用户名: 密码: 验证码:
负载贵金属催化剂的新型碳基复合材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有贵金属@贱金属核壳结构的催化剂因其核和壳性能的互补性,可大幅度提高贵金属的催化活性,从而降低催化剂的成本,普遍应用于电化学催化、有机催化等领域,尤其是对燃料电池普及推广方面具有重要的应用价值,有望成为其大规模产业化的希望之所在。然而,小纳米尺度的核壳催化剂因为粒径小,其表面原子比例高,表面能大,有很高的配位不饱和度,在合成反应和催化剂的循环使用过程中有明显的团聚现象,这使得催化剂的活性面积和催化的选择性大幅度下降。将纳米催化剂粒子负载到载体上有助于这一问题的解决,载体的结构和性质也是影响催化剂活性和用量的关键因素之一。因此开发新型的催化剂载体也是提高贵金属催化活性、促进贵金属催化剂走向实用化的有效途径之一。本论文以新型的碳材料多壁碳纳米管(MWCNTs)和石墨烯为载体,负载贵金属纳米粒子及贵金属@贱金属核壳结构的纳米粒子制备纳米复合物,重点研究了催化剂粒径、载体表面功能化以及核壳结构的相互作用等因素对提高贵金属催化性能的影响,主要结果如下:
     1.采用两步法即浸渍法还原法和置换法成功制备了Ni@Pd核壳结构均匀分散在多壁碳纳米管(MWCNTs)上,采用XRD、TEM、HRTEM、EDS等方法对该复合催化材料进行表征分析。从TEM图可见平均粒径为3.4nmNi@Pd核壳结构均匀分散在多壁碳纳米管的表面上,无团聚现象。XRD结果表明,Ni@Pd/MWCNTs中Pd(111)特征衍射峰与Pd/MWCNTs中Pd(111)特征衍射峰相比出现了明显的正位移,表明Ni原子进入了Pd原子的晶格使得Pd的晶格间距变窄。HRTEM可以清楚可见核Ni(111)条纹间距0.203nm和Pd(111)壳条纹间距0.224nm的形成。该核壳结构纳米复合物被用于燃料电池中乙醇的电催化氧化,电化学实验结果表明,对于乙醇的阳极氧化反应,该核壳催化剂的相同负载量Pd的催化活性分别为Pd/MWCNTs催化剂的2.3倍。尤为重要的是Ni和Pd的相互作用使得该催化剂对乙醇氧化中间体具有很好的去除能力。另外,核壳结构降低了贵金属Pd的用量,增大了贵金属有效催化活性面积。
     2.采用微波法将Ni还原负载到碳纳米管上,再用置换法将Pd均匀分散在Ni/多壁碳纳米管(Ni/MWCNTs上),采用XRD、TEM、HRTEM、EDS等方法对该复合催化材料进行表征分析,TEM结果表明平均粒径为4nmNi@Pd均匀分散在碳纳米管上,把合成的Ni@Pd/MWCNTs复合物应用于苯甲醇的选择性氧化,在水溶液中,以双氧水作为氧化剂在80℃条件下用Ni@Pd/MWCNTs (Pd:0.2mmol)为催化剂苯甲醛的选择性达到98%,苯甲醇的转化率高达99%,并且该催化剂因为具有磁性容易被回收循环使用。
     3.采用微波法和置换法两步法成功合成了核壳Ni@Pd纳米粒子负载到石墨烯载体上形成Ni@Pd/graphene.采用XRD、TEM、HRTEM、EDS、Raman、 FTIR等方法对该复合催化材料进行表征分析。乙二醇微波还原法将将镍离子在180℃微波条件下还原成镍纳米粒子并且均匀分布在碳纳米管的表面,然后用置换法得到平均粒径为4.0的Ni@Pd纳米粒子。循环伏安研究结果表明,该催化剂的相同负载量Pd的催化活性分别为Pd/graphene催化剂的3倍,说明Ni的加入使金属Pd的表面特征发生了改变,Pd壳增大了有效活性表面积从而使得Ni@Pd/graphene相对Pd/graphenes具有更高的氧还原电催化活性和抗CO中毒性。
     4.用改进的Hummers法合成氧化石墨烯,表面有大量的含氧基团,这些含氧基团使得石墨烯片层之间分开,金属前驱体很容易分散在石墨烯的表面,然而,氧化石墨烯和金属前驱体在被还原形成金属/石墨烯纳米复合物的过程中,石墨烯表面大量的含氧基团也被还原,结果导致石墨片层之间发生不可逆转的团聚,石墨烯表面和金属的作用力减弱,很难直接将贵金属纳米粒子可控的分散负载到其表面,为了解决这一问题,本文采用用聚二甲基二丙烯基氯化铵(PDDA)和二甲基二丙烯基氯化铵(DMDAAC)等功能化试剂对石墨烯的表面进行了修饰,为了高密度,高分散的负载小粒径的贵金属纳米粒子提供有效的方法。
     5.采用乙二醇微波还原法制备了高金属含量(85wt%) Pd/DMDAAC-graphene催化剂。采用XRD、TEM、HRTEM、EDS、Raman、FTIR、UV-vis等方法对该复合催化材料进行表征分析,发现DMDAAC功能化的石墨烯可促进平均粒径为1.8nmPd纳米粒子较均匀地分散,从而大幅度提高催化剂的有效比表面积。循环伏安法结果表明,相同量分散到DMDAAC-graphene修饰电极上的Pd纳米颗粒比分散到未修饰石墨烯修饰电极上的Pd纳米颗粒对乙醇的电催化氧化有更高的催化活性和抗毒性,因此可以推断DMDAAC功能化试剂修饰石墨烯不仅能高密度的分散贵金属纳米粒子,还有助于反应中间产物的转化。
     6.同样采用乙二醇微波还原法,通过反应条件的控制,制备了粒径范围小的Pt/PDDA-graphene催化剂,粒径分布图表明平均粒径为1.4nmPt高密度的分散在功能化的表面上,没有团聚现象。循环伏安法和计时电流结果表明,在电催化氧化甲醇时Pt/PDDA-G催化剂与相同Pt量的Pt/graphene催化剂和商业Pt/C催化剂具有更高的活性、稳定性和抗中间产物的毒化能力。这是因为PDDA修饰的石墨烯表面更有利于反应过程中中间产物的转化,使得Pt有更好的抗CO等的毒化性能。
Core-shell structure with low noble metal catalysts is a new type of catalysts in recent years.They enhance the catalytic activity of noble metal and reduce the cost of the catalyst due to the interactions between core and shell. They are widely used in electro catalysis, heterogeneous catalysis and biosensing, especially in potential applications of fuel cells. So they are considered to be the very promising catalysts for large-scale commercialization. But the core shell nano scale catalysts are very easy agglomeration in catalytic synthesis reaction and cyclic use due to the small particle size and higher coordination unsaturation surface atoms, which greatly reduces the activity area and selectivity. To solve this problem, the carrier is often used to as the particle supporter. So the structure and properties of the carrier is the key factor also affecting the activity of catalytic synthesis reaction. Therefore the development of a new catalyst support is one of the effective ways to improve the catalytic performance of noble metal catalysts.
     In this thesis, a series of new nanocomposites were synthesized using multi walled carbon nanotubes (MWCNTs) and graphene as carriers to support noble metal and core shell structure. The performance of noble metal catalyst was improved through the functional carrier and the synergistic effect of the core and shell.The results are as follows.
     1. Ni@Pd nanoparticles with core/shell structure uniformly dispersed on multi-walled carbon nanotubes (Ni@Pd/MWCNTs) is successfully prepared via a two-step strategy:impregnation-reduction methodand replacement method. The Ni@Pd/MWCNTs composite was characterized by transmission electronmicroscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis.It shows a uniform dispersion of Ni@Pd nanoparticles with core/shell structure on MWCNTs with the average particle size of3.4nm. XRD show that positive shift of the Pd peaks occurs obviously on the Ni@Pd/MWCNTs comparing with the Pd/MWCNTs, indicating the Ni atoms enter into the Pd crystals which caused the narrow transformation of the Pd crystal lattice distance. The single crystalline Ni@Pd particles are confirmed, the lattice planes with a interlayer distance of0.203nm in the core are indexed to Ni (111) crystal planes, the outer layer with the lattice space of0.224nm corresponds to Pd (111) crystal planes. The Ni@Pd/MWCNTs composite was used as electrocatalyst for alcohol oxidation in alkaline media for fuel cells. The electrocatalytic activity of ethanol oxidation on Ni@Pd/MWCNTs is2.3times higher than that of Pd/MWCNTs electrocatalyst at the same Pd loadings. The enhanced electrocatalytic properties could be attributed to not only the electric synergistic effect between Pd and Ni, but also the high use ratio of Pd for its shell structure.
     2. Well dispersed Ni@Pd bimetallic nanoparticles on multi-walled carbon nanotubes (Ni@Pd/MWCNTs) are prepared and used as catalysts for the oxidation of benzyl alcohol. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction were performed to characterise the synthesized catalyst. The results show a uniform dispersion of Ni@Pd nanoparticles on MWCNTs with an average particle size of4.0nm. The as synthesised catalyst was applied to the oxidation of benzyl alcohol. A99%conversion of benzyl alcohol and a98%selectivity of benzaldehyde were achieved by using the Ni@Pd/MWCNTs (Pd:0.2mmol) catalyst with water as a solvent and H2O2as oxidant at80℃. The catalytic activity of Ni@Pd/MWCNTs towards benzyl alcohol is higher than that of a Pd/MWCNTs catalyst at the same Pd loadings. The catalyst can be easily separated due to its magnetic properties.
     3. The uniform dispersion of new highly active Ni@Pd core-shell nanoparticle catalysts supported on graphene (Ni@Pd/graphene) was prepared via a two-step procedure involving a microwave synthesis method and a replacement method. Several characterization tools, such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to study the phase structures, morphologies and properties of the Ni@Pd/graphene composite. The results indicated that a uniform dispersion of Ni@Pd core-shell structure nanoparticles on graphene have an average particle size of4nm. The Ni@Pd/graphene composite was used as an electrocatalyst for alcohol oxidation in alkaline media for fuel cells. The electrocatalytic activity of Ni@Pd/graphene for ethanol oxidation is3times higher than that of the Pd/grapheme electrocatalyst at the same Pd loading. The enhanced electrocatalytic properties could be attributed not only to the electric synergistic effect between Pd, Ni and graphene, but also the high use ratio of Pd due to its shell structure.
     4. The over oxidation of graphene nanosheets were produced by the modify Hummers method with strong oxidants. Abundant oxygen-containing functional groups were present in grapheme oxide, which enable the solubilization of oxidized graphene sheets and thus allow for the intercalation of molecules such as metal precursors into the interlayer space of GO(grapheme oxide). Unfortunately, when the metal ions and GO are mixed and co-reduced to form metal-graphene composite, the subsequent chemical reduction of GO (with metal ions) is required, which makes the abundant oxygen-containing functional groups lost and tends to form irreversible agglomerates or even restack to form graphite. The weak interaction between metal and graphite surfers results in a severe agglomeration of catalytic metal nanoparticles and leads to the loss of its advantage of an ultra-high surface area. To solve this problem, some other intermediates such as poly diallyldimethylammonium chloride (PDDA) and Dimethyldiallylammonium chloride (DMDAAC) have to be introduced.
     5. Dimethyldiallylammonium chloride modified reduced graphene oxide supported Pd nanoparticles (Pd/DMDAAC-RGO) were fabricated by polyol microwave heating method. The Pd/DMDAAC-RGOhybrid was characterized by transmission electromicroscopy (TEM), energy-dispersive X-ray spec-troscopy (EDS), X-ray diffraction (XRD) analysis and electrochemical tests. High Pd metal loadings, up to80wt.%with a mean size of1.8nm, were densely in situ decorated on DMDAAC-modified RGO surfaces.Compared with traditional carbon-based Pd catalysts, Pd/DMDAAC-RGO exhibits better activity and stability for ethanol oxidation in alkaline media with the same Pd content on the electrode. This improvedactivity indicates that DMDAAC plays a crucial role in the dispersion and stabilization of Pd nanoparti-cles on RGO sheets and DMDAAC-RGO are able to an alternative support for Pd immobilization in directethanol fuel cells and other catalytic devices.
     6. A simple one-pot micro wave-poly ol reduced method was used to anchor platinum nanoparticles on graphene with the aid of PDDA, forming a Pt/PDDA-G hybrid (Pt/PDDA-G). High Pt metal loadings, up to85wt.%with a mean size of1.4nm, were densely in situ decorated on PDDA-modified grapheme surfaces. The electrochemical tests showed that the activity and stability of Pt supported on PDDA-graphene hybrid substrates for methanol oxidation were better than that of Pt supported on graphene sheets, also better than the widely used Pt/carbon black electrocatalysts with the same Pt content on the electrode. This improved activity indicates that PDDA plays a crucial role in the highly dispersion and stabilization of Pt nanoparticles on graphene and PDDA-G are able to an alternative support for Pt immobilization in direct methanol fuel cells.
引文
[1]Kroto HW, Heath JR, O'Brien SC, et al. C60:Buckminster fullerene[J]. Nature,1985, 318(6042):162-163.
    [2]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354 (6348):56-58.
    [3]GeimAK, NovoselovKS. The rise of graphene [J]. Nature Materials,2007,6:183-191.
    [4]Ajayan PM. Nanotubes from carbon[J]. Chemical Reviews,1999,99(7):1787-1799.
    [5]Choi HC, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J] Journal of the American Chemical Society,2002,124:9058-9059.
    [6]Qu LT, Dai LM. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes[J].Journal of the American Chemical Society,2005,127:10806-10807.
    [7]Qu LT, Dai LM, Osawa E. Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes[J] Journal of the American Chemical Society, 2006,128:5523-5532.
    [8]Gong KP, Du F, Xia ZH, et al. Nitrogen-Doped carbon nanotubes arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323:760-764.
    [9]Tnas J, Devoert MH, Dai H, et al. Individual single-wall carbon nanotubes as quantum wires[J]. Natuer,1997,386:474-77.
    [10]Li WZ,Liang CH.Qiu JS,et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell[J].Carbon,2002,40:787-803.
    [11]Li WZ, Liang CH, Zhou WJ, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. Journal of Physical Chemistry B,2003,107:6292-6299.
    [12]Rinzler AJ, Hanfer JH, Nikolaev P, et al.Unraveling nanotubes:field emission from an atomic wire[J]. Seience,1995,269:1550-1553.
    [13]Poncharal P, Wang ZL, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Seience,1999,283:1513-1516.
    [14]Dillon AC, Jones KM, Bekkedahl TK, et al. Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997,386:377-379.
    [15]Ye Y, Ahn CC, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes[J].Applied Physics Letters,1999,74:2307-2309.
    [16]Liu C, Fan YY, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J].Science,1999,286:1127-1129.
    [17]Planeix JM, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. Journal of the American Chemical Society,1994,116:7935-7936.
    [18]Coq B, Planeix JM, Brotons V. Fullerene-based materials as new support media in heterogeneous catalysis by metals[J].Applied Catalysis A,1998,173:175-183.
    [19]Zhang Y, Zhang HB, Lin GD, et al. Characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J]. Applied Catalysis A, 1999,187:213-224.
    [20]Liang CH, Li ZL, Qiu JS, et al. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis[J]. Journal of Catalysis,2002,211:278-282.
    [21]Zhang HZ, Qiu JS, Liang CH, et al. A novel approach to Co/CNTs catalys via chemical vapor depositin of organometallic compounds[J].Catalysis Letters,2005,101:211-214.
    [22]DeJong KP, Geus JW. Carbon nanofibers:catalytic synthesis and applications [J].Catalysis Reviews-Scienceand Engineering,2000,42:481-510.
    [23]Odom TW, Huang J, Kim P, et al. Structure and electronic properties of carbon nanotubes.[J]Journal of Physical Chemistry B,2000,104(13):2794-2809.
    [24]Treaey MMJ, Ebbesen TW, Gibson JM, et al. Excptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381 (6584):678-680.
    [25]Yakobson BI, Brabec CJ, Bernholc J. Nanomecha-nics of carbon tubes:instabilities beyond linear response[J]. Physical Review Letters,1996,76 (14):2511-2514.
    [26]Ando Y, Zhao X, Inoue S, et al. Mass production of multiwalled carbon nanotubes by hydrogen arc discharge[J]. Journal of Crystal Growth,2002,237:1926-1930.
    [27]Zhao T, Liu Y. Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures[J]. Carbon,2004,42 (12-13):2765-2768.
    [28]Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chemical Physics Letters,1999,313(1):91-97.
    [29]Jose-Yacaman M, Miki-Yoshida M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure[J]. Applied physics Letters,1993,62 (2):202-204.
    [30]Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Physics Letters,1995,243(1):49-54
    [31]Geohegan DB, Schittenhelm H, Fan X, et al. Condensed phase growth of single-wall carbon nanotubes from laser annealed nanoparticulates[J]. Applied Physics Letters,2001, 78(21):3307-3309.
    [32]Wang BM, Han Y, Zhang TT, Reinforcement of surface-modified multi-walled carbon nanotubes on cement-based composites[J]. Advances in Cement Research,2014,26(2): 77-84.
    [33]Ma RZ, Wei BQ, Xu CL, et al. The morphology changes of carbon nanotubes under laser irradiation[J].Carbon,2000,38(4):636-638.
    [34]Wang YY, Gupta S, Nenanich RJ. Role of thin Fe catalyst in thesynthesis of double-and single-wall carbon nanotubes viamicrowave chemical vapor deposition[J]. Applied Physics Letters,2004,85(13):2601-2603.
    [35]Lee GW, Jurng J, Hwang J. Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame[J]. Carbon,2004,42 (3):682-685.
    [36]Bandow S, Rao AM, Williams KA, et al. J Phys.Chem.B,1997,101 (44):8839-8842.
    [37]Georgakilas V, Gournis D, Tzitzios V, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles[J]. Journal of Materials Chemistry,2007,17:2679-2694.
    [38]Eder D. Carbon nanotube-inorganic hybrids[J]. Chemical Reviews,2010,110:1348-1385.
    [49]Chu HB, Wei L, Cui RL, et al. Carbon nanotubes combined with inorganic nanomaterials:preparations and applications[J].Coordination Chemistry Reviews,2010, 254:1117-1134.
    [40]Wildgoose GG, Banks CE, Compton RG Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications[J]. Small,2006,2:182-193.
    [41]Planeix JM, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. Journal of the American Chemistry Society,1994,116(17):7935.
    [42]Lambert JM, Ajayan PM, Bernier P, et al. Improving conditions towards isolating single-shell carbon nanotubes[J].Chemical Physics Letters,1994,226:364-371.
    [43]Zhang Y, Zhang HB, Lin GD, et al. Preparation,characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J]. Applied Catalysis A:General,1999,187:213-224.
    [44]Sano N, Taniguchi K, Tamon H. Hydrogen storage in porous single-walled carbon nanohorns dispersed with Pd-Ni alloy nanoparticles[J]. Journal of Physical Chemistry C,2014,118(7): 3402-3408.
    [45]Zhao Y, Fan L, Qiu Y, et al. A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes[J]. Electrochimica Acta,2007, 52:5873-5878.
    [46]Gao RF, Zheng JB. Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase[J]. Electrochemistry Communications,2009,11:608-611.
    [47]Kim E, Jeong HS, Kim BM. Efficient chemoselective reduction of nitro compounds and olefins using Pd-Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes [J]. Catalysis Communication,2014,45:25-29.
    [48]Hussain S, Pal AK. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique[J]. Materials Letters,2008,62:1874-1877.
    [49]Tang H, Chen JH, Yao SZ, et al. Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT)arrays for methanol oxidation[J]. Materials Chemistry and Physics,2005,92:548-553.
    [50]Ye JS, Cui HF, Wen Y, et al. Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methanol[J]. Microchimica Acta,2006, 152:267-275.
    [51]Zhang X, Shi XZ, Wang CM. Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications[J]. Catalysis Communications,2009,10:610-613.
    [52]He ZB, Chen JH, Liu DY, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol elctrooxidation [J]. Diamond and Related Materials,2004,13:1764-1770.
    [53]Quinn BM, Dekker C, Lemay SG. Electrodeposition of noble metal nanoparticles on carbon nanotubes[J]. Journal of the American Chemical Society,2005,127:6146-6147.
    [54]Huang HJ, Chen HQ, Sun DP, et al. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources,2012,204:46-52.
    [55]Chen Y, Yang F, Dai Y, et al. Ni@Pt Core-Shell Nanoparticles:Synthesis, structural and electrochemical properties[J]. Journal of Physical Chemistry C 2008,112,1645-1649.
    [56]Xu H, Zeng LP, Xing SJ, et al. Microwave-radiated synthesis of gold nanoparticles carbon nanotubes composites and its application to voltammetricdetection of trace mercury(Ⅱ) [J]. Electrochemistry Communications,2008,10:1839-1843.
    [57]Li YL, Hu FP, Wang X, et al. Anchoring metal nanoparticles on hydrofluoricacid treated multiwalled carbon nanotubes as stable electrocatalysts[J]. Electrochemistry Communications,2008,10:1101-1104.
    [58]Kyotani T, Nakazaki S, Xu WH, et al. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation[J]. Carbon,2001,39:782-785.
    [59]Hernadi K, Siska A, Thien-Nga L, et al. Reactivity of different kinds of carbon during oxidative purifyication of catalytically prepared carbon nanotubes[J]. Solid State Ionics,2001, 141:203-209.
    [60]Mawhinney DB, Naumenko V, Kuznetsova A, et al. Infrared spectral evidence for the etching of carbon nanotubes:ozone oxidation at 298 K[J]. Journal of the American Chemical Society, 2000,122:238-2384.
    [61]Coleman KS, Bailey SR, Fogen S, et al. Functionalization of single-walled carbon nanotubes via the bingel reaction[J], Journal of the American Chemical Society,2003,125:8722-8723
    [62]Liu J, Rinzler AG, Dai HJ, et al. Fullerene pipes[J]. Science,1998,280:1253-1256.
    [63]Guo SJ, Dong SJ, Wang EK. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Advanced Materials,2010,22:1269-1272.
    [64]Lu X, Imae T. Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes[J]. The Journal of Physical Chemistry C,2007,111:2416-2420.
    [65]Ou YY, Huang MH. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker[J]. The Journal of Physical Chemistry B, 2006,110:2031-2036.
    [66]Wang DL, Lu FS, Jiang SP. Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells[J]. Electrochimica Acta,2010, 55:2964-2971.
    [67]Hsu CH, Liao HY, Kuo PL. Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes[J].The Journal of Physical Chemistry C,2010, 114:7933-7939
    [68]Chen L, Hu GZ, Zou GJ, et al. Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Electrochemistry Communications,2009, 11:504-507.
    [69]Okamoto M, Fujigaya NN. Design of an assembly of poly(benzimidazole), carbon nanotubes and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure[J]. Small,2009,5(6):735-740.
    [70]Hsin YL, Hwang KC, Yeh CT. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells[J]. Journal of the American Chemical Society,2007,129:9999-10010.
    [71]Santhosh P, Gopalan A, Lee KP, et al. Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts:Preparation and performances for methanol oxidation[J]. Journal of Catalysis,2006,238:177-185
    [72]Kim B, Sigmund WM. Functionalized multiwall carbon nanotube/Gold nanoparticle composites[J]. Langmuir,2004,20:8239-8242.
    [73]Wang S, Jiang SP, Wang X. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation[J]. Nanotechnology, 2008,19:265601-265607.
    [74]Xu ML. Electrocatalytic performance of Pd-Ni nanowire arrays electrode for methanol electrooxidation in alkaline media[J]. Rare Metals,2014,33(1):65-69
    [75]Oliveira MM, Zarbin AJG, Carbon nanotubes decorated with both gold nanoparticles and polythiophene[J]. The Journal of Physical Chemistry C,2008,112:18783-18786.
    [76]Hu XG, Wang T, Qu XH, et al. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials[J]. The Journal of Physical Chemistry B,2006, 110(2):853-857.
    [77]Wang L, Guo SJ, Huang LJ, et al. Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction[J]. Electrochemistry Communications,2007,9:827-832.
    [78]Zhang S, Shao YY, Yin GP, et al. Carbon nanotubes decorated with Pt nanoparticles via electrostatic selfassembly:a highly active oxygen reduction electrocatalyst[J]. Journal of Materials Chemistry,2010,20:2826-2830.
    [79]Correa-Duarte MA, Liz-Marzan LM. Carbon nanotubes as templates for onedimensional nanoparticle assemblies[J]. Journal of Materials Chemistry,2006,16:22-25.
    [80]Li SS, L JJ, Hu YY et al. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation [J]. Journal of Power Sources,2014,247:213-218.
    [81]Sanles-Sobrido M, Correa-Duarte MA, Carregal-Romero S, et al. Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes[J]. Chemistry of Materials,2009,21:1531-1535.
    [82]Wang S, Jiang SP, Wang X. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation[J]. Nanotechnology, 2008,19:265601-265607.
    [83]Tan ZQ, Abe H, Naito M, et al. Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes[J]. Chemical Communications,2010,46:4363-4365.
    [84]Wang DL, Lu SF, Jiang SP. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells [J]. Chemical Communications,2010,46: 2058-2060.
    [85]Ellis AV, Vijayamohanan K, Goswami R, et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes[J]. Nano Letters,2003, 3:279-282.
    [86]Heer WAD, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science,1995,270:1179-1180.
    [87]Nugent JM, Santhanam KSV, Rubio. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes[J]. Nano Letters,2001,1(2):87-91.
    [88]Planeix JM, Coustel N, Cop B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. Journal of the American Chemical Society,1994,116:7935-7936.
    [89]Yoosefian M, Barzgari Z, Yoosefian J. A binitio study of Pd-decorated single-walled carbon nanotube with C-vacancy as CO sensor[J]. Structural Chemistry,2014,25(1):9-19.
    [90]Luo JZ, Gao LZ, Leung YL, et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs[J]. Catalysis Letters,2000,66(1-2):91-97.
    [91]Qu L T, Dai L M, Osawa E. Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes[J]. Journal of the American Chemical Society, 2006,128:5523-5532.
    [92]Tessonnier JP, Pesant L, Ehret G, et al. Pd nanoparticals introduced inside multi-walled carbon nanotubes for selective hrdrogenation of cinnamaldehyde into hydrocinnamaldehyde[J]. Applied Catalysis A:General,2005,288:203-210.
    [93]Sun ZY, Zhao YF, Xie Y, et al. The solvent-free selective hydrogenation of nitrobenzene to aniline:an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes[J]. Green Chemistry,2010,12:1007-1011.
    [94]Grove WR. On voltaic series and the combination of gases by platinum[J]. Philosophical Magazine,1839,14:127-130.
    [95]Mcgrath KM, Prakash GKS, Olah GA. Direct methanol fuel cells[J]. Journal of Industrial and Engineering Chemistry,2004,10(7):1063-10801.
    [96]Xu Q, Zhao TS, Yang WW, et al. A flow field enabling operating direct methanol fuel cells with highly concentrated methanol[J].International Journal of Hydrogen Energy,2011,36(1): 830-838.
    [97]Song SQ, Maragou V, Tsiakaras P. How far are the direct alcohol fuel cells from our energy future[J]. Journal of Fuel Cell Science and Technology,2007,4(2):203-209.
    [98]Bashyam R, Zelenay P. A class of non-precious metal composite catalyst s for fuel cells[J]. Nature,2006,443(7):63-66.
    [99]Liu JM, Meng H, Li JI, et al. Preparation of high performance Pt/CNT catalysts stabilized by ethylenediaminetetraaceyic acid disodium salt[J]. Fuel Cells,2007,7(5):402-407.
    [100]陈卫祥,赵杰,刘昭林,等.XC-72碳和碳纳米管负PtRu纳米粒子的微波快速合成及其对甲醇的电化学氧化[J].化学学报,2004,62(17):1590-1594.
    [101]Xia XH, Iwasita T, Ge F, et al. Structural effects on the formation and reactivity in methanol oxidation on polycrystalline and single crystal platinum[J]. Electrochimica Acta,1996, 41(5):711-718.
    [102]Gurau B, Viswanathan R, Lafrenz TJ. Structural and electrochemical characterization of binary,ternaryn and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. Journal of Physical Chemistry B,1998,102(49):9997-10003.
    [103]Yajima T, Wakabayashi N, Uiroyuki H. Adsorbed water for electro-oxidation of methanol at Pt-Ru alloy[J]. Chemistry Communications,2003, (7):828-829.
    [104]Antoling E. Catalysts for direct ethanol fuel cells[J]. Journal Power Sources,2007,170 (1):1-12.
    [105]Zhou WJ, Li WZ, Song SQ, et al. Bi-and tri-metallic Pt-based anode catalyst s for direct ethanol fuel cells[J]. Journal Power Sources,2004,131(1-2):217-223.
    [106]Ghosh S, Mondal S, Raj CR. Carbon nanotube-supported dendritic Pt-on-Pd nanostructures: growth mechanism and electrocatalytic activity towards oxygen reduction reaction[J]. Journal of Materials Chemistry A,2014,2(7):2233-2239.
    [107]Gasteiger HA, Markovic NM, Ross PN, et al. Methanol electrooxidation on well-characterized Pt-Ru alloys[J]. The Journal of Physical Chemistry,1993,97 (46):12020-12029.
    [108]Wang JJ, Yin GP, Liu H, et al. Carbon nanotubes supported Pt-Au catalysts for methanol-tolerant oxygen reduction reaction:A comparison between Pt/Au and PtAu nanoparticles[J]. Journal of Power Sources,2009,194:668-673.
    [109]刘志杰,赵斌.超细核壳铜-银双金属粉末的抗氧化性能研究[J].无机化学学报,1997,13(1):30-34.
    [110]Shao M, Sasaki K, Marinkovic NS, et al. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports [J]. Electrochemistry Communications,2007,9(12):2848-2853.
    [111]Yang J, Zhou W, Cheng CH, et al. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst[J]. ACS Applied Materials and Interfaces,2009, 2(1):119-126.
    [112]Chen Y, Yang F, Dai Y, et al. Ni@Pt core/shell nanoparticles:synthesis, structural and electrochemical properties[J]. Journal of Physical Chemistry C,2008,112(5):1645-1649.
    [113]Chen CH, Sarma LS, Wang DY, et al. Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation[J]. Chemcatchem,2010,2(2):159-166.
    [114]Henglein A. Preparation and optical aborption spectra of aucorePtshell and ptcoreAushell colloidal nanoparticles in aqueous solution[J]. Journal of Physical Chemistry B,2000, 104(10):2201-2203.
    [115]Zhao D, Wang YH, Xu BQ. Pt flecks on colloidal Au(Pt-Au)as nanostructured anode catalysts for electrooxidation of formic acid[J]. Journal of Physical Chemistry C,2009, 113(49):20903-20911.
    [116]Guo S, Wang L, Dong S, et al. A Novel urchinlike gold/platinum hybrid nanocatalyst with controlled size[J]. Journal of Physical Chemistry C,2008,112 (35):13510-13515.
    [117]Wu YN, Liao SJ, Liang ZX, et al. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt[J] Journal Power Sources,2009,194(2):805-810.
    [118]Wang W, Wang R, Ji S, et al. Pt overgrowth on carbon supported PdFe seeds in the preparation of core-shell electrocatalysts for the oxygen reduction reaction[J]. Journal Power Sources,2010,195(11):3498-3503.
    [119]Wei ZD, Feng YC, Li L, et al. Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells[J]. Journal Power Sources,2008,180(1):84-91.
    [120]Zhao HB, Li L, Yang J, et al. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation[J]. Electrochemistry Communications,2008, 10(10):1527-1529.
    [121]Wang Y, Toshima N. Preparation of Pd/Pt bimetallic colloids with controllable core/shell structures[J]. Journal of Physical Chemistry B,1997,101 (27):5301-5306.
    [122]Wang H, Xu C, Cheng F, et al. Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells[J]. Electrochemistry Communications,2008,10(10):1575-1578.
    [123]Hu JW, Zhang Y, Li JF, et al. Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy[J]. Chemical Physics Letters,2005,408(4-6):354-359.
    [124]Baldauf M, Kolb DM. Formic acid oxidation on ultrathin Pd films on au(hkl) and Pt(hkl) electrodes[J].Journal of Physical Chemistry,1996,100 (27):11375-11381.
    [125]Cheng FL, Dai XC, Wang H, et al. Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation[J]. Electrochimica Acta,2010, 55(7):2295-2298.
    [126]Sasaki K, Mo Y, Wang JX, et al. Pt submonolayers on metal nanoparticles-novel electrocatalysts for H2 oxidation and O2 reduction[J]. Electrochimica Acta,2003, 48(25-26):3841-3849.
    [127]Mazumder V, Chi MF, More KL, et al. Core/Shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction[J]. Journal of the American Chemistry Society,2010,132(23):7848-7849.
    [128]Rezaei M, Tabaian SH, Haghshenas DF. Electrochemical nucleation and growth of Pd/PdCo core-shell nanoparticles with enhanced activity and durability as fuel cell catalyst[J]. Journal of Materials Chemistry A,2014,2(13):4588-4597.
    [129]Berkeley A. Trends in electrocatalysis on extended and nano-scale Pt-bimetallic alloy surfaces[J]. Nature Materials,2007,6(3):241-247.
    [130]Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [131]Geim AK, Novoselov KS. The rise of graphene[J]. Nature Materials,2007,6:183-191.
    [132]Li D, Muller MB, Gilje S, et al. Processable aqueous dispersions of grapheme nanosheets[J]. Nature Nanotechnology,2008,3:101-105.
    [133]Neto AHC, Guinea F, Peres NMR, et al. The electronic properties of graphene[J]. Reviews Modern Physics,2009,81(1):109-162.
    [134]Novoselov KS, Jiang Z, Zhang Y, et al. Room-temperature quantum halleffect in Graphene.Science,2007,315(5817):1379-1379.
    [135]Williams JR, DiCarlo L, Marcus CM. Quantum hall effect in a gate-controlled junction of graphene[J].Science,2007,317(5838):638-641.
    [136]Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of graphene[J]. Nano Letters,2009,9(1):220-224.
    [137]Heersche HB, Jarillo-Herrero P, Ostinga JB. Bipolar supercurrent in graphene[J]. Nature, 2007,446(7131):56-59.
    [138]Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsiec strength of monolayer graphene[J]. Seienee,2008,321(5887):385-388.
    [139]Ranjbartoreh AR, Wang B, Shen X, et al. Advanced mechanical properties of grapheme paper[J]. Journal of Applied Physics,2011,109(1):014306.
    [140]Sevinli H, Topsakal M, Durgun E, et al. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons[J]. Physicsal Review B, 2008,77(19):195434.
    [141]Chan K T, Neaton J B, Cohen M L. First-principles study of metal adatom adsorption on graphene[J]. Physicsal Review B,2008,77(23):235430.
    [142]Novoselov KS, Geim AK, Morozov SV, et al. Electrical field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [143]Wang DH, Choi DW, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACSNano,2009,3(4):907-914.
    [144]Pan Y, Zhang H, Shi D, et al. High ordered,millimeter-scale,continuous,single crystalline graphene monolayer formed on Ru(0001)[J]. Advanced Materials,2009,21:2777-2780.
    [145]Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nano,2010,5(8):574-578.
    [146]Singh V, Joung D, Zhai L, et al. Graphene based materials:past, present and future[J]. Progress in Materials Science,2011,56(8):1178-1271.
    [147]Li XS, Magnuson CW, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J]. Journal of the American Chemical Society,2011,133(9):2816-2819.
    [148]Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters,2008,8(7):2012-2016.
    [149]Vang RV, Honkala K, Dhal S, et al. Controlling the catalytiebond-breaking seleetivity of Ni surfaces by stepblocking[J]. Nature Materials,2005,4:160-162.
    [150]Kim KS, Zhao Y, Jang H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706-710.
    [151]Li XS, Cai WW, An JH, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324:1312-1314.
    [152]Brodie BC. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London,1859,149:249-259.
    [153]Staudenmaier L.Verfahren zur darstellung der graphitsaure[J]. Berichte Der Deutschen Chemischen Gesellschaft,1898,31:1481-1487.
    [154]Hummer WS, Offeman RE. Funcationalized graphene and graphene oxide:materials synthesis and electronic applications[J]. Journal of the American Chemical Society,1958,80 (6):1339-1339.
    [155]Choucair M, Thordarson P, Stride JA, et al. Nature Nanotechnolgy,2009,4:30-33.
    [156]Li D, Mullen MB, Wallace GG, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3:101-105.
    [157]Stankovich S, Dikin DA, Ruoff RS, et al. Synthesis of graphene-based nanosheets via chemical reducation of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565.
    [158]Vincent CT, Matthew JA, Yang Y, et al. High-throughput solutions processing of large-scale graphene[J]. Nature Nanotechnology,2009,4:25-29.
    [159]Fan XB, Peng WC, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation[J]. Advanced Materials,2008, 20:4490-4493.
    [160]Liao KH, Mittal A, Bose S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano,2012,5(2):1253-1258.
    [161]Li Y, Fan X, Qi J, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction[J]. Nano Research,2010,3(6):429-437.
    [162]Paredes JI, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir,2008,24(19):10560-10564.
    [163]Stankovich S, Piner RD, Nguyen ST, et al. Synthesis and exfoliation of isocyanat-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347.
    [164]Tang XZ, Li W, Yu ZZ, et al. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine[J]. Carbon,2011, 49(4):1258-1265.
    [165]Wang G, Wang B, Park J, et al. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method[J]. Carbon,2009,47(1):68-72.
    [166]Niyogi S, Bekyarova E, Itkis ME, et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721.
    [167]Liu J, Fu S, Yuan B, et al. Toward a universal "adhesivenanosheet" for the assembly of multiple nanoparticles based on a protein-indueed reduction decoration of graphene oxide[J]. Journal of the American Chemical Society,2010,132 (21):7279-7281.
    [168]Bai H, Xu Y, Zhao L, et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J]. Chemical Communications,2009, (13):1667-1669.
    [169]Chunder A, Liu J, Zhai L. Reduced graphene oxide poly(3-hexylthiophene) supramolecular composites[J]. Macromolecular Rapid Communications,2010,31(4):380-384.
    [170]Hao R, Qian W, Zhang L, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets[J]. Chemical Communications,2008, (48):6576-6578.
    [171]Chunder A, Pal T, Khondaker SI, et al. Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties[J]. Journal of Physical Chemistry C,2010, 114(35):15129-15135.
    [172]Geng J, Jung HT. Porphyrin functionalized graphene sheets in aqueous suspensions:From the preparation of graphene sheets to highly conductive graphene films[J]. Journal of Physical Chemistry C,2010,114(18):8227-8234.
    [173]Wojcik A, Kamat PV. Reduced graphene oxide and porphyrin.An interactive affair in 2-D[J]. ACS Nano,2010,4(11):6697-6706.
    [174]Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules[J]. Advanced Materials,2009,21(31):3191-3195.
    [175]Chen D, Zhao X,Chen SS, et al. One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction [J]. Carbon,2014,68:755-762.
    [176]Liu J, Li Y, Li J, et al. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly [J]. Journal of Materials Chemistry,2010,20 (5):900-906.
    [177]Chen C, Zhai WT, Lu DD, et al. A facile method to prepare stable noncovalent functionalized graphene solution by using thionine[J]. Materials Research Bulletin,2011, 46(4):583-587.
    [178]Lomeda JR, Doyle CD, Kosynkin DV, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets[J]. Journal of the American Chemical Society,2008,130:16201-16206.
    [179]Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets@polystyrene nanocomposites via in situ emulsion polymerization [J]. Chemical Physics Letters,2010,484:247-253.
    [180]Saejeng Y, Tantavichet N. Preparation of Pt-Co alloy catalysts by electro deposition for oxygen reduction in PEMFC[J]. Journal of Applied Electrochemistry,2009,39(1):123-134.
    [181]Lai FJ, Chou HL, Sarma LS. Tunable properties of PtxFel-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction[J]. Nanoscale,2010,2:573-581.
    [182]Sode A, Li W, Yang Y,et al. Electrochemical Formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells[J]. Joural of Physical Chemistry B,2006, 110(17):8715-8722.
    [183]Limpattayanate S, Hunsom M. Electrocatalytic activity of Pt-Pd electrocatalysts for the oxygen reduction reaction in proton exchange membrane fuel cells:Effect of supports [J]. Renewable Energy,2014,63:205-211
    [184]Wang J, Yin G, Wang G, et al. A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion[J]. Electrochemistry Communications,2008,10(6):831-834.
    [185]Tung VC, Chen L, Allen MJ, et al. Low-temperature solution processing of graphene-earbon nanotube hybrid materials for high-performance transparent conduetors[J]. Nano Letters, 2009,9(5):1949-1955.
    [186]Yu D, Dai L. Self-assembled grhene/earbon nanotube hybrid films for supereapaeitors[J]. Journal of Physics Chemistry Letters,2010,1(2):467-470.
    [187]Hong K, Lee DW, Choi HJ, et al. Transparent,flexible condueting hybrid multilayer thin films of multiwalled carbon nanotubes with grhene nanosheets[J]. ACSNano, 2010,4(7):3861-3868.
    [188]Lee DH, Kim JE, Han TH, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on meehanieally compliant graphene films[J]. Advanced Materials,2010, 22(11):1247-1252.
    [189]Christopher K, Eli S, Thomas AC, et al. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient surfactantless conditions[J]. Nano Letters 2012,12:2013-2020.
    [190]Jakub SJ, Itai P, Elisabet A, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production [J]. Journal of the American Chemical Society,2011, 133(18):19432-19441.
    [191]Yin SB, Cai M, Wang CX, et al. Tungsten carbide promoted Pd-Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions[J]. Energy and Environmental Science,2011, 4:558-563.
    [192]Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite[J]. Journal of Natural Materials,2010,9:904-907.
    [193]Li X, Lin Z, Yi L, et al. Activating Pd by morphology tailoring for oxygen reduction[J]. Journal of the American Chemical Society,2009,131(2):602-608.
    [194]Mazumder V, Chi M, More KL, et al. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt Core/Shell nanoparticles[J]. Chemie International Edition,2010, 49:9368-9372.
    [195]Yan ZX, Wang CX, Shen PK, et al. Effect of the templates on the synthesis of hollow carbon materials as electrocatalyst supports for direct alcohol fuel cells[J].International Journal of Hydrogen Energy,2012,37:4728-4736.
    [196]Wang Q, Geng BY, Tao B, A facile room temperature chemical route to Pt nanocube/carbon nanotube heterostructures with enhanced electrocatalysis [J]. Journal of Power Sources,2011, 196:191-195.
    [197]Mondal KC, Cele LM, Witcomb MJ, et al.Carbon microsphere supported Pd catalysts for the hydrogenation of ethylene[J]. Catalysis Communications,2008,9:494-498.
    [198]S.H. Sun, G.X. Zhang, D.S. Geng, et al. Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable:3D electrodes for highly active electrocatalysts[J]. Chemistry-A European Journal,2010,16(3):829-835.
    [199]Liu ZF, Ada ET, Shamsuzzoha M, et al. Synthesis and activation of PtRu alloyed nanoparticles with controlled size and composition[J]. Chemistry of Materials,2006,18 (20):4946-4951.
    [200]Panagiotopoulou P, Kondarides DI. Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction[J]. Catalysis Today, 2006,112:49-52.
    [201]Guo SJ, Pan XL, Gao HL, et al. Probing the electronic effect of carbon nanotubes in catalysis:NH3 synthesis with Ru nanoparticles[J]. Chemistry-A European Journal,2010, 16(18):5379-5384.
    [202]Zhao YC, Yang XL, Tian JN, et al. Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media[J]. International Journal of Hydrogen Energy,2010,35 (8):3249-3257.
    [203]Wang DL, Huo L, Xin L, et al. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction[J]. Journal of the American Chemical Society,2010,132 (50):17664-17666.
    [204]Shao M, Sasaki K, Marinkovic NS, et al. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communications,2007,9 (12):2848-2853.
    [205]Chen D, Li J, Shi C, et al. Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion[J]. Chemistry of Materials,2007, 19:3399-3405.
    [206]Harpeness R, Gedanken A, Microwave synthesis of core-shell gold/Palladium bimetallic nanoparticles[J]. Langmuir,2004,20 (8):3431-3434.
    [207]Wang WS, He DW, Zhang XQ et al. Synthesis of gold nanoparticles with graphene oxide[J]. Journal of Nanoscience and Nanotechnology,2014,14(5):3412-3416.
    [208]Kokkinidis G, Papoutsis A, Stoychev D, et al. Electroless deposition of Pt on Ti-catalytic activity for the hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry,2000, 486:48-55.
    [209]Kokkinidis G, Stoychev D, Lazarov V, et al. Electroless deposition of Pt on Ti:Part Ⅱ. Catalytic activity for oxygen reduction[J]. Journal of Electroanalytical Chemistry,2001, 511:20-30.
    [210]Brankovic SR, Wang JX, Zhu Y, et al. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces[J]. Journal of Electroanalytical Chemistry,2002,524:231-241.
    [211]Brankovic SR, McBreen J, Adzic RR, Spontaneous deposition of Pt on the Ru(0001) surface[J]. Journal of Electroanalytical Chemistry,2001,503:99-104.
    [212]Sasaki K, Adzic RR, Monolayer-level Ru and NbO2-supported platinum electrocatalysts for methanol oxidation[J]. Journal of the Electrochemical Society,2008,155 (2):B180-B186.
    [213]Adzic RR, Zhang J, Sasaki K, et al. Platinum Monolayer Fuel Cell Electrocatalysts[J].Topics in Catalysis,2007,46:249-262.
    [214]Hu FP, Cui GF, Wei ZD, et al. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes[J]. Electrochemistry Communications, 2008,10 (9):1303-1306.
    [215]Bianchini C, Bambagioni V, Filippi J, et al. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells[J]. Electrochemistry Communications,2009,11 (5):1077-1080.
    [216]Fang X, Wang LQ, Shen PK, et al. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. Journal of Power Sources,2010,195(5):1375-1378.
    [217]Wang DL, Lu SF, Jiang SP. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells[J]. Chemical Communications,2010, 46:2058-2060.
    [218]Cheng JP, Zhang XB, Luo ZQ, et al. Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD[J]. Materials Chemistry and Physics,2006, 95(1):5-11.
    [219]Cheng JP, Zhang XB, Ye Y, et al. Production of carbon nanotubes with marine manganese nodule as a versatile catalyst[J]. Microporous and Mesoporous Materials,2005,81:73-78.
    [220]Kadirgan F, Kannan AM, Atilan T, et al. Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy,2009,34 (24):9450-9460.
    [221]Zheng HT, Li YL, Chen S, et al. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation[J]. Journal of Power Sources,2006,163(1):371-375.
    [222]Liu PB, Huang Y, Zhang X. Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline:Synthesis, characterization and their excellent electromagnetic absorption properties [J]. Journal of Alloys and Compounds,2014,596:25-31.
    [223]Singh RN, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions[J]. Carbon,2009, 47(1):271-278.
    [224]Shen SY, Zhao TS, Xu JB, et al. Synthesis of Pd Ni catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. Journal of Power Sources,2010,195 (4):1001-1006.
    [225]Shen PK, Yan ZX, Meng H, et al. Synthesis of Pd on porous hollow carbon spheres as an electrocatalyst for alcohol electrooxidation[J]. RSC Advances,2011,1:191-198.
    [226]Yan ZX, Hu ZF, Chen C, et al. Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation[J]. Journal of Power Sources, 2010,195 (21):7146-7151.
    [227]Zhang ZY, Xin L, Sun K, et al. Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte[J]. International Journal of Hydrogen Energy,2011,36 (20):12686-12697.
    [228]Liang ZX, Zhao TS, Xu JB, et al.Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochimica Acta,2009,54 (8):2203-2208.
    [229]Liu JP, Ye JP, Xu CW, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochemistry Communications2007,9 (9):2334-2339.
    [230]Spendelow JS, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry,2007,9:2654-2675.
    [231]Wakisaka M, Suzuki H, Mitsui S, et al. Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS[J]. Journal of Physical Chemistry C,2008,112 (7):2750-2755.
    [232]Wakisaka M, Mitsui S, Hirose Y, et al. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS[J]. Journal of Physical Chemistry B,2006,110:23489-23496.
    [233]Mavrikakis M, Stoltze P, Norskov JK. Making gold less noble[J]. Catalysis Letters,2000, 64:101-106.
    [234]Mayrhofer KJ J, Blizanac B B, Arenz M, et al. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis[J]. Journal of Physical Chemistry B,2005,109 (30):14433-14440.
    [235]Garcia AC, Paganin VA, Ticianelli EA. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC[J]. Electrochimica Acta,2008,53 (12):4309-4315.
    [236]Park JY, Kim S. Electrochemical Analysis of Polyethylenimine-Modified Graphene Oxide Supports for Pt Nanoparticles Catalyst Electrode[J]. Journal of Nanoscience and Nanotechnology,2014,14(3):2388-2394.
    [237]Tegou A, Papadimitriou S, Mintsouli I, et al. Rotating disc electrode studies of borohydride oxidation at Pt and bimetallic Pt-Ni and Pt-Co electrodes[J]. Catalysis Today,2011,170 (1):126-133.
    [238]Villa A, Wang D, Dimitratos N, et al. Pd on carbon nanotubes for liquid phase alcohol oxidation[J]. Catal Today,2010,150(1-2):8-15.
    [239]Han J, Liu Y, Li L, et al. Poly(o-phenylenediamine) submicrosphere-supported gold nanocatalysts:synthesis, characterization, and application in selective oxidation of benzyl alcohol[J]. Langmuir,2009,25(18):11054-11060.
    [240]Wang LC, Shen LL, Xu XH, et al. Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol[J]. RSC Advances,2012,2:10689-10693.
    [241]Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science,2006,311:362-365.
    [242]Zhao GF, Hu HY, Deng MM, et al. Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase selective oxidation of alcohols[J]. Chemical Communications,2011, 47:9642-9644.
    [243]Chen X C, Hou Y Q, Wang H, et al. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for suzuki coupling reactions[J].The Journal of Physical Chemistry C,2008,112(22):8172-8176.
    [244]Villa A, Wang D, Dimitratos N, et al. Pd on carbon nanotubes for liquid phase alcohol oxidation[J]. Catalysis Today,2010,150(1-2):8-15.
    [245]Pina C D, Falletta E, Rossi M, Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst[J]. Journal of Catalysis,2008,260:384-386.
    [246]Marx S, Baiker A. Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol[J]. The Journal of Physical Chemistry C,2009,113(15): 6191-6201.
    [247]Sun S H, Zhang G X, Geng D S, et al. Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable:3D electrodes for highly active electrocatalysts[J]. Chemistry A European Journal,2010,16(3):829-835.
    [248]Tegou A, Papadimitriou S, Mintsouli I, et al. Rotating disc electrode studies of borohydride oxidation at Pt and bimetallic Pt-Ni and Pt-Co electrodes[J]. Catalysis Today,2011, 170(1):126-133.
    [249]Zhao MC, Rice C, Masel RI, et al. Kinetic study of electro-oxidation of formic acid on spontaneously-deposited Pt/Pd nanoparticles:CO tolerant fuel cell chemistry[J]. Journal of the Electrochemical Society,2004,151:A131-A136.
    [250]Chen GY, Delafuente D A, Sarangapani S, et al.Combinatorial discovery of oxygen reduction-water oxidation electrocatalysts for regenerative fuel cells[J]. Catalysis Today, 2001,67:341-355.
    [251]Snyder J, Fujita T, Chen MW, et al.Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts[J]. Natuer Materials,2010,9(11):904-907.
    [252]Christopher K, Eli S, Thomas AC, et al.Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions[J]. Nano Letters,2012,12(4):2013-2020.
    [253]Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature,2006,443:63-66.
    [254]Peng HS. Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity [J] Journal of the American Chemical Society,2008, 130(1):42-43.
    [255]Rakhi RB, Sethupathi K, Ramaprabhu S. Field emission from carbon nanotubes on a graphitized carbon fabric[J].Carbon,2008,46(13):1656-1663.
    [256]Lv JJ, Li SS, Zheng JN, et al. Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity [J]. International Journal of Hydrogen Energy,2014,39(7):3211-3218.
    [257]Wang R F, Wang H, Wei B X, et al. Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation[J]. International Journal of Hydrogen Energy,2010, 35(19):10081-10086.
    [258]Stankovich S, Dikin DA, Dommett G H B, et al. Graphene-based composite materials[J]. Nature 2006,442:282-286.
    [259]Hu FP, Cui GF, Wei ZD, et al. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes[J]. Electrochemistry Communications, 2008,10 (9):1303-1306.
    [260]Zhao Y C, Yang X L, Tian J N, et al. Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media[J]. International Journal of Hydrogen Energy,2010,35(8):3249-3257.
    [261]Wu Y N, Liao S J, Liang Z X, et al. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt[J]. Journal of Power Sources,2009,194(2):805-810
    [262]Zhang W, Wang R, Wang H, et al.High performance carbon-supported core@shell PdSn@Pt electrocatalysts for oxygen reduction reaction[J]. Fuel Cells,2010,10(4):734-739.
    [263]Liu Z F, Hu J E, Wang Q, et al. PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant Electrocatalysts[J]. Journal of the American Chemical Society,2009,131(20): 6924-6925.
    [264]Yang X, Cheng F Y, Tao Z L, et al. Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles[J]. Journal of Power Sources, 2011,196(5):2785-2789.
    [265]Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
    [266]Lee Y, Bae S, Jang H, et al. Water-scale synthesis and transfer of graphene films[J]. Nano letters,2010,10(2):490-493.
    [267]Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews,2010,39:228-240.
    [268]Chen XM, Wu GH, Chen JM, et al. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. Journal of the American Chemical Society,2011,133(11):3693-3695.
    [269]K. Zhang, Q. L. Yue, G. F. Chen, Y.L. Zhai, L. Wang, H. S. Wang, J. S. Zhao, J. F. Liu, J. B. Jia, and H.B. Li, The Journal of Physical Chemistry. C,2011,115,2-5.
    [270]Jung JH, Park HJ, Kim J, et al. Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources,2014,248: 1156-1162.
    [271]F. Schedin, E. Lidorikis, A.Lombardo, et al. Surface-enhanced raman spectroscopy of graphene[J].ACS Nano 2010,4(10):5617-5626.
    [272]Lee J, Novoselov K S, Shin H S. Interaction between metal and graphene:dependence on the layer number of graphene[J]. ACS Nano,2011,5(1):608-612.
    [273]Lu YH, Zhou M, Zhang C, et al. Metal-embedded graphene:a possible catalyst with high activity[J]. The Journal of Physical Chemistry C,2009,113:20156-20160.
    [274]Wu J, Ong SW, Kang HC, et al. Hydrogen adsorption on mixed platinum and nickel nanoclusters:the influence of cluster composition and graphene support[J]. The Journal of Physical Chemistry C,2010,114:21252-21261.
    [275]Xu C, Wang X, Zhu JW. Graphene-metal particle nanocomposites[J]. The Journal of Physical Chemistry C,2008,112(50):19841-19845.
    [276]Yang J, Tian CG, Wang L, et al. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation[J]. Journal of Materials Chemistry,2011.21(10):3384-3390.
    [277]Zhao H, Yang J, Wang L, et al. Fabrication of a palladium nanoparticle graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid[J]. Chemical Communications,2011,47(7):2014-2016.
    [278]Hull RV, Li L, Xing YC, et al. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes[J]. Chemistry Materials,2006,18 (7):1780-1788.
    [279]Jafri RI, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Journal of Materials Chemistry,2010,20 (34):7114-7117.
    [280]He W, Jiang HJ, Zhou Y, et al. An efficient reduction route for the production of Pd-Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts[J]. Carbon,2012,50 (1):265-274.
    [281]Liu YJ, Huang YQ, Xie Y, et al. Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell[J]. Chemical Engineering Journal,2012,197:80-87.
    [282]Wei W L, Qu K G, Ren JS, et al. Chiral detection using reusable fluorescent amylose-functionalized graphene[J]. Chemical Science,2011,2:2050-2056.
    [283]Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61(20):14095-14107.
    [284]Huang HJ, Chen H, Sun DP, et al. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells[J]. Journal of Power Sources,2012,204:46-52.
    [285]Zhu YC, Zhou YH, Yu LY, et al. A highly stable and active Pd catalyst on monolithic cordierite with graphene coating assisted by PDDA[J]. RES Advances,2014,4(19): 9480-9483.
    [286]Jiang FX, Yao ZQ, Yue RR, et al. Electrocatalytic activity of Pd nanoparticles supported on poly(3,4-ethylenedioxythiophene)-graphene hybrid for ethanol electrooxidation[J]. Journal of Solid State Electrochemistry,2013,17(4):1039-1047.
    [287]Claude L, Alexandra L, Veronique L, et al. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. Journal of Power Sources,2002,105(2):283-296.
    [288]Qiao Y, Li CM, Nanostructured catalysts in fuel cells[J]. Journal Material Chemistry,2011, 21:4027-4036.
    [289]Nagashree KL, Raviraj NH, Ahmed MF. Carbon paste electrodes modified by Pt and Pt-Ni microparticles dispersed in polyindole film for electrocatalytic oxidation of methanol[J]. Electrochim Acta,2010,55(8):2629-2635.
    [290]Chan KY, Ding J, Ren JW, et al. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells[J]. Journal of Materials Chemistry,2004,14:505-516.
    [291]Basri S, Kamarudin SK, Daud WRW, et al. Nanocatalyst for direct methanol fuel cell (DMFC)[J]. International Journal of Hydrogen Energy,2010,35 (15):7957-7970.
    [292]Yan ZX, Wang HG, Zhang MP, et al. Pt supported on Mo2C particles with synergistic effect and strong interaction force for methanol electro-oxidation[J]. Electochim Acta,2013,95: 218-224.
    [293]Yan ZX, Hu ZF, Chen C, et al. Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation[J]. Journal of Power Sources, 2010,195(21):7146-7151.
    [294]Zhang MM, Yan ZX Xie JM. Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media[J]. Electrochimica Acta,2012,77:237-243.
    [295]Zhang MM, Yan ZX, Sun Q, et al. Synthetic core-shell Ni@Pd nanoparticles supported on graphene and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. New Journal of Chemistry,2012,36:2533-2540.
    [296]Yang F, Liu YQ, Gao L, et al. pH-sensitive highly dispersed reduced graphene oxide solution using lysozyme via an in situ reduction method[J]. The Journal of Physical Chemistry C,2010,114:22085-22091.
    [297]Kasai H, Res JR. A new automated method to analyze urinary 8-hydroxydeoxyguanosine by a high-performance liquid chromatography-electrochemical detector system[J]. Journal of Radiation Research,2003,44(2):185-189.
    [298]Weiss DJ, Lunte C.E. Detection of a urinary biomaker for oxidative DNA damage 8-hydroxydeoxyguanosine by capillary electrophoresis with electrochemical detection[J]. Electrophoresis,2000,21(10):2080-2085.
    [299]Yin BY, Whyatt R.M, Perera FP, et al. Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA[J].Free Radical Biology and Medicine,1995,18(6):1023-1032.
    [300]Li TH, Jia WL, Wang HS, et al. Electrochemical performance of 8-hydroxy-2-deoxyguanosine and its detection at poly (3-methylthiophene) modified glassy carbon electrode[J]. Biosense Bioelectron,2007,22(7):1245-1250.
    [301]Zhang QX, Ren QQ, Miao YQ, et al. One-step synthesis of graphene polyallylamine-Au nanocomposites and their electrocatalysis toward oxygen reduction[J]. Talanta,2012,89: 391-395.
    [302]Cui F, Zhang XL. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites[J]. Journal of Electroanalytical Chemistry, 2012,669:35-41.
    [303]Fang YX, Guo SJ, Zhu CZ, et al. Self-assembly of cationic polyelectrolyte -functionalized graphene nanosheets and gold nanoparticles:a two-dimensional heterostructure for hydrogen peroxide sensing[J]. Langmuir,2010,26(13):11277-11282.
    [304]Pozio A, Francesco M D, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. Journal of Power Sources,2002,105(1):13-19.
    [305]Chetty R, Xia W, Kundu S, et al. Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes[J]. Langmuir,2009, 25(6):3853-3860.
    [306]Mu YY, Liang HP, Hu JS, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. The Journal of Physical Chemistry B, 2005,109:22212-22216.
    [307]Kabbabi A, Faure R, Durand R. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes[J]. Journal of Electroanalytical Chemistry,1998,444(1):41-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700