用户名: 密码: 验证码:
高压脉冲放电破碎岩石及钻井装备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆上油气资源的日益枯竭,海上油气资源的勘探和开发变得日益迫切,基于脉冲放电破碎岩石的钻井技术受到了广泛的关注。现有的高压脉冲放电破岩装置,使用的脉冲电源单次能量都是几百甚至上千焦耳,该能量等级下电源工作的重复频率、能量效率和电极的使用寿命等问题都会受到一定的限制。减小单次放电能量和工作电压,有可能实现装备的小型化,快重复频率和长使用寿命,并增强设备使用的安全性。本论文开展了幅值电压30~50kV、单次能量10~20J下脉冲放电破碎岩石的理论和实验研究。
     脉冲放电破碎岩石主要分为液电效应破碎和电破碎两种形式。液电效应的研究历史较早,理论相对成熟。本文重点讨论了电破碎岩石过程及机理。从电场的角度分析了气泡对岩石电击穿场强的影响。利用等效电路的方法,分析了储能电容上的能量注入到等离子体通道中的过程,模拟结果显示:等离子体通道在电击穿后,其阻抗在Q量级。借鉴经典的爆炸理论,将岩石看作为均匀、各向同性、不可压缩性流体,建立了一个基于动量传递观点的等离子体通道破碎岩石模型。储能装置上的能量快速地注入到等离子通道,引起通道迅速膨胀,对通道周围的岩体产生一个比冲量。岩石以一定的速度开始运动,但由于获得的初速度并不一致,相对运动产生的位移差将会使岩石变形。当岩石的变形能超过其应力强度时,破碎发生。
     岩石的电击穿场强是研究电破碎岩石的核心问题。本文考察了针—板电极条件下岩石的电击穿场强。黄砂岩、黑大理岩、白大理岩、黑花岗岩和白花岗岩在50%击穿概率下平均电击穿场强分别为70kV/cm、105kV/cm160kV/cm、135kV/cm和120kV/cm。实验证实了岩石的孔隙率跟其电击穿场强的相关性:孔隙率越大,电击穿场强越小。岩石的电击穿场强随厚度的增减而减小。利用小能量的Marx发生器在针—板电极下对岩石进行电破碎实验。岩石发生破碎需要电源提供的单次能量不能低于8J。
     针对高压脉冲放电破碎岩石的工业应用,本文开展了下针—针电极放电破碎岩石的实验研究。高压脉冲放电对岩石破碎的结果表明:电场强度、脉冲能量、电导率等因素对岩石的破碎均有影响。加载在放电电极上的电压越高、单次脉冲能量越大、水电导率越小,则岩石越容易发生破碎。实验证实了在电极间距2~4mm,自来水的电导率300μS/cm幅值电压30~50kV、单次能量10~20J的脉冲放电是可以实现对硬岩的破碎。
     基于前期的理论和实验研究,设计了一套高压脉冲放电破碎岩石的钻井工艺,搭建了一台脉冲等离子体钻井设备。提出利用线性的电容和非线性的脉冲形成线的组合来实现电源同负载的阻抗匹配。自行设计并搭建了一台LCR触发多级多通道火花开关。实验结果表明:该火花开关具有稳定的电压输出,较小的能量损耗,电压的上升沿小于40ns,可以作为钻机的短脉冲形成开关。开发了一种低波阻抗同轴水电缆,电缆的波阻抗小于10Ω,将进水管放置于中心导体内,实现了电缆和水缆的结合。设计并搭建了一套可行的钻机机构,该机构由机架、钻井杆、重力压盘和导向杆等部件组成。钻井杆采用多级连杆组合的方式实现足够的机械连接,并可以根据进钻的深度调节钻井杆的长度。钻井机构能够满足持续的深井钻孔的要求。
     利用搭建好的钻机开展了岩石钻孔的实验研究。钻头电极采用同轴圆柱结构,接地电极的外直径54mm,电极壁厚5mm,高压电极为内电极,直径为40mm,高、低压电极间距为2mm。当采用自制的低波阻抗脉冲传输线时,受限于传输线的工作电压,钻机无法实现对天然岩石的钻孔。当采用RG218电缆作为传输线,电压30~45kV、单次能量10~20J的脉冲放电数次后,岩石的表面在与放电间隙对应的位置有凹槽,与高压电极接触的岩石无变化,钻机也无法实现对岩石的有效钻孔。利用多根细电缆制成的钻头电极,高低压电极对为10对,电极间距为3~3.5mm集成后电极的直径为40mm。实验发现不同种类的岩石,在不同的电压等级下,能耗的差别较大。实验选取了建筑红砖、黑大理岩、黄砂岩、白大理岩和黑花岗岩等作为实验石材。建筑红砖的能耗最低,在30kV电压时,钻孔能耗为100J/cm3,当升高电压至45kV时,钻孔的能耗降至45J/cm3。钻孔的能耗随着电压的上升而下降。芝麻白花岗岩和珍珠黑花岗岩在40~50kV电压等级下的钻孔能耗约为1000J/cm3。
With increasing depletion of land oil and gas resources, exploration and development of offshore oil and gas resources has becoming increasingly urgent. Recently, a drilling technology based on pulsed electrical discharge fragmentation (PEDF) of hard rocks has attracted widely attention. The energy per pulse of existing generators of PEDF is hundreds or even thousands of joules per pulse, which limits operating frequency, energy efficiency and lifetime of electrodes. With lowering energy per pulse and voltage amplitude, there may be to miniaturize the equipment and to increase the frequency rate, lifetime of the electrode, and the use of safety. In this paper, theoretical and experimental research on PEDF has been conducted with voltage amplitude of30-50kV and energy per pulse of10~20J.
     Electrohydraulic (EHD) and Electrical discharge (ED) are two main methods for the PEDF technology. The research on the electrohydraulic is a bit earlier and the relevant theory is relatively mature. This article mainly discusses the process and mechanism of the ED method. The effect of porosity on the electrical strength is analyzed. The process of the energy injected into the plasma channel is analyzed using the equivalent circuit method. The simulation result shows that the impedance of the plasma channel is smaller than1Ω. A model of rock fragmentation by plasma channel is established based on the momentum transfer, assuming rock as homogeneous, isotropic and incompressible fluid. The energy in the storage device quickly injects into the plasma channel and the channel expands rapidly to produce a specific impulse to the surrounding rock. The rock begins to move at a certain speed but the initial velocity obtained is not consistent, the relative movement of the displacement difference will make the rock deformation. When the deformation of the rock exceeds its stress intensity, fragmentation occurs.
     Electrical strength of rock is the core issue of electrical fragmentation of rock. In this research, rocks were placed between a needle high-voltage electrode and a plate grounded electrode in deionized water. The electrical strengths with50%breakdown possibility of yellow sandstone, black marble, white marble, black granite and white granite are70kV/cm,105kV/cm,160kV/cm,135kV/cm and120kV/cm respectively. The result verifies the relationship of rock electrical strength and its porosity. A rock with a higher porosity may have a lower electrical strength. Moreover, the electrical strength drops with increasing the thickness of rocks. Experiments on rock electrical discharge were taken in needle-to-plate electrodes with small energy Marx generator. Fragmentation can be realized on the condition that power supply should provide energy more than8J per pulse.
     Taking into account the conditions of actual industrial applications of PEDF technology, rock fragmentations with needle-to-needle electrode pulse discharge in tap water were carried out. Several factors effect rock fragmentation performance, such as electrode gap, voltage amplitude, energy per pulse and water conductivity. Higher voltage on the electrode, greater energy of pulse, smaller conductivity of the water, is more prone to destroy rock. Rock fragmentation can be realized on the condition that, electrode gap of2-4mm, water conductivity of300μS/cm, voltage amplitude of30~50kV and energy per pulse of10~20J.
     Based on theoretical and experimental research of PEDF, a setup of plasma drill has been designed and developed. The combined pulsed power network has been raised as the drill's generator. The combined network combined linear capacitor and non-linear pulsed forming line, which can match with the impedance of the plasma channel. A LCR triggered, multi-gap and multi-channel spark switch has been developed. Test results shows that the switch has stable voltage output, little energy consumption. The rise time of output voltage is less than40ns. A low wave impedance transmission line with10Ω has been developed. The inlet water tube is installed in the center of the transmission line. This design has combined the water inlet tube and transmission line together. An drilling mechanism have been developed and the mechanism comprises of a drilling frame, a drilling bar, a gravity plate and guiding bars, et al. Several unites of drilling bars can connect together and realize enough mechanical strength. The length of the drilling bar can be adjusted depending on the drilling depth. The drilling mechanism can meet requirements of drilling holes.
     Experiments on rock drilling using the plasma drill have been carried out. A radially symmetric electrode design was used as the drill head. The drill head consistes of an internal high voltage disc electrode with diameter of44mm and an external grounded cup-like electrode with outer diameter of54mm. The annular inter-electrode gap is2mm. Rock cannot be destroyed with the low impedance transmission line for its operating voltage. When the cable of RG218is adopted as the transmission line, only a concave groove on the rock surface is formed after several discharges. The position of the groove is corresponding to the electrode gap. The rock under the high voltage electrode is undestroyed. Rock drilling with multi-cable electrodes has been carried out. The diameter of the multi-cables drill head is40mm and the gap between high voltage electrode and low voltage electrode is3-3.5mm and10pairs of electrodes are combined. Results show that specific energies for different kind of rocks under different operating voltage have great difference. The specific energy decreases as the operating voltage increases. For red brick, when the operating voltage is30kV, the specific energy is100J/cm3. The specific energy decreases to45J/cm3when the operating voltage is45kV. When the operating voltage is40~50kV, the specific energy of granite is about1000J/cm3.
引文
Andres U & Bialecki R (1986). Liberation of mineral constituents by high-voltage pulses. Powder Technology 48(3):269-277.
    Andres U (1989). Parameters of disintegration of rock by electrical pulses. Powder Technology 58(4):265-269.
    Andres U (1994). Electrical disintegration of rock. Mineral Processing and Extractive Metullargy Review 14(2):87-110.
    Andres U (2010). Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing 97(1):31-38.
    Andres U, Jirestig J, & Timoshkin I (1999). Liberation of minerals by high-voltage electrical pulses. Powder Technology 104(1):37-49.
    Andres U, Timoshkin I, & Soloviev M (2001). Energy consumption and liberation of minerals in explosive electrical breakdown of ores. Mineral Processing and Extractive Metallurgy 110(3):149-157.
    Andres U, Timoshkin I, Jirestig J, & Stallknecht H (2001). Liberation of valuable inclusions in ores and slags by electrical pulses. Powder Technology 114(1):40-50.
    Andres UT (1977). Liberation study of apatite-nepheline ore comminuted by penetrating electrical discharges. International Journal of Mineral Processing 4(1):33-38.
    Bach C & Buchholz N (2011). Shock Wave Lithotripsy for Renal and Ureteric Stones. European Urology Supplements 10(5):423-432.
    Badila M & CP (1990). Breakdown of SiO2 thin films grown in dry O2. Thin Solid Films 192(1):1-5.
    Bialecki R, Choi P, Andres U, & Shaw C (1991). Disintegration of rock by high voltage pulse discharge. Pulsed Power Conference,1991.8th IEEE International Conference on Pulsed Power (IEEE), pp 838-841.
    Biela J, Marxgut C, Bortis D, & Kolar JW (2009). Solid state modulator for plasma channel drilling. Dielectrics and Electrical Insulation, IEEE Transactions on 16(4):1093-1099.
    Bluhm H (2006). Pulsed Power Systems Principles and Applications. ISBN 978-3-540-26137, Burlin:Springer, pp.281-305.
    Bluhm H, Frey W, Giese H, Hoppe P, Schultheiss C, & Strassner R (2000). Application of pulsed HV discharges to material fragmentation and recycling. Dielectrics and Electrical Insulation, IEEE Transactions on 7(5):625-636.
    Boev S, Vajov V, Jgun D, Levchenko B, Muratov V, Adam A, & Uemura K (1997). Electropulse technology of material destruction and boring.11th IEEE International Conference on Pulsed Power (IEEE), pp.220-225
    Boev S, Vajov V, Jgun D, Levchenko B, Muratov V, Adam A, & Uemura K (1999). Destruction of granite and concrete in water with pulse electric discharges.12th IEEE International Conference on Pulsed Power, (IEEE), pp.1369-1371.
    Brejcha RJ (1967). Electro-hydraulic forming apparatus. US Patent 3,358,487.
    Bru K, Menard Y, Touz S, Moign A, Poirier JE, Ruffi G, Bonnaudin F, & Vonder WF (2011). Innovative process routes for a high-quality concrete recycling in the aggregates and cement industries. Proceedings of SARDINIA 2011-Thirteenth International Waste Management and Landfill Symposium.
    Burkin V, Kuznetsova N, & Lopatin V (2009a). Dynamics of electro burst in solids:I. Power characteristics of electro burst. Journal of Physics D:Applied Physics 42(18):185204.
    Burkin V, Kuznetsova N, & Lopatin V (2009b). Dynamics of electro burst in solids:II. Characteristics of wave process. Journal of Physics D:Applied Physics 42(23):235209.
    Burkin VV, Kuznetsova NS, & Lopatin VV (2006). Analysis of mechanisms of rock destruction in electro discharge drilling. Izv. Vyssh. Uchebn. Zaved, Fiz. (11):507-510.
    Chanturia V & Bunin IZ (2007). Non-traditional high-energy processes for disintegration and exposure of finely disseminated mineral complexes. Journal of Mining Science 43(3):311-330.
    Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V (2002). First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. The Journal of Urology 167(2):844-847.
    Cheng XB, Liu JL, Qian BL, Chen Z, & Feng JH (2010). Research of a high-current repetitive triggered spark-gap switch and its application. Plasma Science, IEEE Transactions on 38(3):516-522.
    Cho SH, Yokota MH, Kubota SH, Shibayama AH, Kaneko KH, Mohanty BH, Owada SH, Yuji OH, Nakamiya YH, & Ito MH (2006). Dynamic fragmentation of rock by high-voltage pulses.41th US Symposium on Rock Mechanics, (American Rock Mechanics Association).
    Dodbiba G, Nagai H, Wang LP, Okaya K, & Fujita T (2012). Leaching of indium from obsolete liquid crystal displays:Comparing grinding with electrical disintegration in context of LCA. Waste Management 32(10):1937-1944.
    Engel T, Donaldson AL, & Kristiansen M (1989). The pulsed discharge arc resistance and its functional behavior. Plasma Science, IEEE Transactions on 17(2):323-329.
    Filatov AL, Kotov YA, Korzhenevski SR, Motovilov VA, Jakovlev VL, Korykin BM, & Boriskov FF (1997). Nanosecond-discharge-assisted selective separation of fine inclusions not involved in the impurity lattice.11th IEEE International Conference on Pulsed Power, (IEEE), pp.1103-1105.
    Frohlich H & Paranjape B (2002). Dielectric breakdown in solids. Proceedings of the Physical Society. Section B 69(1):21.
    Frohlich H (1947). On the theory of dielectric breakdown in solids. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 188(1015):521-532.
    Fujita T, Yoshimi I, Shibayama A, Miyazaki T, Abe K, Sato M, Yen WT, & Svoboda J (2001). Crushing and liberation of materials by electrical disintegration. European Journal of Mineral Processing and Environmental Protection 1 (2):113-122.
    Fujita T, YoshimI I, Tanaka Y, Jeyadevan B, & Miyazaki T (1999) Research of liberation by using high voltage discharge impulse and electromagnetic waves. Journal of the Mining and Materials Processing Insitute of Japan 115(10):749-754.
    Greenstein A & Matzkin H (1999) Does the rate of extracorporeal shock wave delivery affect stone fragmentation? Urology 54(3):430-432.
    Hamelin M, Kitzinger F, Pronko S, & Schofield G (1993). Hard rock fragmentation with pulsed power.9th IEEE International Conference on Pulsed Power, (IEEE), pp.11-14.
    Hawrylewicz BM & Puchala RJ (1986). Experiment with electric discharge in rock splitting.27th U.S. Symposium on Rock Mechanics, (American Rock Mechanics Association), pp.429-436.
    Hayashi R, Urabe T, & Owada S (2012). Electromagnetic Field Analysis on the Behavior of Selective Breakage at Phase Boundary in Electrical Disintegration. Design for Innovative Value Towards a Sustainable Society:116-120.
    Hoppe P, Singer J, Bluhm H, Frey W, Giese H, Massier H, Edinger W, & Schweike U (2002). FRANKA-Stein:Design, operation and industrial application.25th International Power Modulator Symposium (IEEE), pp.559-562.
    Imaizumi Y, Zirnheld J, Olabisi S, Onyenucheya B, Halstead E, Halstead A, Moore H, & Singh H (2007). Determination of fracturing mechanisms in ice using pulsed power.16th IEEE International Conference on Pulsed Power, (IEEE), pp.1248-1252.
    Inoue H, Lisitsyn I, Akiyama H, & Nishizawa I (1999). Pulsed electric breakdown and destruction of granite. Japanese Journal of Applied Physics 38:6502-6505.
    Inoue H, Lisitsyn IV, Akiyama H, & Nishizawa I (2000). Drilling of hard rocks by pulsed power. Electrical Insulation Magazine, IEEE 16(3):19-25.
    Ito M, Owada S, Nishimura T, & Ota T (2009). Experimental study of coal liberation: electrical disintegration versus roll-crusher comminution. International Journal of Mineral Processing 92(1):7-14.
    Jamshaid A, Ather MH, Hussain G, & Khawaja KB (2008). Single Center, Single Operator Comparative Study of the Effectiveness of Electrohydraulic and Electromagnetic Lithotripters in the Management of 10-to 20-mm Single Upper Urinary Tract Calculi. Urology 72(5):991-995.
    Jonscher A & Lacoste R (1984). On a cumulative model of dielectric breakdown in solids. Electrical Insulation, IEEE Transactions on (6):567-577.
    Kim AA, Kovalchuk BM, Kremnev VV, Krumpjak EV, Novikov AA, Etlicher B, Frescaline L, Leon JF, Roques B, & Lassalle F (1997). Multi gap, multi channel spark switches.11th IEEE Pulsed Power Conference, (IEEE), pp 862-867.
    Kitzinger F & Nantel J (1992). Plasma blasting method. (US Patent 5,106,164).
    Kovalchuk BM, Kharlov AV, Vizir VA, Kumpyak VV, Zorin VB, & Kiselev VN (2010). High-voltage pulsed generator for dynamic fragmentation of rocks. Review of Scientific Instruments 81:103506.
    Kovalchuk BM, Kim AA, Kumpjak EV, Zoi NV, Corley JP, Struve YW, & Johnson DL (2001). Multi gap switch for Marx generators.11th IEEE International Pulsed Power Conference, (IEEE),pp 1739-1742.
    Kryuchkov YN (1995). Equipment for fine crushing of ceramic materials (Review). Glass and ceramics 52(8):210-215.
    Kuusela T (2012). Scanning electron microscope, http://www2.physics.utu.fi /laitos/materiaalitutkimus/materiaalitiede/SEM. html.
    Kurets V, Lopatin V, & Noskov M (2000). Influence of local heterogeneities on discharge channel trajectory at electric pulse destruction of materials. Journal of Mining Science 36(3):268-274.
    Kuznetsova N, Lopatin V, Burkin V, Golovanevskiy V, Zhgun D, & Ivanov N (2011). Theoretical and experimental investigation of electro discharge destruction of non-conducting materials.18th IEEE International Conference on Pulsed Power (IEEE), pp.267-273.
    Lisitsyn I, Inoue H, Katsuki S, & Akiyama H (1999). Use of inductive energy storage for electric pulse destruction of solid materials. Dielectrics and Electrical Insulation, IEEE Transactions on 6(1):105-108.
    Lisitsyn I, Inoue H, Katsuki S, Akiyama H, & Nishizawa I (1999). Drilling and demolition of rocks by pulsed power.12th IEEE International Conference on Pulsed Power, (IEEE), pp. 169-172.
    Lisitsyn I, Inoue H, Nishizawa I, Katsuki S, & Akiyama H (1998). Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses. Journal of Applied Physics 84(11):6262-6267.
    Lisitsyn IV, Muraki T, & Akiyama H (1997). Features of shock wave formation in a wire induced surface flashover. Applied physics letters 70(13):1676-1678.
    Liu Z (2008). Multple-switch pulsed power generation based on a transmission line transformer. Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, pp.87-91.
    Macgregor SJ & Turnbull SM (2011). Plasma channel drilling process. (EP Patent 1,474,587).
    MacGregor SJ & Turnbull SMC (2007). Plasma channel drilling process. (US Patent 7,270,195).
    Maker V & Layke J (2004). Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy:a review of the literature since its inception. Journal of the American College of Surgeons 198(1):128-135.
    Moeny WM & Hill G (2009). Method of drilling using pulsed electric drilling. (US Patent 7,530,406).
    Moeny WM (2011). Virtual electrode mineral particle disintegrator. (WO Patent 173,969).
    Moeny WM (2012). Apparatus and method for electrocrushing rock. (Patent 8,186,454).
    Nagashima T, Akiyama H, Namihira T, & Katsuki K (2007). Recycle of metal-plating on plastics by pulse arc discharge.16th IEEE International Conference on Pulsed Power 2:1337-1440.
    Naugolnykh KA & Roi NA (1966). Relation between the Hydrodynamic and Electrical Characteristics of Discharge in Liquid. Soviet Physics Technical Physics. 11(5):443-445.
    O'dwyer J (1958). Dielectric breakdown in solids. Advances in Physics 7(27):349-394.
    Okun IZ (1971). Generation of compression waves by a pulsed discharge in water. Soviet Physics Technical Physics.16(2):219-226.
    Pronko S, Schofield G, Hamelin M, & Kitzinger F (1993). Megajoule pulsed power experiments for plasma blasting mining applications.9th IEEE International Conference on Pulsed Power, pp 15-18.
    Rassweiler JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, & Chaussy C (2011). Shock Wave Technology and Application:An Update. European Urology 59(5):784-796.
    Rim GH & Cho CH (2000). Design and testing of a rotary arc gap-switch for pulsed power. Plasma Science, IEEE Transactions on 28(5):1491-1496.
    Rim GH, Cho CH, Lee HS, & Pavlov EP (1999). An electric-blast system for rock fragmentation.12th IEEE International Conference on Pulsed Power, (IEEE), pp.165-168.
    Rompe R & Weizel W (1944). ber das Toeplersche Funkengesetz. Zeitschrift fr Physik A Hadrons and Nuclei 122(9):636-639.
    Seitz F (1949). On the theory of electron multiplication in crystals. Physical Review 76(9):1376.
    Singh VR, Lafaut JP, WeverS M, Vincent C, & Baert L (2000). Transient cavitation and associated mechanisms of stone disintegration. TTBM-RBM21(1):14-22.
    Solomon P, Klein N, & Albert M (1976). A statistical model for step and ramp voltage breakdown tests in thin insulators. Thin Solid Films 35(3):321-326.
    Sun FJ, Zeng JT, Qiu AC, Zhang JS, Yin JH, & Qiu YC (2001). Experimental Study of the Multi-Gap Multi-Channel Gas Spark Closing Switch. Plasma Science and Technology 3(4):871-876.
    Timoshkin IV, Mackersie JW, & MacGregor SJ (2004). Plasma channel miniature hole drilling technology. Plasma Science, IEEE Transactions on 32(5):2055-2061.
    Usov A & Tsukerman V (2000). Prospective of electric impulse processes for the study of the structure and processing of mineral raw materials. Developments in Mineral Processing,13: C2-8-C2-15.
    Usov A & Tsukerman V (2002). Prospective electric pulse processes for sustainable processing of mineral raw materials. Green Processing Conference (Cairns Qld.), pp.379-383.
    Vazhov VF, Gafarov RR, Datskevich SY, Zhurkov MY, & Muratov VM (2010). Electric-pulse breakdown and the breakage of granite. Technical Physics 55(6):833-838.
    Von Hippel A (1937). Electric breakdown of solid and liquid insulators. Journal of Applied Physics 8(12):815-832.
    Wang E, Shi F, & Manlapig E (2011). Pre-weakening of mineral ores by high voltage pulses. Minerals Engineering 24(5):455-462.
    Wang E, Shi F, & Manlapig E (2012a). Experimental and numerical studies of selective fragmentation of mineral ores in electrical comminution. International Journal of Mineral Processing 112-113:30-36.
    Wang E, Shi F, & Manlapig E (2012b). Factors affecting electrical comminution performance. Minerals Engineering 34:48-54.
    Wang E, Shi F, & Manlapig E (2012c). Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels. Minerals Engineering 27-28:28-36.
    Winands GJJ, Liu Z, Pemen AJM, Van Heesch EJM, & Yan K (2005). Long lifetime, triggered, spark-gap switch for repetitive pulsed power applications. Review of Scientific Instruments 76(8):085107-085107-085106.
    Winands GJJ, Yan K, Pemen AJM, Nair SA, Liu Z, & Heesch EJM (2006). An industrial streamer corona plasma system for gas cleaning. Plasma Science, IEEE Transactions on 34(5):2426-2433
    Yan K (2001). Corona plasma generation. Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, pp.74-88.
    Yan K, Van Heesch EJM, Nair SA, & Pemen AJM (2003). A triggered spark-gap switch for high-repetition rate high-voltage pulse generation. Journal of Electrostatics 57(1):29-33.
    Yoshimi I, Shibayama A, Fujita T, Abe K, Miyazaki T, Sato M, & Yen WT (2001). Liberation of materials by electrical disintegration for recycling.4th International Conference on Materials Engineering for Resources, pp.82-87.
    Zener C (1934). A theory of the electrical breakdown of solid dielectrics. Proceedings of the Royal Society of London. Series A 145(855):523-529.
    Zhang CH, Namihira T, Kiyan T, Nakashima K, Katsuki S, Akiyama H, Ito H, & Imaizumi Y (2005). Investigation of Shockwave Produced by Large Volume Pulsed Discharge Under Water.15th IEEE International Conference on Pulsed Power, (IEEE), pp 1377-1380.
    Zhong P, Cocks FH, Cioanta I, & Preminger GM (1997). Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. The Journal of Urology 158(6):2323-2328.
    鲍挺,黄宁(2010).岩石破碎技术研究与发展前景.安徽建筑(6):110-116.
    陈海启,钱仁义(2011).体外冲击波碎石技术.ISBN 987-7-5662-0030-3,西安:第四 军医大学出版社,pp.1-17.
    陈建华,王恺,张燕,贺生海,彭江 王纪(2002).低频电脉冲采油工程设备的开发与应用.河南石油 3:45-47.
    陈景秋,韦春霞,邓艇,田祖安,张晓艳(2007).体外冲击波碎石技术的力学机理的研究.力学进展 37(4):11.
    陈世和,麻胜荣,邹文洁(2006).应用低温等离子体破碎岩石.核技术 29(11):4.
    陈祥云,姚建豪,张海燕,古来梅,李伟,欧阳剑(2005).低频电脉冲解堵仪在河南油田的应用.石油仪器 4:26-30.
    多尔特曼著,蒋宏耀译(1985).岩石和矿物的物理性质.ISBN 13031-2766,北京:科学出版社,pp.245-253.
    冯荣琼,王永荣,酆斌(1987).锅炉水垢处理的一种新方法——液电效应法.电工电能新技术(1):50-52.
    付胜,李海涛,刘丽丽,石照耀(2006).空化水射流的形成方法及其应用研究.机械科学与技术25(4):491-496.
    桂良玉(2010).静态破碎技术在综采过断层中的应用.中国矿业19(1):85-87.
    韩波,韩日文(1998b).用于疏通油水井的脉冲放电技术.测井技术2(2):55-58.
    韩波,王新新,郭志刚,张波(1998a).脉冲大电流放电技术在疏通油井上的应用.电工电能新技术1(1):38-42.
    贺臣(2005).重复频率长寿命气体火花开关的研究.硕士学位论文,武汉:华中科技大学.
    赖贵友,郭良福,力一峥,陈德怀,陈清海,周丕璋(2006).大电流两电极气体开关研究.强激光与粒子束 18(6):1037.1040.
    李帮民,汪志明,薛亮(2011).超高压射流辅助钻井技术研究进展.钻采工艺34(1):28-31.
    李涛(2009).高库仑量大电流气体火花开关的工程应用研究.硕士学位论文,武汉:华中科技大学.
    李伟,谢朝阳,陈凤,高树生(1996).声波采油技术处理油层半径范围分析.断块油气田 3:64.69.
    廖振方,唐川林,刘美生,张风华(2000).等离子体活化水对混凝土力学性能的影响.重庆大学学报(自然科学版)23(6):1-4.
    刘柏禄,潘建忠,谢世勇(2011).岩石破碎方法的研究现状及展望.中国钨业26(1):15-19.
    刘锡山(2005).告功率脉冲技术ISBN 978-7-118-03855-2,北京:国防工业出版社,pp.338-360.
    卢新培,张寒虹,潘垣,刘克富,刘明海(2001).水中脉冲放电的压力特性研究.爆炸与冲击.21(4):282-286.
    罗厚军(2006).电工电子技术ISBN,北京:机械工业出版社,pp.87-90.
    钱七虎,王明洋(2010).岩土中的冲击爆炸效应ISBN 978-7-118-06299-8,北京:国防工业出版社,pp.126-203.
    曲喜新(1999).固态介质薄膜的电击穿场强.电子元件与材料(06):29-35.
    沈怀浦(2006).超声波强化高速射流破岩新技术.地质装备7(4):17-19.
    宋建平(1995)低频脉冲波强化采油技术.国外油田工程1:55.56.
    宋建平,陈建华,刘斌(1994).低频脉冲波强化采油技术研究及试验.石油钻采工艺(06):81-87.
    孙冰(2013).液相放电等离子体及应用ISBN 978-7-03-036334-3,北京:科学出版社,pp.120-131.
    孙凤举,曾正中,邱毓昌,曾江涛,许日,盖同阳,周国振(1999).一种用于油水井解堵的脉冲大电流源.高电压技术2:47-49.
    孙鹞鸿,孙广生,严萍,彭燕昌(2002).高压电脉冲采油技术发展.高电压技术1:41.44.
    孙鹞鸿,左公宁,姚儒彬,刘志民(2000).一种用于油水井解堵增油的高压电脉冲源.钻采工艺23(05):47-49.
    王继峰(2005).岩石爆破技术的现状与发展.煤矿爆破(3):25-28.
    王莹,孙元章,阮江军,刘开培,张国安(2010).脉冲功率科学与技术.ISBN978-7-81124-505-9,北京:北京航空航天大学出版社,pp.21-23.
    吴立,张时忠,林峰(2000).现代破岩方法综述.探矿工程-岩土钻掘工程(2):49-51.
    吴先映,张荟星(2006).金属蒸汽真空弧的脉冲低电流弧电源.中国专利,申请号:ZL200520005191.
    谢建民,邱毓昌,张磬兰(2001).多通道伪火花开关及其触发技术.高电压技术27(3):9-11.
    闫克平,章志成,邓官垒,章旭明(2009).一种组合脉冲形成网络.中国专利,申请号:ZL200920295616.
    闫铁,杜婕妤,李玮,毕雪亮,姚尚林(2012).高效破岩前沿钻井技术综述.石油矿场机械41(1):50-55.
    闫铁,李玮,毕雪亮,李士斌(2008).旋转钻井中岩石破碎能耗的分形分析.岩石力学与工程学报 27(2):3649-3654.
    阳生权,阳军生(2008).岩体力学.ISBN 978-7-111-24922-1,北京:机械工业出版社,pp.18-27.
    杨永超,陈定柱,王延海(2001).井下低频电脉冲采油技术的应用.油气井测试10(1-2):60-62.
    于家珊译尤π A IO T著(1962).液电效应ISBN 13031.89 CNY0.32,北京:科学出版,pp.1-50.
    张积之(1994).固态电解质的击穿.ISBN 7-81035-703-4/O.050,浙江:杭州大学出版社,pp.140-263.
    张雷(1999).液中加工的原理及应用.机械制造.26(4):48-50.
    张雷,邓琦林,周锦进(1998).液电效应除垢机理分析与试验研究.大连理工大学学报(2):87-91.
    张雷,邓琦林,周锦进(1998).液电效应除垢机理分析与试验研究.大连理工大学学报38(2):207-211.
    张振洲,唐贵富(2007).电脉冲清洗机的介绍与应用.清洗世界(12):31.34.
    赵智大(2006).高电压技术ISBN 978-7-5083-4511-6,北京:中国电力出版社,pp.61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700