用户名: 密码: 验证码:
碳纳米管抗氧机理研究及其在聚乙烯树脂改性中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)超强的力学性能、极大的长径比、优异的化学和热稳定性、良好的导电性能以及独特的一维纳米结构,使其在聚烯烃/CNT复合材料中发挥了重要作用。聚烯烃/CNT复合材料潜在的巨大优势,使其成为近年来研究的热点。对聚烯烃/CNT复合材料的研究主要分为“认识研究”和“改造研究”。前者主要研究CNT对聚烯烃的增强效应及机理,以帮助更好地认识、优化材料性能;后者主要是指对CNT进行化学修饰改性以提高其在聚合物基体中分散性及相容性,达到增强或赋予材料新的性能的目的。
     本文从这两方面出发,针对聚乙烯的热氧老化行为,考察了CNT对聚乙烯热氧降解行为的影响,探讨了其对聚乙烯热氧稳定化作用机理;为了提高CNT的抗氧能力以及其在聚乙烯基体中的分散性,设计合成了三大类受阻酚接枝的CNT,并研究了其对应的聚乙烯复合材料的性能。主要工作和研究结果如下:
     (1)在100℃下对高密度聚乙烯材料进行热烘箱加速老化实验,采用固体核磁共振技术表征聚乙烯老化过程中三相结构及分子链段运动性的变化。研究表明,在氧化诱导期聚乙烯的聚集态结构变化不大,而在自动氧化期,聚乙烯结晶相含量明显增加,无定形相及界面相含量则相应减少。同时,聚乙烯结晶相及界面相中分子链段运动性随着老化程度的加深越来越弱,而无定形相分子链段运动性则得到加强。聚乙烯老化过程中聚集态结构的改变与分子量分布、羰基指数及材料拉伸性能的变化相一致。无定形相中断链反应使得分子量及链缠结密度降低、链段运动性增强,最终导致材料力学性能下降。
     (2)选用不同维度的碳纳米填料制备了聚乙烯/碳纳米复合材料,采用差示扫描量热仪研究聚乙烯复合材料的等温及非等温结晶行为。等温结晶数据表明,结晶受成核控制,聚乙烯中纳米材料维度越低,结晶诱导期越长,结晶速率越慢。采用Avrami及Tobin模型对等温结晶行为进行分析,模型指数表明在一维及二维纳米材料存在下,聚乙烯晶体呈二维片晶生长;在零维纳米材料存在下,聚乙烯晶体呈三维球晶生长。与等温结晶相反,聚乙烯非等温结晶受扩散控制,低维度纳米碳材料促进聚乙烯结晶。分别采用Ozawa及Mo模型分析聚乙烯非等温结晶过程,结果表明Mo方程更适用于对聚乙烯非等温结晶行为的描述。
     (3)通过氧化诱导实验对比研究了单壁碳纳米管(SWCNT)、多壁碳纳米管(MWCNT)以及羟基化多壁碳纳米管(MWCNT-OH)对聚乙烯热氧稳定性的影响。研究发现,CNT在聚乙烯热氧老化过程中表现出抗氧性能,能显著延长聚乙烯的氧化诱导期。根据聚乙烯氧化诱导期的长短,可得出三种CNT的抗氧能力顺序为:MWCNT-OH> MWCNT> SWCNT。进一步,通过电子自旋共振实验发现,CNT具有显著的自由基清除能力,且三种CNT自由基清除能力顺序与抗氧能力一致,表明CNT在聚乙烯中的抗氧行为遵循自由基清除机理。拉曼光谱分析侧面说明了CNT的自由基清除能力与其结构缺陷引入的酚基、醌基等反应性功能团有关。
     (4)采用一种氨基硅烷偶联剂,通过两种合成途径(两步法和一步法),将小分子受阻酚(AO)接枝到MWCNT表面,得到两种功能化的CNT-AO-MWCNT-A和AO-MWCNT-B,并通过熔融共混法制备得到相应的聚乙烯/CNT复合材料。采用红外光谱、拉曼光谱、能谱分析等方法证实了受阻酚抗氧剂成功接枝到CNT表面。CNT的热重分析结果表明,相比于两步法获得的AO-MWCNT-A,一步法合成的AO-MWCNT-B表面受阻酚的接枝量更大,自由基清除能力也更强。对聚乙烯/CNT复合材料的研究表明,功能化后的CNT在聚乙烯中的分散性得到提高。与原始CNT相比,AO-MWCNT-A及AO-MWCNT-B分别使聚乙烯材料的氧化诱导温度进一步提高了11℃和28℃,氧化诱导时间(200℃下)延长了16.6mmin和71.1mmin,且对材料的力学增强效果更显著。抽提实验结果表明,受阻酚接枝到CNT表面后其耐溶剂抽提性比小分子受阻酚明显提高。无论是与原始MWCNT还是与受阻酚抗氧剂相比,受阻酚接枝的CNT在聚乙烯中均表现出更强的力学增强效应、更优异的抗氧性以及稳定性。
     (5)设计合成了以丁二胺为核、丙烯酸为重复单元的一代(G1)和二代(G2)树枝状多醇,以G1和G2作为“桥梁分子”共价连接MWCNT与受阻酚抗氧剂,得到两种受阻酚接枝的CNT——MWCNT-G1-AO和MWCNT-G2-AO,通过熔融共混法制得相应的聚乙烯/CNT复合材料。对CNT的分析结果表明,G2比G1活性更高,更容易实现受阻酚的接枝,最终每克MWCNT-G1-AO及MWCNT-G2-AO上受阻酚的接枝量分别为0.159mmol和0.367mmol。由于MWCNT-G2-AO上受阻酚的接枝量更高,因此其对聚乙烯的热氧稳定效应更显著,相比于原始CNT, MWCNT-G2-AO可使聚乙烯复合材料的氧化诱导时间进一步延长93.6min。此外,抗氧剂的复配研究表明,MWCNT-G2-AO与工业亚磷酸酯抗氧剂(Irgafos168)有显著的协同抗氧效果,为受阻酚接枝的CNT的工业应用提供了思路。
     (6)以提高CNT上受阻酚的接枝量为目的,选用合成工艺简单、活性较高的聚缩水甘油作为“桥梁分子”,通过在MWCNT表面引发缩水甘油单体开环聚合,得到超支化聚缩水甘油包覆的核壳型CNT,再通过酯化反应合成得到受阻酚接枝的CNT——MWCNT-HPG-AO。对MWCNT-HPG-AO的分析表明,其表面包覆了一层厚度约4nm的有机组分,含量高达85wt%,其中受阻酚接枝量为2.23mmol/g MWCNT.相比于硅烷偶联剂及树枝状多醇,超支化聚缩水甘油使得单位质量的MWCNT表面受阻酚接枝量提高了一个数量级。将本文所合成的所有受阻酚接枝的CNT分别与聚乙烯熔融共混,制备得到MWCNT质量分数相同的聚乙烯复合材料。聚乙烯复合材料的结构及热氧稳定性结果表明,MWCNT-HPG-AO在聚乙烯基体中具有优异的分散性,可实现单根分散,且聚乙烯/MWCNT-HPG-AO复合材料的氧化诱导时间最长,即MWCNT-HPG-AO的抗氧能力最强。对聚乙烯复合材料的氧化动力学的研究表明,MWCNT-HPG-AO可以显著提高复合材料的氧化活化能。
Nowadays, polyolefin/carbon nanotube (CNT) nanocomposites has aroused wide attention of researchers due to their prominently improved mechanical, thermal, optical and physic-chemical properties comparing with the pure or conventional filler-reinforced polyolefin. Generally, the researches are focused on two aspects:(a) the reinforced effect and mechanism of CNTs in polyolefin, which help us to understand and optimize the performance of the composites;(b) the chemical modification of the CNTs, which means to improve their dispersion state in the polymer matrix and thus achieve better physical properties of the composites.
     Based on the two aspects, the thermal oxidative stability of polyethylene/CNT nanocomposites and the antioxidant mechanism of CNTs are first studied in this thesis. After that, three kinds of hindered phenol grafted CNTs are synthesized to achieve enhanced antioxidant ability and better dispersion state in the polymer matrix. The main work and results are as follows.
     (1) The thermal oxidative degradation of high density polyethylene (HDPE) was investigated during oven aging at100℃.1H low-field solid-state nuclear magnetic resonance (NMR) was used to characterize the behavior of molecular chains and the changes in phase content of HDPE during aging. The prolongation of aging led to a progressive increase in the amount of the crystalline phase at the expense of the other two phases. A slight decrease in chain mobility of the crystalline phase and interphase was observed simultaneously. The results obtained from other traditional technical approaches are also discussed in the context of the molecular dynamics properties revealed by NMR. The reduction in molecular weight, in chain mobility and the increase in crystallinity during thermo-oxidation were the main factors which caused the loss of mechanical performance of HDPE.
     (2) The isothermal and non-isothermal crystallization behavior of polyethylene containing various zero, one, and two dimensional (0-D,1-D, and2-D) carbon nanofillers were investigated by means of differential scanning calorimetry. For a given temperature, the isothermal crystallization rate got slower with the addition of lower dimensional carbon nanofillers. The values of Avrami and Tobin exponents indicated that the isothermal crystallization of polyethylene followed two-dimensional crystal growth in the presence of2-D/1-D carbon nanofillers, while exhibited three-dimensional heterogeneous crystal growth in the presence of0-D carbon nanofillers. Contrary to the isothermal study, the non-isothermal crystallization of polyethylene was accelerated in the presence of lower dimensional nanofillers. Ozawa and Mo methods were used to analyze the non-isothermal crystallization data. It was observed that only Mo approach could successfully describe the non-isothermal crystallization process of polyethylene/carbon nanocomposites.
     (3) The influence of Single-walled carbon nanotubes (SWCNTs), multiple-walled carbon nanotubes (MWCNTs), and hydroxylated multiple-walled carbon nanotubes (MWCNTs-OH) on the thermal oxidative degradation of polyethylene was studied respectively. The thermal oxidative stability of polyethylene was enhanced with the addition of CNTs. Based on the oxidation induction experiments, it was found that the antioxidant capacity of the CNTs was in the following order:MWCNTs-OH> MWCNTs> SWCNTs. The antioxidant ability and mechanism of CNTs were further examined by electron spin resonance spectra and Raman spectra. It was observed that the antioxidant behavior of CNTs obeys a free radical scavenging mechanism. The difference in their defect concentration was one of the factors which caused different antioxidant capacity between these CNTs.
     (4) To improve the antioxidant ability and dispersion state of CNTs in the polymer matrix, a hindered phenolic antioxidant (AO) has been covalently grafted onto the surface of MWCNTs using a silane coupling agent. Two contrasting routes, two-step functionalization and one-step functionalization of MWCNTs, were developed. The corresponding polyethylene/MWCNT composites were prepared by melt blending. Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analysis, transmission electron microscopy, and Raman spectroscopy confirmed the successful functionalization of MWCNTs. Electron spin resonance spectra revealed that the free radical scavenging activity of MWCNTs was greatly increased after functionalization. The resultant MWCNTs exhibited improved dispersion and antioxidant efficiency in the polyethylene matrix. Compared with the two-step functionalized MWCNTs, the one-step functionalized MWCNTs were more efficient in preventing polyethylene from thermal oxidative degradation.
     (5) The first and second generation of dendritic polyols (G1and G2) with butanediamine as core and acrylic acid as repeating unit are synthesized and used as linkage to covalently connect MWCNTs and AO. The resultant CNTs (MWCNTs-G1-AO and MWCNTs-G2-AO) and corresponding polyethylene/CNT nanocomposites were prepared. It was found that G2are more efficient in grafting AO than Gl. Due to a higher loading of antioxidant groups, the antioxidant ability of MWCNTs-G2-AO are stronger than MWCNTs-G1-AO. Comparing with the pristine CNTs, MWCNTs-G2-AO can further extent the oxidation induction time (200℃) of the polyethylene by93.6min. Furthermore, it was found that there is a significant antioxidant synergy between MWCNTs-G2-AO and Irgafos168.
     (6) To further improve the loading of AO on the surface of the CNTs, a hyperbranched linkage was proposed. Firstly, the hyperbranched polyglycerol was grown from the surface of MWCNTs by ring-opening polymerization. After that, AO was grafted onto the MWCNTs through esterification. It showed that the obtained MWCNTs-HPG-AO were coated with an organic layer of about4nm. The result indicated that the loading of AO was2.23mmol for per gram MWCNTs, which increased about an order of magnitude comparing with CNTs functionalized through other methods. Polyethylene nanocomposites incorporated with different kinds of functionalized CNTs were prepared respectively. The MWCNTs-HPG-AO were separately dispersed in the polyethylene. Among all the nanocomposites, polyethylene/MWCNT-HPG-AO nanocopmosite was the most stable during thermal oxidation. It showed that the oxidation activation energy of polyethylene was improved with the addition of MWCNTs-HPG-AO.
引文
[1]Iijima S. Helical Microtubules of graphitic carbon. Nature.1991;354(6348):56-8.
    [2]Bethune DS, Kiang CH, Devries MS, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature.1993;363(6430):605-7.
    [3]Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon. 1995;33(7):883-91.
    [4]Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites:a review. Composites Science and Technology. 2001;61(13):1899-912.
    [5]Yakobson BI, Avouris P. Mechanical properties of carbon nanotubes. Carbon Nanotubes. 2001;80:287-327.
    [6]Ma PC, Siddiqui NA, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review. Composites Part A:Applied Science and Manufacturing.2010;41(10):1345-67.
    [7]Lau KT, Hui D. The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B:Engineering.2002;33(4):263-77.
    [8]韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社;2006.
    [9]Dai HJ, Wong EW, Lieber CM. Probing electrical transport in nanomaterials:Conductivity of individual carbon nanotubes. Science.1996;272(5261):523-6.
    [10]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273(5274):483-7.
    [11]Bockrath M, Cobden DH, McEuen PL, et al. Single-electron transport in ropes of carbon nanotubes. Science.1997;275(5308):1922-5.
    [12]Tsukagoshi K, Alphenaar BW. Spin-polarized transport in carbon nanotubes. Superlattices and Microstructures.2000;27(5-6):565-70.
    [13]Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters.2000;84(20):4613-6.
    [14]Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. Journal of Materials Chemistry.2002;12(7):1952-8.
    [15]Lin T, Bajpai V, Ji T, et al. Chemistry of carbon nanotubes. Australian Journal of Chemistry. 2003;56(7):635-51.
    [16]Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes. Advanced Materials.2005;17(1):17-29.
    [17]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chemical Reviews.2006; 106(3):1105-36.
    [18]Singh P, Campidelli S, Giordani S, et al. Organic funetionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews.2009;38(8):2214-30.
    [19]Coleman JN, Khan U, Blau WJ, et al. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon.2006;44(9):1624-52.
    [20]Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Advanced Materials.2006;18(6):689-706.
    [21]Georgakilas V, Bourlinos A, Gournis D, et al. Multipurpose organically modified carbon nanotubes:From functionalization to nanotube composites. Journal of the American Chemical Society.2008;130(27):8733-40.
    [22]Feng JT, Sui JH, Cai W, et al. Microstructure and mechanical properties of carboxylated carbon Nanotubes/Poly(L-lactic acid) composite. Journal of Composite Materials. 2008;42(16):1587-95.
    [23]Zhao B, Wang J, Li ZJ, et al. Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings. Materials Letters.2008;62(28):4380-2.
    [24]Gao JB, Itkis ME, Yu AP, et al. Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. Journal of the American Chemical Society. 2005;127(11):3847-54.
    [25]Yuen SM, Ma CCM, Teng CC, et al. Molecular motion, morphology, and thermal properties of multiwall carbon nanotube/polysilsesquioxane composite. Journal of Polymer Science Part B:Polymer Physics.2008;46(5):472-82.
    [26]Yuen SM, Ma CCM. Morphological, electrical, and mechanical properties of multiwall carbon nanotube/polysilsesquioxane composite. Journal of Applied Polymer Science. 2008;109(3):2000-7.
    [27]Sui G, Zhong WH, Yang XP, et al. Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polymers for Advanced Technologies. 2008;19(11):1543-9.
    [28]Luo JT, Wen HC, Wu WF, et al. Mechanical research of carbon nanotubes/PMMA composite films. Polymer Composites.2008;29(12):1285-90.
    [29]Sahoo NG, Jung YC, Yoo HJ, et al. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromolecular Chemistry and Physics.2006;207(19):1773-80.
    [30]Rasheed A, Dadmun MD, Brittz PF. Polymer-nanofiber composites:Enhancing composite properties by nanofiber oxidation. Journal of Polymer Science Part B:Polymer Physics. 2006;44(21):3053-61.
    [31]Rasheed A, Chae HG, Kumar S, et al. Polymer nanotube nanocomposites:Correlating intermolecular interaction to ultimate properties. Polymer.2006;47(13):4734-41.
    [32]Gao JB, Zhao B, Itkis ME, et al. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. Journal of the American Chemical Society. 2006;128(23):7492-6.
    [33]Kymakis E, Klapsis G, Koudoumas E, et al. Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics. European Physical Journal-Applied Physics.2006;36(3):257-9.
    [34]Ma XC, Lun N, Wen SL. Attachment of gold nanoparticles to carbon nanotubes. Chinese Chemical Letters.2005;16(2):265-8.
    [35]Ruelle B, Felten A, Ghijsen J, et al. Functionalization of MWCNTs with atomic nitrogen. Micron.2009;40(1):85-8.
    [36]Ruelle B, Peeterbroeck S, Gouttebaron R, et al. Functionalization of carbon nanotubes by atomic nitrogen formed in a microwave plasma Ar+N2 and subsequent poly(epsilon-caprolactone) grafting. Journal of Materials Chemistry.2007; 17(2):157-9.
    [37]Zhou CJ, Wang SF, Zhang Y, et al. In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes. Polymer.2008;49(10):2520-30.
    [38]Zhou CJ, Wang SF, Zhuang QX, et al. Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon.2008;46(9):1232-40.
    [39]Chen XH, Tao F, Wang JF, et al. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Materials Science and Engineering:A-Structural Materials:Properties, Microstructure and Processing.2009;499(1-2):469-75.
    [40]Sun L, Warren GL, O'Reilly JY, et al. Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon.2008;46(2):320-8.
    [41]Hirsch A. Functionalization of single-walled carbon nanotubes. Angewandte Chemie-International Edition.2002;41(11):1853-9.
    [42]Baskaran D, Mays JW, Bratcher MS. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chemistry of Materials. 2005;17(13):3389-97.
    [43]Liu P. Modifications of carbon nanotubes with polymers. European Polymer Journal. 2005;41(11):2693-703.
    [44]Bredeau S, Peeterbroeck S, Bonduel D, et al. From carbon nanotube coatings to high-performance polymer nanocomposites. Polymer International.2008;57(4):547-53.
    [45]Andrews R, Jacques D, Qian DL, et al. Multiwall carbon nanotubes:Synthesis and application. Accounts of Chemical Research.2002;35(12):1008-17.
    [46]Liu J, Bibari O, Mailley P, et al. Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene-polyethylene glycol through pi-pi stacking. New Journal of Chemistry.2009;33(5):1017-24.
    [47]Liao SH, Yen CY, Hung CH, et al. One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry.2008;18(33):3993-4002.
    [48]Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, et al. Carbon nanotubes provide self-extinguishing grade to silicone-based foams. Journal of Materials Chemistry. 2008;18(33):3933-9.
    [49]O'Connor I, Hayden H, O'Connor S, et al. Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. Journal of Materials Chemistry.2008;18(46):5585-8.
    [50]Bonduel D, Mainil M, Alexandra M, et al. Supported coordination polymerization:a unique way to potent polyolefin carbon nanotube nanocomposites. Chemical Communications. 2005;(6):781-3.
    [51]Bin YZ, Kitanaka M, Zhu D, et al. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules. 2003;36(16):6213-9.
    [52]Chen L, Pang XJ, Qu MZ, et al. Fabrication and characterization of polycarbonate/carbon nanotubes composites. Composites Part A:Applied Science and Manufacturing. 2006;37(9):1485-9.
    [53]Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. Journal of Applied Polymer Science. 2002;84(14):2660-9.
    [54]Li J, He WD, Yang LP, et al. Preparation of multi-walled carbon nanotubes grafted with synthetic poly(L-lysine) through surface-initiated ring-opening polymerization. Polymer. 2007;48(15):4352-60.
    [55]Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science.2000;290(5495):1331-4.
    [56]Moore VC, Strano MS, Haroz EH, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters.2003;3(10):1379-82.
    [57]Saran N, Parikh K, Suh DS, et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. Journal of the American Chemical Society.2004;126(14):4462-3.
    [58]Gong XY, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials.2000; 12(4):1049-52.
    [59]Andrews R, Jacques D, Minot M, et al. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering. 2002;287(6):395-403.
    [60]Bocchini S, Frache A, Camino G, et al. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. European Polymer Journal.2007;43(8):3222-35.
    [61]McNally T, Potschke P, Halley P, et al. Polyethylene multiwalled carbon nanotube composites. Polymer.2005;46(19):8222-32.
    [62]Tang WZ, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon.2003;41(14):2779-85.
    [63]Valentini L, Biagiotti J, Kenny JM, et al. Morphological characterization of single-walled carbon nanotubes-PP composites. Composites Science and Technology. 2003;63(8):1149-53.
    [64]Manchado MAL, Valentini L, Biagiotti J, et al. Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing. Carbon.2005;43(7):1499-505.
    [65]Zhang H, Zhang Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European Polymer Journal.2007;43(8):3197-207.
    [66]Potschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer.2002;43(11):3247-55.
    [67]Potschke P, Bhattacharyya AR, Janke A. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer. 2003;44(26):8061-9.
    [68]Potschke P, Bhattacharyya AR, Janke A. Melt mixing of polycarbonate with multiwalled carbon nanotubes:microscopic studies on the state of dispersion. European Polymer Journal. 2004;40(1):137-48.
    [69]Haggenmueller R, Gommans HH, Rinzler AG, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physics Letters. 2000;330(3-4):219-25.
    [70]Jin Z, Pramoda KP, Xu G, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters.2001;337(1-3):43-7.
    [71]Gorga RE, Cohen RE. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. Journal of Polymer Science Part B:Polymer Physics.2004;42(14):2690-702.
    [72]Zeng JJ, Saltysiak B, Johnson WS, et al. Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Composites Part B:Engineering. 2004;35(2):173-8.
    [73]Hu NT, Zhou HW, Dang GD, et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization. Polymer International.2007;56(5):655-9.
    [74]So HH, Cho JW, Sahoo NG. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. European Polymer Journal. 2007;43(9):3750-6.
    [75]Jia ZJ, Wang ZY, Xu CL, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering:A-Structural Materials:Properties, Microstructure and Processing.1999;271(1-2):395-400.
    [76]Hwang GL, Shieh YT, Hwang KC. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Advanced Functional Materials. 2004;14(5):487-91.
    [77]Putz KW, Mitchell CA, Krishnamoorti R, et al. Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. Journal of Polymer Science Part B: Polymer Physics.2004;42(12):2286-93.
    [78]Sung JH, Kim HS, Jin HJ, et al. Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules.2004;37(26):9899-902.
    [79]Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters.1998;73(26):3842-4.
    [80]Ajayan PM, Schadler LS, Giannaris C, et al. Single-walled carbon nanotube-polymer composites:Strength and weakness. Advanced Materials.2000;12(10):750-3.
    [81]Zhu J, Kim JD, Peng HQ, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters. 2003;3(8):1107-13.
    [82]Zhu J, Peng HQ, Rodriguez-Macias F, et al. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Advanced Functional Materials. 2004;14(7):643-8.
    [83]Bryning MB, Milkie DE, Islam MF, et al. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Applied Physics Letters.2005;87(16).
    [84]Moniruzzaman M, Du FM, Romero N, et al. Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer.2006;47(1):293-8.
    [85]Funck A, Kaminsky W. Polypropylene carbon nanotube composites by in situ polymerization. Composites Science and Technology.2007;67(5):906-15.
    [86]Sanchez Y, Albano C, Karam A, et al. In situ polymerization of nanocomposites by TpTiCl(2)(Et) system:UHMWPE filled with carbon nanotubes. Macromolecular Symposia. 2009;282:185-91.
    [87]Miyagawa H, Misra M, Mohanty AK. Mechanical properties of carbon nanotubes and their polymer nanocomposites. Journal of Nanoscience and Nanotechnology. 2005;5(10):1593-615.
    [88]Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules.2006;39(16):5194-205.
    [89]Salvetat JP, Bhattacharyya S, Pipes RB. Progress on mechanics of carbon nanotubes and derived materials. Journal of Nanoscience and Nanotechnology.2006;6(7):1857-82.
    [90]Tjong SC. Structural and mechanical properties of polymer nanocomposites. Materials Science & Engineering R-Reports.2006;53(3-4):73-197.
    [91]Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010;35(3):357-401.
    [92]Haggenmueller R, Zhou W, Fischer JE, et al. Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology.2003;3(1-2):105-10.
    [93]Mallick PK. Fiber-Reinforced Composites. New York:Marcel Dekker; 1993.
    [94]Barber AH, Cohen SR, Wagner HD. Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters.2003;82(23):4140-2.
    [95]Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters.2001;79(25):4225-7.
    [96]Nan CW. Physics of inhomogeneous inorganic materials. Progress in Materials Science. 1993;37(1):1-116.
    [97]Zhang QH, Rastogi S, Chen DJ, et al. Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon.2006;44(4):778-85.
    [98]Valentini L, Armentano I, Puglia D, et al. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon. 2004;42(2):323-9.
    [99]Li SP, Qin YJ, Shi JH, et al. Electrical properties of soluble carbon nanotube/polymer composite films. Chemistry of Materials.2005;17(1):130-5.
    [100]Ramanathan T, Liu H, Brinson LC. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. Journal of Polymer Science Part B:Polymer Physics. 2005;43(17):2269-79.
    [101]Tamburri E, Orlanducci S, Terranova ML, et al. Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites. Carbon. 2005;43(6):1213-21.
    [102]Wang YP, Cheng RL, Liang LL, et al. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Composites Science and Technology.2005;65(5):793-7.
    [103]Ruan SL, Gao P, Yu TX. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer.2006;47(5):1604-11.
    [104]Zou YB, Feng YC, Wang L, et al. Processing and properties of MWNT/HDPE composites. Carbon.2004;42(2):271-7.
    [105]Kanagaraj S, Varanda FR, Zhil'tsova TV, et al. Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology. 2007;67(15-16):3071-7.
    [106]Pulikkathara MX, Kuznetsov OV, Peralta ERG, et al. Medium density polyethylene composites with functionalized carbon nanotubes. Nanotechnology.2009;20(19).
    [107]Xiao KQ, Zhang LC, Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Composites Science and Technology. 2007;67(2):177-82.
    [108]Gorrasi G, Sarno M, Di Bartolomeo A, et al. Incorporation of carbon nanotubes into polyethylene by high energy ball milling:Morphology and physical properties. Journal of Polymer Science Part B:Polymer Physics.2007;45(5):597-606.
    [109]Yang BX, Pramoda KP, Xu GQ, et al. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Advanced Functional Materials. 2007;17(13):2062-9.
    [110]Kearns JC, Shambaugh RL. Polypropylene fibers reinforced with carbon nanotubes. Journal of Applied Polymer Science.2002;86(8):2079-84.
    [111]Moore EM, Ortiz DL, Marla VT, et al. Enhancing the strength of polypropylene fibers with carbon nanotubes. Journal of Applied Polymer Science.2004;93(6):2926-33.
    [112]Chang TE, Jensen LR, Kisliuk A, et al. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer.2005;46(2):439-44.
    [113]Leelapornpisit W, Ton-That MT, Perrin-Sarazin F, et al. Effect of carbon nanotubes on the crystallization and properties of polypropylene. Journal of Polymer Science Part B: Polymer Physics.2005;43(18):2445-53.
    [114]Dondero WE, Gorga RE. Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. Journal of Polymer Science Part B: Polymer Physics.2006;44(5):864-78.
    [115]McIntosh D, Khabashesku VN, Barrera EV. Nanocomposite fiber systems processed from fluorinated single-walled carbon nanotubes and a polypropylene matrix. Chemistry of Materials.2006; 18(19):4561-9.
    [116]Jose MV, Dean D, Tyner J, et al. Polypropylene/carbon nanotube nanocomposite fibers: Process-morphology-property relationships. Journal of Applied Polymer Science. 2007;103(6):3844-50.
    [117]McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. Journal of Physical Chemistry C. 2007; 111(4):1592-600.
    [118]Blake R, Gun'ko YK, Coleman J, et al. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. Journal of the American Chemical Society.2004; 126(33):10226-7.
    [119]Shi JH, Yang BX, Pramoda KP, et al. Enhancement of the mechanical performance of poly(vinyl chloride) using poly(n-butyl methacrylate)-grafted multi-walled carbon nanotubes. Nanotechnology.2007;18(37).
    [120]Chen QY, Bin YZ, Matsuo M. Characteristics of ethylene-methyl methacrylate copolymer and ultrahigh molecular weight polyethylene composite filled with multiwall carbon nanotubes prepared by gelation/crystallization from solutions. Macromolecules. 2006;39(19):6528-36.
    [121]Mierczynska A, Mayne-L'Hermite M, Boiteux G, et al. Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. Journal of Applied Polymer Science.2007;105(1):158-68.
    [122]Xi Y, Yamanaka A, Bin YZ, et al. Electrical properties of segreated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites. Journal of Applied Polymer Science.2007;105(5):2868-76.
    [123]Isaji S, Bin YZ, Matsuo M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer.2009;50(4):1046-53.
    [124]Jeon K, Lumata L, Tokumoto T, et al. Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes-high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM. Polymer.2007;48(16):4751-64.
    [125]Tchmutin IA, Ponomarenko AT, Krinichnaya EP, et al. Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon.2003;41 (7):1391-5.
    [126]Seo MK, Park SJ. Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chemical Physics Letters.2004;395(1-3):44-8.
    [127]Micusik M, Omastova M, Krupa I, et al. A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. Journal of Applied Polymer Science. 2009; 113(4):2536-51.
    [128]Mamunya Y, Boudenne A, Lebovka N, et al. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Composites Science and Technology.2008;68(9):1981-8.
    [129]Kashiwagi T, Du FM, Winey KI, et al. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes:effects of nanotube dispersion and concentration. Polymer.2005;46(2):471-81.
    [130]Beyer G. Short communication:Carbon nanotubes as flame retardants for polymers. Fire and Materials.2002;26(6):291-3.
    [131]Lux F. Models proposed to explain the electrical-conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science.1993;28(2):285-301.
    [132]Kashiwagi T, Grulke E, Hilding J, et al. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications. 2002;23(13):761-5.
    [133]Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer.2004;45(12):4227-39.
    [134]Peeterbroeck S, Laoutid F, Swoboda B, et al. How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromolecular Rapid Communications.2007;28(3):260-4.
    [135]Watts PCP, Fearon PK, Hsu WK, et al. Carbon nanotubes as polymer antioxidants. Journal of Materials Chemistry.2003;13(3):491-5.
    [136]Morlat-Therias S, Fanton E, Gardette JL, et al. Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation. Polymer Degradation and Stability.2007;92(10):1873-82.
    [137]Dintcheva NT, La Mantia FP, Malatesta V. Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films. Polymer Degradation and Stability.2009;94(2):162-70.
    [138]Guadagno L, Naddeo C, Raimondo M, et al. Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polymer Degradation and Stability.2010;95(9):1614-26.
    [139]Haggenmueller R, Guthy C, Lukes JR, et al. Single wall carbon nanotube/polyethylene nanocomposites:Thermal and electrical conductivity. Macromolecules. 2007;40(7):2417-21.
    [140]钟世云,许乾慰,王公善.聚合物降解与稳定化.北京:化学工业出版社;2002.
    [141]周大纲,谢鸽成.塑料老化与防老化技术.北京:中国轻工业出版社;1998.
    [142]钱欣,郑荣华,蔡鹏.聚丙烯的热氧老化及其影响因素.浙江工业大学学报.2002;30(5):475-80.
    [143]潘江庆.抗氧剂在高分子领域的研究和应用.高分子通报.2002;1:57-65.
    [144]纪巍,王鉴,张学佳,柳荣伟,王洪亮.受阻酚类抗氧剂的复配及发展方向.化学工业与工程技术.2007;28(2):34-8.
    [145]Pospisil J, Nespurek S. Chain-breaking stabilizers in polymers-the current status. Polymer Degradation and Stability.1995;49(1):99-110.
    [146]AlMalaika S, Issenhuth S. Processing effects on antioxidant transformation and solutions to the problem of antioxidant migration. Polymer Durability.1996;249:425-39.
    [147]Al-Malaika S. Vitamin E:An effective biological antioxidant for polymer stabilisation. Polymers & Polymer Composites.2000;8(8):537-42.
    [1]Horng PL, Klemchuk PP. Investigation of thermal-oxidation and stabilization of high-density polyethylene. Acs Symposium Series.1985;280:235-46.
    [2]Scheirs J, Bigger SW, Delatycki O. Effect of thermal-oxidation on the spherulitic morphology of high-density polyethylene. Journal of Polymer Science Part B:Polymer Physics.1991;29(7):795-804.
    [3]Chiantore O, Tripodi S, Sarmoria C, et al. Mechanism and molecular weight model for thermal oxidation of linear ethylene-butene copolymer. Polymer.2001;42(9):3981-7.
    [4]Hoang EM, Allen NS, Liauw CM, et al. The thermo-oxidative degradation of metallocene polyethylenes. Part 1:Long-term thermal oxidation in the solid state. Polymer Degradation and Stability.2006;91(6):1356-62.
    [5]Salvalaggio M, Bagatin R, Fornaroli M, et al. Multi-component analysis of low-density polyethylene oxidative degradation. Polymer Degradation and Stability. 2006;91(11):2775-85.
    [6]Yang R, Liu Y, Yu J, et al. Thermal oxidation products and kinetics of polyethylene composites. Polymer Degradation and Stability.2006;91(8):1651-7.
    [7]Bolbukh Y, Kuzema P, Tertykh V, et al. Thermal degradation of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. Journal of Thermal Analysis and Calorimetry.2008;94(3):727-36.
    [8]Chabira SF, Sebaa M, G'sell C. Influence of climatic ageing on the mechanical properties and the microstructure of low-density polyethylene films. Journal of Applied Polymer Science.2008; 110(4):2516-24.
    [9]Roy PK, Surekha P, Rajagopal C, et al. Degradation behavior of linear low-density polyethylene films containing prooxidants under accelerated test conditions. Journal of Applied Polymer Science.2008;108(4):2726-33.
    [10]Xie RC, Qu BJ. Thermo-oxidative degradation behaviors of expandable graphite-based intumescent halogen-free flame retardant LLDPE blends. Polymer Degradation and Stability.2001;71(3):395-402.
    [11]Mendes LC, Rufino ES, de Paula FOC, et al. Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polymer Degradation and Stability.2003;79(3):371-83.
    [12]Fayolle B, Colin X, Audouin L, et al. Mechanism of degradation induced embrittlement in polyethylene. Polymer Degradation and Stability.2007;92(2):231-8.
    [13]Fayolle B, Richaud E, Colin X, et al. Review:degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. Journal of Materials Science.2008;43(22):6999-7012.
    [14]Weon JI. Effects of thermal ageing on mechanical and thermal behaviors of linear low density polyethylene pipe. Polymer Degradation and Stability.2010;95(1):14-20.
    [15]Joo YL, Han OH, Lee HK, et al. Characterization of ultra high molecular weight polyethyelene nascent reactor powders by X-ray diffraction and solid state NMR. Polymer. 2000;41(4):1355-68.
    [16]Saalwachter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Progress in Nuclear Magnetic Resonance Spectroscopy.2007;51(1):1-35.
    [17]Mauri M, Thomann Y, Schneider H, et al. Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nuclear Magnetic Resonance.2008;34(1-2):125-41.
    [18]Uehara H, Yamanobe T, Komoto T. Relationship between solid-state molecular motion and morphology for ultrahigh molecular weight polyethylene crystallized under different conditions. Macromolecules.2000;33(13):4861-70.
    [19]Uehara H, Aoike T, Yamanobe T, et al. Solid-state H-1 NMR relaxation analysis of ultrahigh molecular weight polyethylene reactor powder. Macromolecules. 2002;35(7):2640-7.
    [20]Uehara H, Uehara A, Kakiage M, et al. Solid-state characterization of polyethylene reactor powders and their structural changes upon annealing. Polymer.2007;48(15):4547-57.
    [21]Hedesiu C, Demco DE, Kleppinger R, et al. The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer.2007;48(3):763-77.
    [22]Hedesiu C, Demco DE, Kleppinger R, et al. Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC. Macromolecules. 2007;40(11):3977-89.
    [23]Hedesiu C, Demco DE, Kleppinger R, et al. Aging effects on the phase composition and chain mobility of isotactic poly(propylene). Macromolecular Materials and Engineering. 2008;293(10):847-57.
    [24]Abragam A. Principle of nuclear magnetism. Oxford:Clarendon Press; 1961.
    [25]Hansen EW, Kristiansen PE, Pedersen B. Crystallinity of polyethylene derived from solid-state proton NMR free induction decay. Journal of Physical Chemistry B. 1998;102(28):5444-50.
    [26]Bergmann K. Study of molecular motions of polyethylene by line-shape analysis of broad-line proton NMR-spectra. Journal of Polymer Science Part B:Polymer Physics. 1978;16(9):1611-34.
    [27]Winslow FH, Aloisio CJ, Hawkins WL, et al. Dependence of polyolefin oxidation on morphology. Chemistry & Industry.1963(13):533-4.
    [28]Winslow FH, Aloisio CJ, Hawkins WL, et al. Oxidative crystallisation of polythene. Chemistry & Industry.1963(35):1465.
    [29]Decker C, Mayo FR, Richards.H. Aging and degradation of polyolefins.3. Polyethylene and ethylene-propylene copolymers. Journal of Polymer Science Part A:Polymer Chemistry.1973;11(11):2879-98.
    [30]Allen NS. Degradation and stabilization of Polyolefins. London:Applied Science Publishers; 1979.
    [1]Homminga D, Goderis B, Dolbnya I, et al. Crystallization behavior of polymer/montmorillonite nanocomposites. Part Ⅱ. Intercalated poly (epsilon-caprolactone)/montmorillonite nanocomposites. Polymer.2006;47(5):1620-9.
    [2]Homminga DS, Goderis B, Mathot VBF, et al. Crystallization behavior of polymer/montmorillonite nanocomposites. Part Ⅲ. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration. Polymer.2006;47(5):1630-9.
    [3]Huang JW, Hung HC, Tseng KS, et al. Nonisothermal crystallization of poly(ethylene-co-glycidyl methacrylate)/clay nanocomposites. Journal of Applied Polymer Science.2006;100(2):1335-43.
    [4]Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. European Polymer Journal.2006;42(9):1994-2003.
    [5]Huang JW. Poly(butylene terephthalate)/Clay Nanocomposite Compatibilized with Poly(ethylene-co-glycidyl methacrylate). I. Isothermal Crystallization. Journal of Applied Polymer Science.2008;110(4):2195-204.
    [6]Huang JW. Isothermal crystallization of high density polyethylene and nanoscale calcium carbonate composites. Journal of Applied Polymer Science.2008; 107(5):3163-72.
    [7]Liu X, He AH, Du K, et al. Nonisothermal crystallization behavior of highly exfoliated polypropylene/clay nanocomposites prepared by in situ polymerization. Journal of Applied Polymer Science.2011;119(1):162-72.
    [8]Haggenmueller R, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites:Nucleating and templating polyethylene crystallites. Macromolecules. 2006;39(8):2964-71.
    [9]Zeng HL, Gao C, Wang YP, et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites:Mechanical properties and crystallization behavior. Polymer.2006;47(1):113-22.
    [10]Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. Journal of Applied Polymer Science.2007;106(6):3729-35.
    [11]Trujillo M, Arnal ML, Muller AJ, et al. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules.2007;40(17):6268-76.
    [12]Zhou Z, Wang SF, Lu L, et al. Isothermal crystallization kinetics of polypropylene with silane functionalized multi-walled carbon nanotubes. Journal of Polymer Science Part B: Polymer Physics.2007;45(13):1616-24.
    [13]Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, et al. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polymer Testing.2009;28(1):46-52.
    [14]Vega JF, Martinez-Salazar J, Trujillo M, et al. Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules. 2009;42(13):4719-27.
    [15]Ahangari MG, Fereidoon A, Kordani N, et al. Effect of nano-nucleating agent addition on the isothermal and nonisothermal crystallization kinetics of isotactic polypropylene. Polymer Bulletin.2011;66(2):239-58.
    [16]Long Y, Shanks RA, Stachurski ZH. Kinetics of polymer crystallization. Progress in Polymer Science.1995;20(4):651-701.
    [17]Avrami M. Kinetics of phase change I-General theory. Journal of Chemical Physics. 1939;7(12):1103-12.
    [18]Tobin MC. Theory of phase-transition kinetics with growth site impingement.1. Homogeneous nucleation. Journal of Polymer Science Part B:Polymer Physics. 1974;12(2):399-406.
    [19]Supaphol P, Spruiell JE. Application of the Avrami, Tobin, Malkin, and simultaneous Avrami macrokinetic models to isothermal crystallization of syndiotactic polypropylenes. Journal of Macromolecular Science, Part B:Physics.2000;B39(2):257-77.
    [20]Kim J, Kwak S, Hong SM, et al. Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromolecules.2010;43(24):10545-53.
    [21]Ozawa T. Kinetics of non-isothermal crystallization. Polymer.1971; 12(3):150-8.
    [22]Evans UR. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Transactions of the Faraday Society. 1945;41(7):365-74.
    [23]Joshi A, Butola BS. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer.2004;45(14):4953-68.
    [24]Liu TX, Mo ZS, Wang SG, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polymer Engineering and Science.1997;37(3):568-75.
    [25]Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of melt-intercalated polyethylene-clay nanocomposites. Journal of Applied Polymer Science. 2006;102(4):3809-18.
    [26]Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards.1956;57(4):217-21.
    [1]Paiva MC, Zhou B, Fernando KAS, et al. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon. 2004;42(14):2849-54.
    [2]Coleman JN, Khan U, Blau WJ, et al. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon.2006;44(9):1624-52.
    [3]Dondero WE, Gorga RE. Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. Journal of Polymer Science Part B: Polymer Physics.2006;44(5):864-78.
    [4]Potschke P, Abdel-Goad M, Alig I, et al. Rheological and dielectrical characterization of melt mixed polycarbonate-multi walled carbon nanotube composites. Polymer. 2004;45(26):8863-70.
    [5]Liang GD, Tjong SC. Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Materials Chemistry and Physics.2006; 100(1):132-7.
    [6]Musumeci AW, Silva GG, Liu JW, et al. Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer.2007;48(6):1667-78.
    [7]Watts PCP, Fearon PK, Hsu WK, et al. Carbon nanotubes as polymer antioxidants. Journal of Materials Chemistry.2003;13(3):491-5.
    [8]Lucente-Schultz RM, Moore VC, Leonard AD, et al. Antioxidant single-walled carbon nanotubes. Journal of the American Chemical Society.2009;131(11):3934-41.
    [9]Morlat-Therias S, Fanton E, Gardette JL, et al. Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation. Polymer Degradation and Stability.2007;92(10):1873-82.
    [10]Dintcheva NT, La Mantia FP, Malatesta V. Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films. Polymer Degradation and Stability.2009;94(2):162-70.
    [11]Guadagno L, Naddeo C, Raimondo M, et al. Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polymer Degradation and Stability.2010;95(9):1614-26.
    [12]Bocchini S, Frache A, Camino G, et al. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. European Polymer Journal.2007;43(8):3222-35.
    [13]Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer.2004;45(12):4227-39.
    [14]Costache MC, Wang DY, Heidecker MJ, et al. The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polymers for Advanced Technologies.2006;17(4):272-80.
    [15]Walling C. Fentons reagent revisited. Accounts of Chemical Research.1975;8(4):125-31.
    [16]Kim C, Kim B, Lee SM, et al. Electronic structures of capped carbon nanotubes under electric fields. Physical Review B.2002;65(16).
    [17]Krusic PJ, Wasserman E, Keizer PN, et al. Radical reactions of C60. Science. 1991;254(5035):1183-5.
    [18]Dewald JL, Talla J, Pietrass T, et al. Defect analysis of carbon nanotubes. Electronic Properties of Novel Nanostructures.2005;786:215-9.
    [19]Costa S, Borowiak-Palen E, Kruszynska M, et al. Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland.2008;26(2):433-41.
    [20]Jeet K, Jindal VK, Bharadwaj LM, et al. Damaged carbon nanotubes get healed by ion irradiation. Journal of Applied Physics.2010; 108(3).
    [21]Qian WZ, Liu T, Wei F, et al. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon.2003;41(9):1851-4.
    [22]Bhalerao GM, Sinha AK, Sathe V. Defect-dependent annealing behavior of multi-walled carbon nanotubes. Physica E-Low-Dimensional Systems & Nanostructures. 2008;41(l):54-9.
    [23]Zeinalov EB, Kossmehl G. Fullerene C-60 as an antioxidant for polymers. Polymer Degradation and Stability.2001;71(2):197-202.
    [24]Zeynalov EB, Magerramova MY, Ishenko NY. Fullerenes C-60/C-70 and C-70 as antioxidants for polystyrene. Iranian Polymer Journal.2004;13(2):143-8.
    [25]Zeynalov EB, Allen NS, Salmanova NI. Radical scavenging efficiency of different fullerenes C-60-C-70 and fullerene soot. Polymer Degradation and Stability. 2009;94(8):1183-9.
    [1]Sano M, Kamino A, Shinkai S. Construction of carbon nanotube "stars" with dendrimers. Angewandte Chemie International Edition.2001;40(24):4661-3.
    [2]Qin SH, Oin DQ, Ford WT, et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. Journal of the American Chemical Society.2004;126(1):170-6.
    [3]Wang W, Lin Y, Sun YP. Poly(N-vinyl carbazole)-functionalized single-walled carbon nanotubes:Synthesis, characterization, and nanocomposite thin films. Polymer. 2005;46(20):8634-40.
    [4]Zhao B, Hu H, Yu AP, et al. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. Journal of the American Chemical Society. 2005;127(22):8197-203.
    [5]Xu GD, Zhu B, Han Y, et al. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer.2007;48(26):7510-5.
    [6]Ma PC, Kim JK, Tang BZ. Functionalization of carbon nanotubes using a silane coupling agent. Carbon.2006;44(15):3232-8.
    [7]Kathi J, Rhee KY. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. Journal of Materials Science.2008;43(l):33-7.
    [8]Zhang QX, Naito K, Kagawa Y. Functionalization of multi-walled carbon nanotubes with a silane coupling agent and synthesis of polyimide nanocomposite. Journal of Nanoscience and Nanotechnology.2009;9(1):267-74.
    [9]Cheng YY, Chou SC, Huang JH. Preparation and characterization of polyimide/silane coupling agent modified multiwall carbon nanotubes composites. Journal of Applied Polymer Science.2012;124(2):1137-43.
    [10]Liu HM, Wang X, Fang PF, et al. Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites. Carbon. 2010;48(3):721-9.
    [11]Ma HY, Tong LF, Xu ZB, et al. Functionalizing carbon nanotubes by grafting on intumescent flame retardant:Nanocomposite synthesis, morphology, rheology, and flammabiliry. Advanced Functional Materials.2008;18(3):414-21.
    [12]汪宝和,王保库.非对称型受阻分类抗氧剂的研究新进展.化工技术.2007;15(2):67.70.
    [13]Chen GX, Kim HS, Park BH, et al. Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer.2006;47(13):4760-7.
    [14]Zhou L, Gao C, Xu W. Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromolecular Chemistry and Physics. 2009;210(12):1011-8.
    [15]Wu C, Huang XY, Wang GL, et al. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. Journal of Materials Chemistry.2012;22(14):7010-9.
    [16]Qian WZ, Liu T, Wei F, et al. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon.2003;41(9):1851-4.
    [17]Khanna YP, Turi EA, Taylor TJ, et al. Dynamic mechanical relaxations in polyethylene. Macromolecules.1985; 18(6):1302-9.
    [18]Li W, Adams A, Wang JD, et al. Polyethylene/palygorskite nanocomposites:Preparation by in situ polymerization and their characterization. Polymer.2010;51(21):4686-97.
    [19]Owen AJ, Ward IM. Mechanical anisotropy in oriented polypropylene. Journal of Macromolecular Science, Part B:Physics.1973;B 7(3):417-30.
    [1]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chemical Reviews.2006;106(3):1105-36.
    [2]Byrne MT, Gun'ko YK. Recent advances in research on carbon nanotube-polymer composites. Advanced Materials.2010;22(15):1672-88.
    [3]Hirsch A, Vostrowsky O. Dendrimers with carbon rich-cores. Dendrimers IV:Metal Coordination, Self Assembly, Catalysis.2001;217:51-93.
    [4]付西军.新型树枝状化合物的合成与应用研究进展.河南科技学院学报.2011;39(6):87-90.
    [5]Roovers J, Comanita B. Dendrimers and dendrimer-polymer hybrids. Branched Polymers I. 1999;142:179-228.
    [6]Pan BF, Cui DX, Gao F, et al. Growth of multi-amine terminated poly(amidoamine) dendrimerson the surface of carbon nanotubes. Nanotechnology.2006;17(10):2483-9.
    [7]Tao L, Chen GJ, Mantovani G, et al. Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons:Synthesis and metal templating. Chemical Communications.2006(47):4949-51.
    [8]Bahun GJ, Adronov A. Interactions of carbon nanotubes with pyrene-functionalized linear-dendritic hybrid polymers. Journal of Polymer Science Part A:Polymer Chemistry. 2010;48(5):1016-28.
    [9]Moore E, Wang PY, Vogt AP, et al. Clicking dendritic peptides onto single walled carbon nanotubes. RSC Advances.2012;2(4):1289-91.
    [10]Qian WZ, Liu T, Wei F, et al. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon.2003;41(9):1851-4.
    [11]曹树东.聚烯烃中主、辅抗氧剂的协同效应.塑料助剂.2002;35(5):32-4.
    [12]刘庆民,张会平.聚烯烃中受阻酚类抗氧剂的应用.合成材料老化与应用.2009;38(1):40-4.
    [13]钟世云,许乾慰,王公善.聚合物降解与稳定化.北京:化学工业出版社;2002.
    [14]王刚,王鉴,王丽娟,辛明瑞.抗氧剂作用机理及研究进展.合成材料老化与应用.2006;35(2):38-42.
    [15]Liu HM, Wang X, Fang PF, et al. Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites. Carbon. 2010;48(3):721-9.
    [1]周立.超支化聚缩水甘油基无机纳米复合材料的制备及应用研究[博士学位论文].长沙:湖南大学,2010.
    [2]Li J, Sun MH, Bo ZS. Synthesis of hyperbranched polymers with precise conjugation length. Journal of Polymer Science Part A:Polymer Chemistry.2007;45(6):1084-92.
    [3]Sun MH, Bo ZS. Tuning the optical properties of hyperbranched polymers through the modification of the end groups. Journal of Polymer Science Part A:Polymer Chemistry. 2007;45(1):111-24.
    [4]Hirao A, Watanabe T, Yoo HS. Precise synthesis of dendrimer-like hyperbranched polymers. Journal of Synthetic Organic Chemistry Japan.2009;67(10):1033-43.
    [5]Sunder A, Hanselmann R, Frey H, et al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules. 1999;32(13):4240-6.
    [6]Higashihara T, Segawa Y, Sinananwanich W, et al. Synthesis of hyperbranched polymers with controlled degree of branching. Polymer Journal.2012;44(1):14-29.
    [7]Wilms D, Stiriba SE, Frey H. Hyperbranched polyglycerols:From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts of Chemical Research.2010;43(1):129-41.
    [8]Segawa Y, Higashihara T, Ueda M. Synthesis of hyperbranched polymers with controlled structure. Polymer Chemistry.2013;4(6):1746-59.
    [9]Jin HB, Huang W, Zhu XY, et al. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chemical Society Reviews. 2012;41(18):5986-97.
    [10]张小平,黄艳琴,任厚基,范曲立,黄维.超支化聚合物研究最新进展.科学通报.2011;56(21):1683-95.
    [11]Adeli M, Mirab N, Alavidjeh MS, et al. Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine. Polymer.2009;50(15):3528-36.
    [12]Sun JT, Hong CY, Pan CY. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polymer Chemistry.2011;2(5):998-1007.
    [13]张菲菲,颜红侠,王佩,叶帅,昝广涛.超支化聚合物接枝纳米Si02的研究进展.硅酸盐通报.2012;31(3):595-8.
    [14]Zhao L, Takimoto T, Ito M, et al. Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angewandte Chemie International Edition. 2011;50(6):1388-92.
    [15]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chemical Reviews.2006;106(3):1105-36.
    [16]Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010;35(3):357-401.
    [17]Moore JS, Stupp SI. Room-temperature polyesterification. Macromolecules. 1990;23(1):65-70.
    [18]丁向玉.超支化缩水甘油的合成及在微纳米材料制备上的应用[硕士学位论文].合肥:中国科学技术大学,2008.
    [19]Zhou L, Gao C, Xu WJ. Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromolecular Chemistry and Physics. 2009;210(12):1011-8.
    [20]Qian WZ, Liu T, Wei F, et al. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon.2003;41(9):1851-4.
    [21]胡荣祖,史启祯.热分析动力学.北京:科学出版社;2001.
    [22]余彩香,米镇涛,张香文.正十二烷氧化活化能的简易测定方法.含能材料.2007;15(3):261-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700