1986.
    严登华,王浩等.黑河流域下游水分驱动下的生态演化.中国环境科学,2005,25(1):37~41.
    杨泽元,王文科,黄金廷等.陕北风沙滩地区生态安全地下水位埋深研究.西北农林科技大学学报(自然科学版),2007,34(8):67~74.
    叶茂,徐海量,龚君君,等.不同胸径胡杨径向生长的合理生态水位研究.地理科学,2011,(02):172~177.
    尹云鹤,吴绍洪,赵东升,等.1981-2010年气候变化对青藏高原实际蒸散的影响.地理学报,2012,67(11):1471~1481.
    于伯华,吕昌河,吕婷婷,等.青藏高原植被覆盖变化的地域分异特征.地理科学进展,2009,28(3):391~397.
    张光辉,石迎新等.黑河流域生态环境的脆弱性及其对地下水的依赖性.安全与环境学报,2002,2(3):31~33.
    张建芝.济南泉域地下水动态特征及检测网优化:[硕士论文].山东:济南大学,2011.
    张明伟.基于MODIS数据的作物物候期监测及作物类型识别模式研究:[硕士论文].湖北:华中农业大学,2006.
    张茂省,卢娜,陈劲松.陕北能源化工基地地下水开发的植被生态效应及对策.地质通报,2008,27(8):1299~1312.
    赵鹏大,等.定量地学方法及应用.北京:高等教育出版社,2004.
    赵文智,程国栋.干旱区生态水文过程研究若干问题评述.科学通报,2001,46(22):1851~1857.
    中国人民解放军00929部队.青海省马海盆地区域水文地质普查报告.1979.
    钟华平,刘恒等.西北干旱区额济纳绿洲水资源与生态环境保护对策.水利水电科技进展,2002,22(4):9~11.
    周陈超,贾绍凤,燕华云,等.近50a以来青海省水资源变化趋势分析.冰川冻土,2005,27(3):432~437.
    周在明,李晓东,谢国辉.新疆天山北坡3种地表植被指数检测方法与监测.东北林业大学学报,2007,35(11):52~55.
    朱文彬,吕爱锋,贾绍凤.基于NDVI的柴达木盆地植被空间分异规律及影响因素.干旱区研究,2010,27(5):691~698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700