用户名: 密码: 验证码:
含银、铜、铋的石墨烯复合材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然鳞片石墨是一种储量丰富的矿物材料,通过加工使其纳米化可以带来独特理化性能。石墨烯是一种新型纳米碳材料,可以从天然鳞片上剥离得到,具有奇特的电学、光学、力学和热学性质,有望应用于晶体管、纳米器件以及高性能电池等方面。本论文以石墨烯的制备及复合应用为主线,研究了石墨烯的制备、复合及其复合材料的介电、光催化性能。
     本文首先研究了石墨烯的探索制备。分别采用直接氧化法和预氧化法制备得到氧化石墨,而后采用不同的还原剂还原得到石墨烯,通过SEM、TEM和AFM分析了石墨烯的形貌特征,进行了FTIR、XRD表征。结果表明,预氧化法制备的氧化石墨氧化程度更高,水合肼做还原剂能更好的将氧化石墨还原,所得石墨烯的导电率达到1.11×103s/cm,为下一步复合材料的制备提供了保证。
     其次,制备了有银粒子负载的载银石墨烯材料,并以此为填料,聚酰亚胺为基体,采用原位聚合的方法制备了载银石墨烯/聚酰亚胺复合薄膜;作为对照制备了石墨烯/PI复合薄膜。重点研究了填料含量及分散状态对纳米复合材料介电性能的影响。研究表明,石墨烯和载银石墨烯在PI中呈一定的取向,载银石墨烯比石墨烯更易分散,两种复合薄膜的介电规律都符合渗流理论。石墨烯/聚酰亚胺复合薄膜和载银石墨烯/PI复合薄膜的的渗流阈值分别仅为0.9vol%和1.07vol%,而介电常数最高可达到13.87(100Hz)和8.91(100Hz),具有较低的频率依赖性,并且介电损耗较小,为10-2数量级。
     最后,以氧化石墨烯为载体,在其上负载半导体材料,制备得到纳米氧化亚铜/还原石墨烯(Cu2O/rG)复合材料和磷酸铋/还原石墨烯(BiPO4/rG)复合材料,并研究了两者的光催化性能。研究表明石墨烯的加入对Cu2O的微观形貌以及BiPO4的晶型产生极大影响,同时导致Cu2O和BiPO4的禁带宽度变大,石墨烯良好的导电性可以使光生电子迅速转移,从而降低光生电子空穴复合率,使得复合材料的光催化性能提高。Cu2O/rG复合材料对TNT红水具有一定的光催化效果,对TNT红水的降解率最高可达42.6%;BiPO4/rG复合材料对亚甲基蓝溶液具有很好的光催化效果,其光催化反应符合一阶动力学,降解动力学常数k值最高可达k=0.064min-1。
Natural flake graphite has been widely used in different fields and its derivativeshave excellent performances. Graphene, which can be exfoliated from graphite,is anew carbon nanomaterial and is of great interest owing to its unique electronic, optical,mechanical, and thermal properties. The discovery of graphene is opening up a newresearch area for condensed-matter physics, materials science, and benefitinghigh-dielectric-constant materials. This paper focused on the graphene composites andtheir properties. Emphasis was placed on preparation, modification of graphene andthe dielectric and photocatalysis properties of its composites.
     First, the preparation process of graphene is studied and optimized. Grapheneoxide (GO) prepared with direct oxidation and pre-oxidationsuper respectively, isreduced by different reductants. The reduced products are characterized by scanningelectron microscopy, transmission electron microscopy, infrared spectroscopy, atomicforce microscope and X-ray diffraction. Results indicated that the GO prepared withpre-oxidationsuper presented larger oxidation degree, and the graphene which wasreduced by hydrazine hydrate showed highest conductivity (1.11×103s/cm).
     Secondly, sliver-loaded graphene composite where graphene was modified by Agnanoparticles was prepared, and then the sliver-loaded graphene/PI composites werefabricated by in-situ polymerization. As a contrast, graphene/PI composites, withgraphene as the filler and PI as the matrix, were fabricated by in-situ polymerization.The relationships between effects of sliver-loaded graphene or graphene volume anddispersion on dielectric properties of composites were discussed. Results indicatedthat graphene and sliver-loaded graphene were oriented to a certain extent in PI. Ahigh dielectric constant of13.87(100Hz) was obtained when the concentration ofgraphene was0.9vol%. The percolation threshold of sliver-loaded graphene/PInanocomposites was fc=1.07vol%, and when volume fraction of grapheme reachedthe percolation threshold, dielectric constant of sliver-loaded graphene/PI compositewas8.91(100Hz).
     Finally, cuprous oxide and bismuth phosphate loaded on reduced grapheme oxidewere prepared respectively by the method of sedimentation-reduction andhydrothermal synthesysis. The microstructure and properties of both composites werestudied. The addition of reduced graphene oxide changed the microstructure ofcuprous oxide, and the form of bismuth phosphate crystal was also affected. The photocatalytic research results of composites showed that the photocatalyticdegradation of red water could reach42.6%by Cu2O/rG composite, and the dye MBcould be effectively photocatalytically degraded by BiPO4/rG composite.
引文
Akhavan O. Photocatalytic reduction of graphene oxide hybridized by ZnOnanoparticles in ethanol, Carbon,2011,48:11-18
    Avouris P., Chen Z.H., Perebeinos V., Carbon-based electronics. Nat. Nanotech.2007,2(10):605-615
    Balandin A.A., Ghosh S., Bao W.Z., et al. Superior thermal conductivity ofsingle-layer graphene. Nano Lett.,2008,8(3):902-907
    Bamwenda G.R., Uesigi T., Abe Y., et al. The photocatalytic oxidation of water to O-2over pure CeO2, WO3, and TiO2using Fe3+and Ce4+as electron acceptors.Appl. Catal., A,2001,205(2):117-128
    Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbonnanotubes. Phys. Rev. Lett.,2000,84(20):4613-4616
    Berger C., Song Z.M., Li X.B., et al. Electronic confinement and coherence inpatterned epitaxial graphene. Science2006,312(5777):1191-1196
    Bolotin K.I., Sikes K.J., Jiang Z., et al. Ultrahigh electron mobility in suspendedgraphene. Solid State Comm.,2008,146(9-10):351-355
    Brodie B.C. On the atomic weight of graphite [M]. The Royal Society ofLondon:1859,249-259.
    Cao A., Liu Z., Chu S., et al.A facile one-step method to produce graphene-CdSquantum dot nanocomposites as promising optoelectronic materials. Adv. Mater.2009,22(1):103-106
    Chahal P., Allen M.G., Swaminathan M. A novel integrated decoupling capacitors forMCM-L technology. IEEE Electronie Components&Technology Conference1998,21(2):184-193
    Chen R., Bi J., Wu L., et al. Template-free hydrothermal synthesis and photocatalyticperformances of novel Bi2SiO5nanosheets. Inorg. Chem.,2009,48(19):9072-9076
    Chen X.B., Shen S.H., Guo L.J., et al. Semiconductor-based photocatalytic hydrogengeneration. Chem. Rev.,2010,110:6503–6570.
    Chin S.S., Chiang K., Fane A.G. The stability of polymeric membranes in a TiO2photocatalysis process. J. Memb. Sci.,2006,275(2):202-211
    Cho I., Kim D.W., Lee S., et al. Synthesis of Cu2PO4OH hierarchical superstructureswith photocatalytic activity in visible light. Adv. Funct. Mater.2008,18(15):2154-2162
    Czerw R., Foley B., Tekleab D., et al. Substrate-interface interactions between carbonnanotubes and the supporting substrate. Phys. Rev. B2002,66:033408
    Dang Z.M., Peng B., Xie D., et al. High dielectric permittivity silver/polyimidecomposite films with excellent thermal stability. Appl. Phy. Lett.2008,92(11):112910
    Dang Z.M., Wang H.Y., Zhang Y.H., et al. Morphology and dielectric property ofhomogenous BaTiO3/PVDF nanocomposites prepared via the naturaladsorption action of nanosized BaTiO3. Macromol. Rapid Comm.,2005,26:1185-1189
    Dong L., Gari R., Li Z., et al. Graphene-supported platinum and platinum–rutheniumnanoparticles with high electrocatalytic activity for methanol and ethanoloxidation. Carbon,2010,48(3):781-787
    Dunkle S.S., Suslick K.S. Photodegradation of BiNbO4powder during photocatalyticreactions. J. Phys. Chem. C,2009,113(24):10341-10345.
    Elias D.C., Nair R.R., Mohiuddin T.M.G., et al. Control of graphene's properties byreversible hydrogenation: evidence for graphane. Science,2009,323(5914):610-613
    Feng X.M., Li R.M., Ma Y.W., et al. One-step electrochemical synthesis ofgraphene/polyaniline composite film and its applications. Adv. Funct. Mater.,2011,21:2989-2996
    Fujita M., Wakabayashi K., Nakada K., et al. Peculiar localized state at zigzaggraphite edge. J. Phy. Soc. Jap.,1996,65(7):1920-1923
    Gao Z.Y., Liu J.L., Xu F., et al. One-pot synthesis of graphene cuprous oxidecomposite with enhanced photocatalytic activity. Solid State Sci.,2012,14:276-280
    Garboczi E. J., Snyder K. A., Douglas J. F., et al. Geometrical percolation threshold ofoverlapping ellipsoids. Phy. Rev., E,1995,52:819~828
    Geim A.K., Novoselov K.S. The rise of graphene, Nat. Mater.,2007,6:183-191
    Guo S., Dong S., Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendritessupported on graphene nanosheet:facile synthesis and used as an advancednanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4(1):547-555
    Hedrick L., Russell T.P., Sanchez M., et al. Polyimide Nanofoams from Caprolactone-based Copolymers. Macromolecules,1996,29(10):3642-3646
    Hernandez Y., Nicolosi V., Lotya M., et al. High-yield production of graphene byliquidphase exfoliation of graphite. Nat. Nanotech.,2008,3(9):538-542
    Huang C., Zhang Q. M.. High-dielectric-constant all-polymer percolative composites.Appl. Phys. Lett.,2003,82(20):3502-3504
    Huang L., Peng F., Yu H., et al. Preparation of cuprous oxides with different sizes andtheir behaviors of adsorption, visible-light driven photocatalysis andphotocorrosion. Solid State Sci.,2009,11(1):129-138
    Huang X., Yin Z.Y., Wu S.X., et al. Graphene-based materials: synthesis,characterization, properties, and applications, Small,2011,7:1876-1902
    Hummers W. S., Offeman R.E.. Preparation of graphitic oxide. J. Am. Chem. Soc.,1958,80:1339
    Kato H., Kudo A. Photocatalytic water splitting into H2and O2over various tantalatephotocatalysts. Catal. Today.,2003,78(1-4):561-569.
    Kim K.S., Zhao Y., Jang H., et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes. Nature2009,457(7230):706-710
    Kim P., Doss N.M., Tillotson J.P., et al. High energy density nanocomposites based onsurface-modified BaTiO3and a ferroelectric polymer. ACS Nano,2009,3(9):2581-2592
    Kim S.R., Parvez M., Chhowalla M. UV-reduction of graphene oxide and itsapplication as an interfacial layer to reduce the back-transport reactions indye-sensitized solar cells, Chem. Phy. Lett.,2009,483:124-127
    Kudo A., Mesiki Y. Heterogeneous photocatalyst materials for water splitting. Chem.Soc. Rev.2009,38(1):253-278
    Kumar S., Davis T.M., Ramanan H., et al. Aggregative growth of silicalite-1, J. Phys.Chem. B,2007,111:3398-3403
    Lee C., Wei X.D., Kysar J.W., et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science2008,321(5887):385-388
    Lee J.M., Pyun Y.B., Yi J., et al. ZnO nanorod-graphene hybridarchitectures formultifunctional conductors. J. Phys. Chem. C,2009,113(44):19134-19138
    Li G., Bai Y., Liu X., et al. Surface photoelectric properties of AgNbO3photocatalyst.J. Phys. D: Appl. Phys.,2009,42(23):235503.1-4
    Li J., Liu L. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particlecomposites with a novel electrochemical method. Electrochem. Comm.,2004,6:940-943
    Li X.S., Cai W.W., An J.H., et al. Large-area synthesis of high-quality and uniformgraphene films on copper foils. Science,2009,324(5932):1312-1314
    Li Y., Gao W., Ci L., et al. Catalytic performance of Pt nanoparticles on reducedgraphene oxide for methanol electro-oxidation. Carbon,2010,48(4):1124-1130
    Liao K.H, Mittal A., Bose S., et al. Aqueous only route toward graphene fromgraphite oxide. ACS Nano,2011,5(2):1253-1258
    Lin J., Wang X. Novel Low Polyimide/Mesoporous Silica Composite Films:Preparation, Microst ructure, and Properties. Polymer,2007,48:318-329
    Lin J., Zhong R., Zhou M., et al. Photoelectric catalytic degradation of methylene blueby C60-modified TiO2nanotube array. Appl. Catal. B,2009,89(3-4):425-435
    Liu J., Geng B., Wang S. Preparation and usage of ZnS/phosphate heterostructuredhemispheres in enhanced photocatalytic activities. Cryst. Growth Des.,2009,9(10):4384-4390
    Lomeda J.R., Doyle C.D., Kosynkin D.V., et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.,2008,130:16201~16206
    Maier G. Low Dielect ric Constant Polymers for Microelect ronics. Prog. Polym. Sci.2001,26:3-65
    Martins T.B., Miwa R.H., Silva A., et al. Electronic and transport properties ofborondoped graphene nanoribbons. Phys. Rev. Lett.,2007,98(19):196803-106804
    Mcclure J.W. Diamagnetism of graphite. Phys. Rev.,1956,104(3):666-671
    Meyer J.C., Geim A.K., Katsnelson M.I., et al. On the roughness of single-andbi-layer graphene membranes. Solid State Comm.,2007,143(1-2):101-109
    Meyer J.C., Geim A.K., Katsnelson M.I., et al. The structure of suspended graphenesheets. Nature,2007,446:60-63
    Mohapatra S.K., John S.E., Banerjee S., et al. Water photooxidation by smooth andultrathin alpha-Fe2O3nanotube arrays. Chem. of Mater.,2006,21(14):3048-3055
    Mouas S., Hamm A., Djurado D., et al. Synthesis of first stage graphite intercalationcompounds with fluorides. Revue de Chimie Minerale,1987,24(5):572-582
    Muszynski B., Kamat P.V.. Decorating graphene sheets with gold nanoparticles. J.Phys. Chem. C,2008,112(14):5263-5266.
    Muszynski R., Seger B., Kamat P.V. Decorating graphene sheets with goldnanoparticles. J. Phys. Chem. C,2008,112(14):5263-5266.
    Nair R.R., Blake P., Grigorenko A.N., et al. Fine strucxture constant define visualtransparency of graphene. Science,2008,320(5881):1308
    Nakada K., Fujita M., Dresselhaus G., et al. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence. Phys, Rev. B,1996,54(24):17954-17961
    Nan C.W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci.1993,37(1):1-116
    Nelson B.P., Candal R., Corn R.M., et al. Effects of pH and applied potential onphotocurrent and oxidation rate of saline solutions of formic acid in aphotoelectrocatalytic reactor. Langmuir,2000,16(15):6094-6101.
    Ni Z.H., Wang H.M., Kasim J., et al. Graphene thickness determination usingreflection and contrast spectroscopy. Nano Lett.,2007,7(9):2758-2763
    Nika D.L., Pokatilov E.P., Askerov A.S., et al. Phonon thermal conduction ingraphene: Role of umklapp and edge roughness scattering. Phys. Rev., B,2009,79(15):155413-12
    Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomicallythin carbon films. Science,2004,306:666-669
    Novoselov K.S., Geim A.K., Morozov S.V., et al. Two-dimensional gas of masslessdirac fermions in graphene. Nature2005,438(7065):197-200
    Oostinga J.B., Heersche H.B., Liu X.L., et al. Gate-induced insulating state in bilayergraphene devices. Nat. Mater.2008,7(2):151-157
    Paek S., Yoo E., Honma I. Enhanced cyclic performance and lithium storage capacityof SnO2/graphene nanoporous electrodes with three-dimensionally delaminatedflexible structure. Nano Lett.,2009,9(1):72-75
    Pan C.S., Zhu Y.F. New type of BiPO4oxy-acid salt photocatalyst with highphotocatalytic activity on degradation of dye. Environ. Sci. Technol.,2010,44:5570-5574
    Pan C.S., Zhu Y.F. Size-controlled synthesis of BiPO4nanocrystals for enhancedphotocatalytic performance. J. Mater. Chem.,2011,21:4235-4241
    Pasricha R., Gupta S., Srivastava A.K., A facile and novel synthesis ofAg-graphene-based nanocomposites. Small,2009,22(1):2253-2259.
    Pecharromán C., Fátima E.B., Bartolomé J.F., et al. New percolative BaTiO3-Nicomposites with a high and frequency-independent dielectric constant. Adv.Mater.2001,13(20):1541-1544
    Peckett J.W., Trens P., Gougeon R., et al. Electrochemically oxidised graphite:Characterisation and some ion exchange properties. Carbon,2000,38(3):345-353
    Ramanatha T., Abdala A.A., Stankovich S., et al. Functionalized graphene sheets forpolymer nanocomposites. Nat. Nanotech.,2008,3(6):327-331
    Reina A., Jia X.T., Ho J., et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Lett.,2009,9(1):30-35
    Roming M., Feldmann C. Synthesis and characterization of nanoscaled BiPO4andBiPO4:Tb. J. Mater. Sci.2009,44:1412-1415
    Ryu S., Han M.Y., Maultzsch J., et al. Reversible basal plane hydrogenation ofgraphene. Nano Lett.,2008,8(12):4597-4602
    Salem A.M., Selim M. S. Structure and optical properties of chemically depositedSb2S3thin films. J. Phys. D: Appl. Phys.2001,34:12–17.
    Schedin F., Geim A.K., Morozov S.V., et al. Detection of individual gas moleculesadsorbed on graphene. Nat. Mater.,2007,6(9):652-655
    Schniepp H.C., Li J.L., McAllister M.J., et al. Functionalized single graphene sheetsderived from splitting graphite oxide. J. Phys. Chem. B,2006,110:8535-8539
    Semenoff G.W. Condensed-matter simulation of a three-dimensional anomaly.Phys.Rev. Lett.,1984,53(26):2449-2453
    Shi J.W., Cui H.J., Chen J.W., et al. TiO2/activated carbon fibers photocatalyst:effects of coating procedures on the microstructure, adhesion property, andphotocatalytic ability. J. Colloid Interface Sci.,2012,388:201-208
    Shi R., Lin J., Wang Y.J., et al. Visible-light photocatalytic degradation of BiTaO4photocatalyst and mechanism of photocorrosion suppression, J. Phys. Chem. C,2010,114:6472–6477.
    Si Y.C., Samulski E.T. Exfoliated graphene separated by platinum nanoparticles.Chem. Mater.,2008,20(21):6792-6797.
    Son Y.W., Cohen M.L., Louie S.G. Half-metallic graphene nanoribbons. Nature,2006,444(7117):347-349
    Stankovich S., Dikin D.A., Dommett G.H.B., et al. Graphene-based compositematerials. Nature,2006,442(7100):282-286
    Stankovich S., Dikin D.A., Piner R.D., et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565
    Stankovich S., Piner R.D., Chen X., et al. Stable aqueeous dispersions of graphiticnanoplatelets cia the reduction of exfoliated graphite oxide in the presence ofpoly(sodium-4-styrenesulgonate). J. Mater. Chem.,2006,16(2):155-158
    Staudenmaier L. Verfahren zur darstellung der graphitsaure. Berichte der deutschenchemischen Gesellschaft,1899,31(2):1481-1487
    Sutter P.W., Flege J.I., Sutter E.A. Epitaxial graphene on ruthenium. Nat. Mater.,2008,7(5):406-411
    Taghioskoui M. Trends in graphene research. Materials Today,2009,12:34-37
    Tokunaga S., Kato H., Kudo A. Selective preparation of monoclinic and tetragonalBiVO4with scheelite structure and their photocatalytic properties. Chem.Mater.,2001,13:4624-4628
    Wallace P.R. The band theory of graphite. Phys. Rev.,1947,71(9):622-634
    Wang D.W., Li F., Zhao J.P., et al. Fabrication of graphene/polyaniline compositepaper via in situ anodic electropolymerization for high-performance flexibleelectrode. ACS Nano,2009,3(7):1745-1752
    Wang G., Yang J., Park J., et al. Facile synthesis and characterization of graphenenanosheets. J. Phys. Chem. C,2008,112(22):8192-8195
    Wang H., Robinson J.T., Diankov G., et al. Nanocrystal growth on gaphene withvarious degrees of oxidation. J. Am. Chem. Soc.,2010,132(10):3270-3271.
    Wang H.L., Hao Q.L., Yang X.J., et al. Graphene oxide doped polyaniline forsupereapaeitors. Electrochem. Comm.,2009,11(6):1158-1161.
    Westervelt R.M. Graphene nanoelectronics. Science,2008,320:324-325
    Williams G., Kamat P.V. Graphene-semiconductor nanocomposites: excited-stateinteractions between ZnO nanoparticles and graphene oxide. Langmuir,2009,25(24):13869-13873
    Williams G., Seger B., Kamat P.V. TiO2-graphene nanocomposites, UV-assistedphotocatalytic reduction of graphene oxide. ACS Nano,2008,2(7):1487-1491.
    Wu L.L., Tsui L.K., Swami N., et al. Photoelectrochemical stability ofelectrodeposited Cu2O films. J. Phys. Chem. C,2010,114:11551-11556
    Wu Z.S., Ren W., Wen L., et al. Graphene anchored with Co3O4nanoparticles adanode of lithium ion batteries with enhanced reversible capacity and cyclicperformance. ACS Nano,2010,4:3187-3194
    Xu C., Wang X., Zhu J., et al. Deposition of Co3O4nanoparticles onto exfoliatedgraphite oxide sheets. J. Mater. Chem.2008,18(46):5625-5629.
    Xu C., Wang X., Zhu J.W., et al. Graphene metal particle nanocomposites. J. Phys.Chem. C,2008,112(50):19841-19845.
    Xu D., Ivan S., Anthony B., et al. Approaching ballistic transport in suspendedgraphene. Nat. Nanotech.,2008,3:491-495.
    Xu Y., Chen X.B., Wang J.S., et al. Thermal transport in graphene junctions andquantum dots. Phys. Rev. B,2010,81(19):195425-7
    Xu Y.X., Sheng K.X., Li C., et al. Self-assembled graphene hydrogel via a one-stephydrothermal process, ACS nano,2010,4:4324-4330
    Yan J., Fan Z., Wei T., et al. Fast and reversible surface redox reaction ofgraphene-MnO2composites as supercapacitor electrodes. Carbon,2010,48:3825-3833
    Yao W.F., Xu X.H., Wang H., et al. Photocatalytic property of perovskite bismuthtitanate, Appl. Catal., B,2004,52:109-116
    Yin Z., Wu S., Zhou X., et al. Electrochemical deposition of ZnO nanorods ontransparent reduced graphene oxide electrodes for hybrid solar cells. Small,2010,6(2):307-312.
    Yoo E., Okata T., Akita T., et al. Enhanced electrocatalytic activity of Ptsubnanoclusters on graphene nanosheet surface. Nano Lett.,2009,9(6):2255-2259
    Yu A.P., Ramesh P., Itkis M., et al. Graphite nanoplatelet-epoxy composite thermalinterface materials. J. Phys. Chem. C,2007,111:7565-7569
    Yu L., Ke S.M., Zhang Y.H., et al. Dielectric relaxations of high-k poly(butylenesuccinate) based all-organic nanocomposite films for capacitor applications. J.Mater. Research,2011,26(19):2493-2502
    Yu L., Zhang Y.H., J.W. Shang, et al. Electrical and dielectric properties of exfoliatedgraphite/polyimide composite films with low percolation threshold. J. Electron.Mater.,2012,41(9):2439-2446.
    Yuan J.K., Li W.L., Yao S.H., et al. High dielectric permittivity and low percolationthreshold in polymer composites based on SiC-carbon nanotubes micro/nanohybrid. Appl. Phys. Lett.,2011,98:032901
    Zeng H., Cai W., Liu P., et al. ZnO-based hollow nanoparticles by selective etching:Elimination and reconstruction of metal-semiconductor interface, improvementof blue emission and photocatalysis. ACS Nano,2006,2(8):1661-1670
    Zhang C., Zhu Y.F. Synthesis of square Bi2WO6nanoplates as high activity visiblelight driven photocatalysts. Chem. Mater.,2005,17(13):3537-3545.
    Zhang H., Zong R.L., Zhu Y.F. Photocorrosion inhibition and photoactivityenhancement for zinc oxide via hybridization with onolayer polyaniline. J. Phys.Chem. C,2009,110(51):25825-25832
    Zhang K.L., Liu C.M., Huang F.Q., et al. Study of the electronic structure andphotocatalytic activity of the BiOCl photocatalyst. Appl. Catal., B,2006,68:125-129
    Zhang L.W., Fu H.B., Zhu Y.F. Efficient TiO2photocatalysts from surfacehybridization of TiO2particles with graphite-like carbon. Adv. Funct. Mater.,2008,18(1-24):2180-2189
    Zhang X., Huang P., Jung J., et al. Effects of polyethylene glycol on DNA adsorptionand hybridization on gold nanoparticles and graphene oxide, Langmuir,2012,28(40):14330-14337
    Zhang Y.B., Tan Y.W., Stormer H.L., et al. Experimental observation of the quantumhall effect and berrys" phase in graphene. Nature,2005,438,201-204.
    Zhao D., Chen C., Wang Y., et al. Surface modification of TiO2by phosphate:effecton photocatalytic activity and mechanism implication. J. Phys. Chem. C,2008,112(15):5993-6001
    Zhou Y., Bao Q.L., Tang L.A.L., et al. Hydrothermal dehydration for the "Green"reduction of exfoliated graphene oxide to graphene and demonstration oftunable optical limiting properties, Chem. Mater.,2009,21:2950-2956
    Zhu L., Homa K., et al. Graphene domain boundaries on Pt(111) as nucleation sitesfor Pt nanocluster formation, Surf. Sci.,2012,606(21):1643-1648
    Zhu Q.W., Zhang Y.H., Zhou F.S., et al. Preparation and Characterization ofCu2O-ZnO Immobilized on Diatomite for Photocatalytic Treatment of RedWater Produced from Manufacturing of TNT. Chem. Eng. J.2011,171(1):61-68
    Zhu Y.W., Murali S., Cai W.W., et al. Graphene and graphene oxide: synthesis,properties and applicaitons, Adv. Mater.2010,22:3906-3924
    Zong K., Wang H., Liu J., et al. Research progress in photocatalytic reactions basedon graphene. Chemical Industry and Engineering Progree,2012,31(12):2736-2742
    陈丹。聚酰亚胺取向纳米复合膜的制备、结构与性能研究:[博士学位论文]。上海:复旦大学,2012
    陈金毅,刘小玲,李间轮等。纳米氧化亚铜可见光催化分解亚甲基蓝。华中师范大学学报(自然科学版),2002,36(2):200-203
    陈章,马寒冰,杨宁宁等. BaTiO3/环氧高介电常数复合材料。材料科学与工程学报,2007,25(6):914-916
    成会明,任文才,吴忠帅等。一种层数可控的高质量石墨烯的制备方法。200910013248.0
    党智敏。高介电无机/有机复合材料的研究:[博士后研究报告]。北京:清华大学,2003
    何星存,梁伟夏,黄智等。可见光响应的“Cu核-Cu2O壳”型光催化剂性能的研究.现代化工,2005,25(11):38-41
    黄伟九,赵远,王选伦。石墨烯/聚酰亚胺复合材料的力学和摩擦学性能.功能材料,2012,24:3484-3488
    马鸿文。工业矿物与岩石[M].地质出版社,2005
    孟楠,张爱茜,吴海锁等。TiO2与Cu2O光催化降解对硝基苯酚比较研究。第二届全国环境化学学术报告会论文集,2004:66-40
    尚继武。石墨烯改性聚偏氟乙烯复合材料的制备与介电性能研究:[硕士学位论文]。北京:中国地质大学(北京),2012
    王新伟,杨艳,田宏伟等。石墨烯的化学方法合成及其表征。中国科技论文在线,2011,6(3):187-190
    叶芸,蒋亚东,吴志明等。电极化对Ag/PVDF薄膜间相互作用的XPS研究。功能材料,2006,37(9):1378-1380
    于美,刘鹏瑞,孙玉静等。石墨烯-银纳米粒子复合材料的制备及表征。无机化学学报,2012,27(1):89-94
    张晓艳,李浩鹏,崔晓莉。TiO2/石墨烯复合材料的合成及光催化分解水产氢活性。无机化学学报,2009,25(11):1903-1907。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700