用户名: 密码: 验证码:
电化学电容器钒基化合物负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据电化学电容器缺少高比容量负极材料的现状,我们设计、制备了一系列VN负极材料,并系统研究了其电化学性能。首先,通过高温氨解还原法制备纳米VN,通过研究首次提出VN比容量由其比表面积决定,并据此分别采用模板法和喷雾干燥法制备了具有高比表面积、高比容量的介孔VN和球形多孔VN两种材料。采用炭包覆的方法制备了VN/C复合材料,VN的倍率性能和循环性能得到了进一步的改善。在实验数据的基础上,对VN材料的储能机制进行了系统研究,证明VN的比容量主要是由表面的氧化钒发生氧化还原反应产生的准电容提供。将VN材料用于电化学电容器负极,与商品球形NiOx正极材料组装VN/NiOx电化学混合电容器新体系,具有较高的能量密度和功率密度。
According to the fact that the electrochemical capacitors falling short of high capacity negative electrode materials, in this paper, a series of VN negative electrode materials have been designed and prepared. Their electrochemical performances have been studied systematically. First, we used high temperature ammonia reduction method to prepare VN nanoparticles, and proposed that the specific capacity of VN nanoparticle was decided by its specifio surface area for the first time. Following this, we used template and spray drying method to prepare mesoporous VN and spherical porous VN with high specific surface area and high specific capacity. Then we fabricated carbon coated VN/C composite material to improve its rate capability and cycle performance. On the basis of the experimental data, the energy storage mechanism of VN material was discussed and proved:the specific capacity of VN was mainly provided by capacitance produced in redox reaction of the surface vanadium oxide. VN materials were used as negative electrode for electrochemical capacitor. We assembled a VN/NiOx electrochemical hybrid capacitor with good energy density and powder density.
引文
1.辛克伟,周宗祥,卢国良.国外电动汽车发展及前景预测.电力需求侧管理,2008,1:75-78
    2. Andrew B J. Ultraeapaeitors:why, how, and where is the teehnology. J. Power Sources,2000,91(1):37-42
    3. Conway B E, Birss V, Wojtowiez J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources,1997,66(1-2):1-5
    4. Bockris J 0 M, Reddy A K N. Modern Eleetrochemistry. NewYork, Plenum Press,1970
    5. Beeker H L. Low voltage eleetrolytic capacitor. U.S. Patent,1957-07-23,2800616
    6. Conway B E. Electrochemical Supercapacitors, NewYork, KluwerAeademie/PlenumPublishers,1999
    7. Conway B E. Transition from "Supercapacitor" to "Battery" behavior in electrochemical energy storage. J. Electrochem. Soc,1991,138:1539-1543
    8. Maxwell Technologies Bobby Maher.超级电容器简介.近日电子,2007
    9. Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc,1995, 142:L6-L11
    10. Lam L T, Newnham R H, Ozgun H, Fleming F A. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles. J. Power Sources,2000,88(1):92-97
    11. Sehaller K V, Gruber C. Fuel cell drive and high dynamic energy storage systems Opportunities for the future city bus. Fuel Cells Bullelin,2000,3(27):9-14
    12. Gutmarm G. Hybrid electric vehicles and electrochemical storage systems-a technology push- pull couple. J. Power Sources,1999,84(2):275-279
    13. Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehieles, J. Power Sources,1999,84(2):261-266
    14. Chu A, Braatz P. Comparison of commereial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehieles I. Initial characterization. J. Power Sources,2002,112(1): 236-240
    15. Conway B E, Pell W G Power limitations of supercapacitor and capacitanee distribution operation associated with resistance in porous eleetrode devices. J. Power Sources,2002,105(2):169-173
    16. Pell W G, Conway B E. Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. J. Power Sources,2001,96(1):57-62
    17. Farahnlandi C J, Gideon D. Proceedings of the 6th International Seminar on Double-layer capacitors and Similar Energy Storage Devices. Deerfield Beach, FL, Deeember 1996, Florida Educational Seminars Inc
    18. Conway B E. Transition for "Supercapacitor" to "battery" behavior in electrochemical energy storage. J. Electrochem Soc,1991,138(6):1539-1548
    19. Qu D Y. Studies of the actived carbons used in double-layer Supercapacitor. J. Power Sources,2002,209: 403-408
    20. Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta,2000,45: 2483-2498
    21. Huggins R A. Supercapacitors and eletrochemial pulse soureces. Solid State Ionics,2000,134:179-195
    22. Smith T A, Mars J P, Turner G A. Using Supercapacitor to improve battery performance. Proceedings of the 33rd Annual IEEE Power Electronics Specialist Conference.2002,1:124-128
    23.李荐,钟晖,钟海云.超级电容器应用设计.电源技术,2004,28(6):388-391
    24.陈建业,姚润文.超级电容器与飞机直流地面电源.移动电源与车辆,2003,1:7-9
    25.耿建明,胡安,肖飞.超级电容器在直流电力系统中应用研究.船电技术,2005,(6):34-37
    26.庄凯.超级电容器电极材料的研究.成都:西华大学,2006
    27. Ue M. Electrolytes for electrochemical capacitor. Denki Kagaku,1998,66(9):904
    28.毛兴武,张传敬.一种新型储能元件—超级电容器.电子世界,2006,5:9-10
    29. Qu D Y, Hang S. Studies of activated carbons used in double-layer capacitors. J. Power Sources,1998,74(1): 99-107
    30.葛军.超级电容器用明胶基和化学气相沉积碳材料的研究.北京:中国科学院研究生院,2009
    31.胡军,梁逵,李兵红,庄凯.氢氧化镍掺杂活性炭复合电化学电容器的研究.西华大学学报:自然科学版,2006,25(3):35-37
    32. Bard A J, Faulkner L R.电化学方法—原理和应用(第二版),化学工业出版社,2005,7-9
    33. Conway B E. Electrochemical Spercapacitors. Kluwer Academic/Plunum, New York,1999,6
    34. Mayer S T, Pekala R W, Kaschmitter J L. The aerocapacitors:an electro-chemical double-layer enengy storage (?).J. Electrochem Soc,1993,140(2):446-451
    35.张娜,张宝宏.电化学超级电容器研究进展.电池,2003,33(5):330-332宋磊,吴伯荣.超级电容器研究及其应用.稀有金属,2003,27(3):389-404
    37.许检红,王然.超级电容器在电动汽车上应用的研究进展.电池工业,2008,13(5):344-348
    38.王然,苗小丽.大功率超级电容器的发展与应用.电池工业,2008,13(3):191-194
    39.吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展.新型炭材料,2006,21(2):236-139
    40.钟海云,李荐,戴艳阳,等.新型能源器件—超级电容器研究发展最新动态.电源技术,2001.25(5):367-370
    41.刘延林.电动汽车的新型储能装置—超级电容器.沿海企业与科技.2008.4:25
    42.戴贵平,刘敏,王茂章,等.电化学电容器中炭电极的研究及开发Ⅰ.电化学电容器.新型炭材料.2002.17(1):76-77
    43. Atwater T B, Cygan P J, Leung F C. Man portable power needs of the 21st century. J. Power Sources.2000, 91(1):27-361
    44. Conway B E. Electrochemical Spercapacitors. Kluwer Academic/Plunum, New York,1999:6
    45. Chmiola J. Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer. Science.2006, 313:1760-1763
    46. Cygan P J. Generation of Hierarchical Meso-and Macroporous Carbon from Mesophase Pitch by Spinodal Decomposition using Polymer Templates. Adv. Mater,2007,19:4012-4017
    47. Xia K S, Gao Q M. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon,2008,46(13):1718-1726
    48. Jurewicz K, Babel K. Ammoxidation of brown coals for supercapacitors. Fuel Processing Technology,2002, 77-78:191-198
    49. Jurewicz K, Babel K. Capacitance behaviour of the ammoxidised coal. Journal of Physics and Chemistry of Solids,2004,65:269-273
    50. Hulicova D, Yamashita J. Supercapacitors Prepared from Melamine-Based Carbon. Chem. Mater,2005,17: 1241-1247
    51. Hulicova D, Kodama M, Shiraishi S, et al. Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitors. Advanced Functional Materials,2009,19:1-10 Kawaguchi M. Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor. J. Power Sources,2007,172(1):481-486
    53 Yagi S, Kawaguchi M. Electric double layer capacitance of nitrogen-rich C/N material. Meeting Abstracts, 2004 Joint International Meeting 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, MA 2004-02,2004, p23
    54. Beguin F, Szostak K, Lota G, et al. A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends. Advanced Materials,2005,17:2380-2384
    55. Adelhelm B P, Hu Y S. Lota Q et al. Nanotubes based coposities rich in nitrogen for supercapacitor application. Electrochemical Communications,2007,9:1828-1832
    56.伍刚,李德伏,王金渠.无机模板法制备多孔炭的研究进展.材料导报,2005,7(19):29-32
    57. Ying J Y, Melmert C P, Wong M S. Synthesis and plications of supermolecular-templateed mesoporous materials. Angew. Chem. Int. Ed,1999,38:56-57
    58. Kyotami T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater,1997,9:609-615
    59. Lee J, Yoon S, Oh S M, et al. Development of a new mesoporous carbon using an HMS aluminosilieate template. Adv. Mater,2000,12:359-362
    60. Schaller K V, Gruber C. Fuel cell drive and high dynamic energy Storage systems Opportunities for the future city bus. Fuel Cells Bulletin,2000,3(27):9-14
    61. Yang H F, Zhao D Y. Synthesis of replica mesostruetures by the nanocasting strategy. J. Mater. Chem,2005, 15:1217-1221
    62. Xing W, Qiao S Z, Ding R G, et al. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon,2006,44:216-220
    63. Li W, Chen D, Li Z, et al. Nirogen-containing carbon spheres with very large uniform mesopores:The superior electrode materials for EDLC inorganic electrolyte. Carbon,2007,45:1757-1763
    64. Sevilla M, Alvareza S. Centeno T A, et al. Performance of templated mesoporous carbons in supercapaeitors. Electrochimica Acta,2007,52:3207-3215
    65. Wang D, Li F, Liu M, et al.3D aperiodic hierarehieal porous graphitie carbon material for high-rate electrochemical capacitive energy strorage. Angew. Chem. Int. Ed,2008,47:373-376
    66. Xu B, Peng L. Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon,2010,48(8): 2377-2380
    67. Xu H, Gao Q M, Guo H L, et al. Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor. Microporous and Mesoporous Materials,2010,133: 106-114
    68. Zhang X Y, Wang X Y, Su J C, et al. The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. Journal of Power Sources,2012,199:402-408
    69. Wu X H, Hong X T, Nan J M, et al. Electrochemical double-layer capacitor performance of novel carbons derived from SAPO zeolite templates. Microporous and Mesoporous Materials,2012,160:25-31
    70. Han Y, Dong XT, Zhang C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. Journal of Power Sources,2012,211:92-96
    71. Yoon S H, Oh S M, Lee C W. Direct template synthesis of mesoporous carbon and its application to supercapacitor electrodes. Materials Research Bulletin,2009,44:1663-1669
    72. Chang K W, Lim Z Y, Du F Y, et al. Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor. Diamond & Related Materials,2009,18:448-451
    73. He X J, Li R C, Qiu J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. C arbon,2012,50:4911-4921
    74. Lijima S. Helical microtubules of graphitic carbon. Nature,1991,354-356
    75.杨娇萍.超级电容器多孔活性炭材料的研究.北京化工大学,2005
    76.张传喜,郑中华.超级电容器碳材料的研究现状于发展.船电技术,2007,5:316-318
    77. Chen J H, Li W Z, Wang D Z, et al. Carbon,2002,40:1193-1197
    78. Frackowiak E, Jurewicz K, Szostak K, et al. Fuel Processing Technology,2002,77-78:213-219
    79. Zheng H J,Tang F Q, Lim M L, et al. Electrocheemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. Journal of Power Sources,2009,193:930-934
    80. Ruch P W, Koz R, Wokaun A. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte. Electrochimica Acta,2009,54: 4451-4458
    81. Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6(3):183-191
    82. Novoselov K S, Geim A K. Electric field effect in atomically thin carbon. Science,2004,306(5696):666-669
    83. Novoselov K S, Geim A K. Two-dimensional gas of massless Dirac feimions ingraphene. Nature,2005, 438(7065):197-200
    84. Zhang Y, Tan Y W. Experimental observation of the quanyun Hall effect andBerry's phase in graphene. Nature, 2005,438(7065):201-204
    85. Du X, Guo P, Song H H, et al. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochimica Acta,2010,55:4812-4819
    86. Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources,2010,195:3041-3045
    87. Du Q L, Zheng M B, Zhang L F, et al. Preparation of functional ized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta,2010 55:3897-3903
    88. Yang X W. He Y S, Jiang GP, et al. High voltage supercapacitors using hydrated graphene film in a neutral aqueous electrolyte. Electrochemistry Communications,2011,13:1166-1169
    89. Hantel M M, Kaspar T, Nesper R et al. Partially reduced graphite oxide for supercapacitor electrodes:Effect of grapheme layer spacing and huge specific capacitance. Electrochemistry Communications,2011,13:90-92
    90. Li Y M, Zijll M V, Chiang S, et al. KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources,2011,196:6003-6006
    91. Zhao B, Liu P, Jiang Y, et al. Supercapacitor performances of thermally reduced graphene oxide. Journal of Power Sources,2012,198:423-427
    92. Zhang D C, Zhang X, Chen Y, et al. An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material. Electrochimica Acta,2012,69:364-370
    93. Lee J W, Ko J M, Kim J D. Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochimica Acta,2012,85:459-466
    94. Sun D F, Yan X B, Lang J W, et al. High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper. Journal of Power Sources,2013,222:52-58
    95.张易宁,何腾云.超级电容器电极材料的最新研究进展.第28届全国化学与物理电源学术年会,C08
    96. Zheng J P, Jow T R. Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide. Electrochemical Society,1998,145(1):49-52
    97. Cheng J, Cao G P, Yang Y S. Characterization of sol-gel-derived NiOx xerogels as supercapacitors. Journal of Power Sources,2006,159:734-741
    98. Patil U M, Gurav K V, Fulari V J, et al. Characterization of honeycomb-like "β-Ni(OH)2" thin films synthesized by chemical bath deposition method and their supercapacitor application. Journal of Power Sources,2009,188:338-342
    99. Zheng Y Z, Ding H Y, Zhang M L. Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Materials Research Bulletin,2009,44:403-407
    100. Dubal D P, Dhawale D S, Salunkhe R R, et al. A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Applied Surface Science,2010,256:4411-4416
    101. Wang L, Liu X H, Wang X, et al. Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Current Applied Physics,2010,10:1422-1426
    102. Fang D L, Chen Z D, Wu B C, et al. Preparation and electrochemical properties of ultra-fine Mn-Ni-Cu oxides for supercapacitors. Materials Chemistry and Physics,2011,128:311-316
    103. Wu J B, Lin Y, Xia X H, et al. Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochimica Acta,2011,56:7163-7170
    104. Hu C C, Hung C Y, Chang K H, et al. A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. Journal of Power Sources, 2011,196:847-850
    105. Li Y, Xie H Q, Wang J F, et al. Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor. Materials Letters,2011,65:403-405
    106. Zhu J H, Jiang J, Liu J P, et al. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. Journal of Solid State Chemistry,2011,184:578-583
    107. Kandalkar S G, Lee H M, Chae H, et al. Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications. Materials Research Bulletin,2011,46: 48-51
    108. Kulal P M, Dubai D P, Lokhande C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application. Journal of Alloys and Compounds,2011,509:2567-2571
    109. Yuan Y F, Xia X H, Wu J B, et al. Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application. Electrochemistry Communications,2011,13: 1123-1126
    110. Sun Z J, Chen H Y, Shu D, et al. Supercapacitive behavior and high cycle stability of todorokite-type manganese oxide with large tunnels. Journal of Power Sources,2012,203:233-242
    111. Sumboja A, Tefashe U M, Wittstock G,et al. Monitoring electroactive ions at manganese dioxide pseudocapacitive electrodes with scanning electrochemical microscope for supercapacitor electrodes. Journal of Power Sources,2012,207:205-211
    112. Yan D L, Guo Z L, Zhu G S,et al. MnO2 film with three-dimensional structure prepared by hydrothermal processfor supercapacitor. Journal of Power Sources,2012,199:409-412
    113. Shakir I, Shahid M, Nadeem M, et al. Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochimica Acta,2012,72:134-137
    114. Duan B R, Cao Q. Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochimica Acta,2012,64:154-161
    115. Meher S K, Rao G R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources,2012,215:317-328
    116. Zhang Y K, Li J L, Kang F Y, et al. Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. International journal of hydrogen energy,2012,37:860-866
    117. Huang X J, Yan J, Zeng F L, et al. Facile preparation of orange-like Bi2O2.33 microspheres for high performance supercapacitor application. Materials Letters,2013,90:90-92
    118.吕进玉.超级电容器导电聚合物电极材料的研究进展.材料导报,2007,21(3):29-31
    119.陈光铧.超级电容器有机导电聚合物电极材料的研究进展.材料导报,2009,23(10):109-112
    120.从文博.聚苯胺纳米材料电容性能研究.电子元件与材料,2007,26(1):65~67
    121. Ghenaatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synthetic Metals,2009, 159:1717-1722
    122. Liu J L, Zhou M Q, Fan L Z, et al. Porous polyaniline exhibits highly enhanced electrochemical capacitance Performance. Electrochimica Acta,2010,55:5819-5822
    123. Yang C, Liu P. Polypyrrole/conductive mica composites:Preparation, characterization, and application in supercapacitor, Synthetic Metals,2010,160:768-773
    124. Dhawale D S, Salunkhe R R, Jamadade V S, et al. Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Current Applied Physics,2010,10:904-909
    125. Deshmukh P R, Pusawale S N, Jamadade V S, et al. Microwave assisted chemical bath deposited polyaniline films for supercapacitor application. Journal of Alloys and Compoundsm 2011,509:5064-5069
    126. Dhawale D S, Vinu A, Lokhande C D. Stable nanostructured polyaniline electrode for supercapacitor application. Electrochimica Acta,2011,56:9482-9487
    127. Patil D S, Shaikh J S, Dalavi D S, et al. Chemical synthesis of highly stable PVA/PANI films for supercapacitor Application. Materials Chemistry and Physics,2011,128:449-455
    128. Dubai D P, Patil S V, Jagadale A D, et al. Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application. Journal of Alloys and Compounds,2011,509:8183-8188
    129. Mujawar S H, Ambade S B, Battumur T, et al. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochimica Acta,2011,56:4462-4466
    130. Zhang H M, Zhao Q, Zhou S P, et al. Aqueous dispersed conducting polyaniline nanofibers:Promising high specific capacity electrode materials for supercapacitor. Journal of Power Sources,2011,196:10484-10489
    131. Sumboja A, Wang X, Yan J, et al. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochimica Acta,2012,65:190-195
    132. Chang H H, Chang C K, Tsai Y C. et al. Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. C arbon,2012,50:2331-2336
    133. Patil B H, Jagadale A D, Lokhande C D. Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synthetic Metals,2012,162: 1400-1405
    134.南俊民.电化学电容器及其研究进展.电源技术,1996,20(4):152-164
    135. Chen W C, Hu C C, Wang C C, et al. Eleetroehemical characterization of activated carbon-ruthenium oxide nanopartieles composites for supercapaeitors. Journal of Power Sources 2004,125(2):292-297
    136. Zhang L L, Wei T X, Wang W J, et al. Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous and Mesoporous Materials,2009,23:260-267
    137. Kalpana D, Lee Y S, Sato Y. New, low-cost, high-power poly(o-anisidine-co-metanilic acid)/activated carbon electrode for electrochemical supercapacitors. Journal of Power Sources,2009,190:592-595
    138. An H F, Wang Y, Wang X Y, et al. Polypyrrole/carbon aerogel composite materials for supercapacitor. Journal of Power Sources,2010,195:6964-6969
    139. Lin Y P, Tsai C B, Ho W H, et al. Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application. Materials Chemistry and Physics,2011, 130:367-372
    140. Yang W L, Gao Z, Wang J, et al. Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochimica Acta,2012,69:112-119
    141. Kim S J, Park G J, Kim B C, et al. Investigations into the electrochemical characteristics of nickel oxide hydroxide/multi-walled carbon nanotube nanocomposites for use as supercapacitor electrodes. Synthetic Metals,2012,161:2641-2646
    142. Zhou Z P, Wu X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes:Synthesis and electrochemical characterization. Journal of Power Sources,2013,222:410-416
    143. Nam K W, Lee C W, Yang X Q, et al. Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate:Supercapacitive behaviour in aqueous and organic electrolytes. Journal of Power Sources, 2009,188:323-331
    144. Jiang R R, Huang T, Tang Y, et al. Factors influencing MnO2/multi-walled carbon nanotubes composites electrochemical performance as supercapacitor electrode. Electrochimica Acta,2009,54:7173-7179
    145. Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources,2010,195:3041-3045
    146. Zhou Y, Qin Z Y, Li L, et al. Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochimica Acta,2010,55:3904-3908
    147. Zheng H J, Wang J X, Jia Y, et al. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. Journal of Power Sources,2012,216:508-514
    148. Lu X J, Zhang F, Dou H, et al. Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochimica Acta,2012,69:160-166
    149. Zhang L L, Xiong Z G, Zhao X S. A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance. Journal of Power Sources,2013,222: 326-332
    150. Yan J, Wei T, Qiao W M, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co304 composite for supercapacitors. Electrochimica Acta,2010,55:6973-6978
    151. Yang X F, Wang G C, Wang R Y, et al. A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochimica Acta,2010,55: 5414-5419
    152. Li Q, Liu J H, Zou J H, et al. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/Mn02 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources, 2011,196:565-572
    153. Lang J W, Yan X B, Xue Q J. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. Journal of Power Sources,2011,196: 7841-7846
    154. Cheng Q, Tang J, Ma J, et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon,2011,49:2917-2925
    155. Dong Z H, Wei Y L, Shi W, et al. Characterisation of doped polypyrrole/manganese oxide nanocomposite for supercapacitor electrodes. Materials Chemistry and Physics,2011,131:529-534
    156. Hwang S G, Ryu S H, Yun S R, et al. Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor. Materials Chemistry and Physics,2011,130:507-512
    157. Su H F, Wang T, Zhang S Y, et al. Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sciences,2012,14:677-681
    158. Dong X C, Wang X W, Wang J, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon,2012,50:4865-4870
    159. Zhou S L, Mo S S, Zou W J, et al. Preparation of polyaniline/2-dimensional hexagonal mesoporous carbon composite for supercapacitor. Synthetic Metals,2011,161:1623-1628
    160. Lee H, Kim H K, Cho M S, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochimica Acta,2011,56:7460-7466
    161. Chang H H, Chang C K, Tsai Y C, et al. Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon,2012,50:2331-2336
    162. Hua C C, Huang C M, Chang K H. Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J. Power Sources,2008,185:1594-1597
    163. Liu X Q, Su Q, Huang C K. Formation of vanadium oxides with various morphologies by chemical vapor deposition. Journal of Alloys and Compounds,2008
    164. Chen C H, Ding N, Lieberwirth I. High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochemistry Communications,2009,11:538-541
    165. Subba Reddy C V, Mho S I, Kalluru R R. Hydrothermal synthesis of hydrated vanadium oxide nanobelts using poly (ethylene oxide) as a template. J. Power Sources 2008,179:854-857
    166. Zeng H M, Zhao Y, Hao Y J, et al. Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor. Journal of Alloys and Compounds,2008
    167. Zakharova G S, Volkov V L. Synthesis and characterization of V3O7·H2O nanobelts. Solid State Communications,2009
    168. Soriano L, Addate M, Pen P, et al. The electronic structure of TiN and VN:X-ray electron spectra compared to band structure calculations. Solid State Communications,1997,102(4):291-296
    169. Sakamoto T, Ogawa H, Suefuji H, et al.989-56 Serial changes of plasma vitronectin level in patients with acute myocardial infarction:Possible role of VN as a scavenger of plasminogen activator inhibitor-1. J. American College of Cardiology,1995,25(2):311A
    170. Griffiths C D, Eldershaw P D, Geraghty D P, et al. Capsaicin-induced biphasic oxygen uptake in rat muscle: Antagonism by capsazepine and ruthenium red provides further evidence for peripheral vanilloid receptor subtypes (VN,/VN2). Life Sciences,1996,59(2):105-117
    171. Lao J J, Han Z H, Tian Z W, et al. Mechanical property investigation of AIN/VN nanomultilayers with microindentation technique. Mater. Lett,2004,58(6):859-862
    172. Choi D, Kumta P N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Electrochem. Solid State Lett,2005,8:A418-A422
    173. Choi D, Blomgren G E, Kumta P N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater,2006,18(9):1178-1182
    174. Zhou X P, Chen H Y, Shu D, et al. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids,2009,70(2):495-500
    175. Glushenkov A M, Hulivova-Jurcakova D, Llewellyn D, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater.2010, 22:914-921
    176. Dong S M, Chen X, Gu L, et al. TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin,2011,46:835-839
    177. Zhou X H, Shang C Q, Gu L, et al. Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core-shell Structures for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces,2011,3: 3058-3063
    178. Zhang L, Holt C M B, Luber E J, et al. High Rate Electrochemical Capacitors from Three-Dimensional Arrays of Vanadium Nitride Functionalized Carbon Nanotubes. J. Phys. Chem. C,2011,115:24381-14393
    179. Cheng F K, He C, Shu D, et al. Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater Chem Phys,2011,131(1-2):268-273
    180.袁国辉.电化学电容器,化学工业出版社,2006:141-168
    181.殷金玲.超级电容器工作电解质的研究概况.应用科技,2004,31(4):46-48
    182. U E M. Advance in electrochemical capacitors electrolytes for electrochemica capacitors. Denki Kagaku, 1998,66(9):904-911
    183. Morita M, Goto M, Marsuda Y. Ethylene carbonate-based organic electrolytes for electric double layer capacitors. Appl Electrochem,1992,22:901-918
    184.陈人杰.新型功能电解质材料的研究.博士论文,北京理工大学,2005
    185.李凡群,赖延清.超级电容器用离子液体电解质的研究进展.电池,2008,38(1):63-65
    186.王毅,高德淑.离子液体在双电层电容器中的应用研究.电源技术,2005,29(7):466-469
    187. Cheng J, Cao G P, Yang Y Sh. Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources,2006,159(1):734-741
    188.甘卫平,马贺然,李祥.超级电容器用(RuO2/Co3O4)·nH2O复合薄膜电极的制备及其性能.无机材料学报,2011,26(8):823-828
    189. Gujar T P, Shinde V R, Lokhande C D, et al. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources,2006,161(2):1479-1485
    190. Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KC1) aqueous solution. J. Solid State Chem,1999,148(1):81-84
    191. Yu P, Zhang X, Che Y, et al. Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater. Chem. Phys,2009,118(2-3):303-307
    192. Johnson C S, Dees D W, Mansuetto M F, et al. Structural and electrochemical studies of a-manganese dioxide (α-MnO2). J. Power Sources,1997,68(2):570-577
    193. Feng Z P, Li G R, Zhong J H, et al. MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem. Commun,2009,11(3):706-710
    194. Lei Y, Daffos B, Taberna P L, et al. MnO2-coated Ni nanorods:enhanced high rate behavior in pseudo-capacitive supercapacitors. Electrochim. Acta,2010,55(25):7454-7459
    195. Zhang H, Cao G P, Wang Z Y, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun,2008,10(7):1056-1059
    196. Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid crystal Template Mechanism. Nature,1992,359:710-712
    197. Chen H M, Zhao Y Q. Glycine-assisted hydrothermal synthesis of peculiar porous α-Fe2O3 nanospheres with excellent gas-sensing properties. Analytica Chimica Acta,2010,659:266-273
    198. Ouraipryvan P, Sreethawong T. Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol-gel process. Materials Letters,2009,63:1862-1865
    199. Ning H, Peng H. Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma- enhanced CVD method. Sensors and Actuators B:Chemical,2010,145:114-119
    200. Niu H X, Yang Q. Self-assembly of porous MgO nanoparticles into coral-like microcrystals. Scripta Materialia,2006,54:1791-1796
    201.余勇,刘士军.氧化钨介孔材料的制备与表征.物理化学学报,2009,25(9):1890-1894
    202. Niu H X, Yang Q. A simple solution calcination route to porous MgO nanoplates. Microporous and Mesoporous Materials,2006,96:428-433
    203. Hadi A, Yaacob I I. Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsionmethods. Materials Letters,2007,61:93-96
    204. Yuan A B, Zhang Q L. A Novel Hybrid Manganese Dioxide/Activated Carbon Supercapacitor Using Lithium Hydroxide Electrolyte. Electrochemistry Communications,2006,8:1173-1178
    205. Prasad K R, Miura N. Electrochemically Synthesized MnO2-based Mixed Oxides for High Performance Redox Supercapacitors. Electrochemistry Communications,2004,6:1004-1008
    206. Mansour A N, Smith P H, Baker W M, et al. In Situ XAS Investigation of the Oxidation State and Local Structure of Vanadium in Discharged and Charged V2O5 Aerogel Cathodes. Electrochimica Acta,2002,47: 3151-3161
    207. Wang D W, Li F, Cheng H M. Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor. Journal of Power Sources,2008,185:1563-1568
    208. Xue Y, Chen Y, Zhang M L, et al. A New Asymmetric Supercapacitor Based on λ-MnO2 and Activated Carbon Electrodes. Materials Letters,2008,62:3884-3886
    209. Qu Q T, Shi Y, Li L L, et al. V2O5·0.6H2O Nanoribbons as Cathode Material for Asymmetric Supercapacitor in K2SO4 Solution. Electrochemistry Communications,2009,11:1325-1328
    210. Pang S C, Anderson M A, Chapman T W. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. Journal of the Electrochemical Society,2000,147:444-450
    211. Brousse T, Bielanger D. A Hybrid Fe3O4/MnO2 Capacitor in Mild Aqueous Electrolyte Batteries, Fuel Cells, and Energy Conversion. Electrochemical and Solid-State Letters,2003,6:A244-A248
    212. Chen F, Li R, Hou M, et al. Preparation and Characterization of Ramsdellite Li2Ti3O7 as an Anode Material for Asymmetric Supercapacitors. Electrochimica Acta,2005,51:61-65
    213. Wang Y G, Xia Y Y. A New Concept Hybrid Electrochemical Surpercapacitor:Carbon/LiMn2O4 Aqueous System. Electrochemistry Communications,2005,7:1138-1142
    214. Wang Y G, Xia Y Y. Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds:Ⅰ. The CLiMn2O4 System Batteries, Fuel Cells, and Energy Conversion. Journal of the Electrochemical Society,2006,153:A450-A454
    215. Zhao Y, Wang Y Y, Lai Q Y, et al. Pseudocapacitance Properties of AC/LiNi1/3Co1/3Mn1/3O2 Asymmetric Supercapacitor in Aqueous Electrolyte. Synthetic Metals,2009,159:331-337
    216. Luo J Y, Liu J L, He P, et al. A Novel LiTi2(PO4)3/MnO2 Hybrid Supercapacitor in Lithium Sulfate Aqueous Electrolyte. Electrochimica Acta,2008,53:8128-8133
    217. Moulder J F, Stricle W F, Sobol P E, et al. Handbook of x-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division,1995
    218. Bondarenka V, Grebinskij S, Mickevicius S, et al. Lithuanian J. Phys,2007,47:333-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700