用户名: 密码: 验证码:
溶液燃烧合成多孔过渡金属氧化物功能粉体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传质和界面电荷传输是能量存储、气敏、催化等应用领域的关键科学问题。多孔材料可提供大的比表面积和丰富的传质通道,应用于上述领域时表现出优异的性能。然而,目前绝大多数制备多孔材料的方法均依赖于模板的辅助,制备过程复杂、能耗高、周期长。另外,常规模板法对许多因素敏感,因而对操作环境和操作要求高,进一步增加了制备成本。因此,发展一些简单、快速、低成本制备多孔材料的方法具有十分重要的科学意义和实际应用价值。
     溶液燃烧法是一种简单的制备金属氧化物的方法,利用反应自身释放的热量维持反应的进行,因而具有节能、快速的优点,成为低成本制备方法的理想选择之一。但现有溶液燃烧存在“燃烧过程可控性差”和“产物形貌可控性差”两大缺点。针对上述缺点,本文主要致力于对溶液燃烧过程的改性。同时,以高性能功能材料研发为导向,设计一些具有特殊纳米结构的多孔过渡金属氧化物粉末。论文基于溶液燃烧过程发展了一些全新的简单、快速、无模板、低成本制备多孔过渡金属氧化物粉末的通用方法,所得到的材料用于锂离子电池、气体传感器、催化剂时表现出优异的性能。主要研究结果有:
     (1)采用溶液燃烧法结合后续热处理制备了单相La4Ni3O10层状钙钛矿粉末,后续热处理所需温度和时间均低于其他制备技术,充分展示了溶液燃烧法制备难合成物质的优势。研究发现,La4Ni3O10粉末在常温常压、无光照条件下即可降解有机染料废水。
     (2)针对溶液燃烧的燃烧模式难以控制和改变的特点,通过在适当的反应体系中添加NaF控制燃烧模式,研发了一种全新的燃烧模式——喷发燃烧。这种喷发燃烧过程得到的产物具有疏松多孔的结构,应用于锂离子电池负极时具有比传统溶液燃烧所得材料更优异的性能。该燃烧模式具有较好的通用性,可应用于Ni-O、Ni-Co-O、Co-O、La-O、Ni-Co-O、Zn-Co-O、La-Ni-O等氧化物体系。
     (3)在络合物燃烧/分解体系中,以水合肼作为燃料和络合剂,以硝酸盐为氧化剂,额外引入醋酸盐作为气化剂,研发了一种一步燃烧合成大孔金属氧化物的通用技术,在该制备过程中多孔结构和氧化物的晶格一步形成,不需要模板/表面活性剂,制备过程简单快速。产物的孔结构、孔尺寸分布及整体框架结构(二维或三维结构)可控。制备的大孔NiO/Ni作为锂离子电池负极时具有优异的电化学性能;制备的珊瑚状大孔/介孔多级结构ZnO具有优异的气敏特性。
     (4)通过选择适当的燃料和控制燃料/硝酸盐的比例,可大大降低燃烧的剧烈程度,得到一种非晶的金属络合物。将该络合物在空气中热处理或室温下与双氧水反应,可以得到高比表面积的、具有一定纳米结构的多孔过渡金属氧化物,其孔结构和整体框架形貌可控。作为锂离子电池负极材料时,制备的多孔C0304和锐钛矿TiO2超薄纳米带都具有优异的性能;制备的多孔ZnO也具备优异的气敏性能。
Mass transport and charge transfer (especially at the interface) are two key factors in various applications of energy storage, gas sensor, and catalysis. Porous materials are the right choice for the applications above-mentioned, because they are able to provide large surface area and abundant channels. Up to now, most approaches to porous materials focus on template-assisted methods, including hard templates and soft templates. The template-assisted routes are complex and high cost. It is therefore of general interest to produce porous materials with simple and economical synthesis strategies.
     Solution combustion synthesis (SCS), which is self-sustained by its own exothermic reaction, is an effective, rapid, and energy-efficient method for mass productions of various metal oxides. Unfortunately, it is difficult to control the combustion process and morphology of product in SCS. In the current investigation, the two major shortcomings inherent of the SCS were focused on, through careful modifications of the combustion procedure. Several porous metal oxides with special nanofeatures via SCS were achieved for high performance functional applications. Several novel, simple, template-free, low-cost, and universal synthesis routes based on SCS were developed for mass fabrications of porous metal oxides, which possessed excellent properties arising from the unique structures when utilized for surface-relative applications of Li-ion batteries and gas sensors.
     It is difficult to achieve phase-pure La4Ni3010by existing synthesis methods because of the easy coexistence of several other phases encountered in the La-Ni-O system. Phase-pure layered perovskite La4Ni3010powders were synthesized by a solution combustion approach combined with a subsequent heat treatment at1000℃for3h, which demonstrated the superiority of SCS in synthesis of complex oxides. It is found that, in the presence of the LaNia3O10powders, aqueous dyes can be degraded catalytically and efficiently under ambient conditions. Neither light nor additional reagents are needed in the current reaction. A series of chemical and electrochemical experiments suggested that the dye degradation proceeds through electron transfers from the dye molecules to the catalyst and then to electron acceptors such as dissolved oxygen.
     In nature, volcano eruptions create large amounts of porous volcano ashes within a short duration. Inspired by such phenomena, we reported our first attempt to achieve an artificial volcano for mass productions of various oxide nanoparticles with enhanced properties for energy and environmental applications. The introduction of NaF into the SCS resulted in the formation of porous structures. The novel eruption combustion pattern observed in SCS provides a versatile alternative for SCS to control combustion behavior, microstructure, and property of the products. NiO/Ni nanocomposite yielded by the new approach exhibited a good dye-absorption ability. When utilized as anode materials for lithium-ion batteries, excellent electrochemical performances were also achieved. The new SCS pattern is versatile, emerging in various systems of Ni-Co-O, Co-O, La-O, Ni-Co-O, Zn-Co-O, and La-Ni-O.
     Macroporous metal oxides were achieved in a flash by the direct decomposition/combustion of a metal complex, through mainly the additive of acetate salts as gasfication agents. The fabrication route is template-free, surfactant-free, and highly effective. Taking NiO/Ni as an example, the metal complex was achieved by simply mixing nickel acetate, nickel nitrate, hydrazine hydrate, and glycine in water. The pore size, porosity, and even morphology of the porous NiO/Ni network (three-or two-dimensional architectures) can be conveniently tuned by adjusting the composition of the complex. This synthesis route can be extended to prepare other macroporous metal oxides, such as ZnO. The achieved macroporous NiO/Ni possessed excellent electrochemical performance and the coral-like hierarchical macro/meso-porous ZnO also exhibited excellent gas-sensing performance.
     Amorphous metal complexes were prepared by SCS applying a high fuel/oxidizer ratio, which greatly reduced the violent combustion, improving the safety of SCS. Thermal treatments of the complex in air or reactions of the complex with H2O2resulted in the formation of porous metal oxides with high specific surface area. Both the achieved porous Co3O4and the TiO2nanobelts exhibited excellent performance in anodes of lithium ion batteries. The achieved macroporous ZnO possessed ideal gas sensing properties.
引文
[1]IUPAC Manual of Symbols and Terminology. Pure and Applied Chemistry,1972,32:578.
    [2]R. M. Barrer. Syntheses and Reaction of Mordenite. Journal of the Chemical Society,1948, 2158.
    [3]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature,1992, 359(6397):710-712.
    [4]J. M. Tarascon and M. Armand. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature,2001,414(6861):359-367.
    [5]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:化学工业出版社,2010:6-10.
    [6]P. G Bruce, B. Scrosati, and J. M. Tarascon. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie, International Edition,2008,47(16):2930-2946.
    [7]C. Jiang, E. J. Hosono, and H. Zhou. Nanomaterials for Lithium Ion Batteries. Nano Today, 2006,1(4):28-33.
    [8]J. B. Goodenough and Y. Kim. Challenges for Rechargeable Li Batteries, Chemistry of Materials,2010,22(3):587-603.
    [9]Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu. Electrochemical Energy Storage for Green Grid. Chemical Reviews,2011,111(5): 3577-3613.
    [10]J. B. Goodenough and K. S. Park. The Li-Ion Rechargeable Battery:A Perspective. Journal of the American Chemical Society,2013,135(4):1167-1176.
    [11]V. Etacheri, R. Marom, R. Elazari, G Salitra, and D. Aurbach. Challenges in the Development of Advanced Li-Ion Batteries:A Review. Energy & Environmental Science,2011,4(9): 3243-3262.
    [12]B. L. Ellis, K. T. Lee, and L. F. Nazar. Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials,2010,22(3):691-714.
    [13]M. Winter, J. O. Besenhard, M. E. Spahr, and Petr Novak. Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials,1998,10(10):725-763.
    [14]C. Jiang and J. Zhang. Nanoengineering Titania for High Rate Lithium Storage:A Review. Journal of Materials Science & Technology,2013,29(2):97-122.
    [15]Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G Graff, and J. Liu. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides:A review. Journal of Power Sources,2009,192(2):588-598.
    [16]C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn. Li-Alloy Based Anode Materials for Li Secondary Batteries. Chemical Society Reviews,2010,39(8):3115-3141.
    [17]W. J. Zhang. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. Journal of Power Sources,2011,196(1):13-24.
    [18]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997,276(5317): 1395-1397.
    [19]J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin. Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials,2010,22(35):E170-E192.
    [20]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature, 2000,407(6803):496-499.
    [21]A. Vu, Y. Qian, and A. Stein. Porous Electrode Materials for Lithium-Ion Batteries-How to Prepare Them and What Makes Them Special. Advanced Energy Materials,2012,2(9): 1056-1085.
    [22]H. Liu, G Wang, J. Liu, S. Qiao, and H. J. Ahn. Highly Ordered Mesoporous NiO Anode Material for Lithium Ion Batteries with an Excellent Electrochemical Performance. Journal of Materials Chemistry,2011,21(9):3046-3052.
    [23]J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, and X. W. Lou. Top-Down Fabrication of a-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. Journal of the American Chemical Society,2010,132(38): 13162-13164.
    [24]Y. Ren, L. J. Hardwick, and P. G Bruce. Lithium Intercalation into Mesoporous Anatase with an Ordered 3D Pore Structure. Angewandte Chemie, International Edition,2010,49(14): 2570-2574.
    [25]J. M. Feckl, K. Fominykh, M. Dolinger, D. Fattakhova-Rohlfing, and T. Bein. Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie, International Edition,2012,51(30):7459-7463.
    [26]Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen, and S. Y. Guo. Hierarchically Ordered Porous Nickel Oxide Array Film with Enhanced Electrochemical Properties for Lithium Ion Batteries. Electrochemistry Communications,2010,12(7):890-893.
    [27]X. Huang, H. Yu, J. Chen, Z. Lu, R. Yazami, and H. H. Hng. Ultrahigh Rate Capabilities of Lithium-Ion Batteries from 3D Ordered Hierarchically Porous Electrodes with Entrapped Active Nanoparticles Configuration. Advanced Materials,2014,26(8):1296-1303.
    [28]H. Zhang, X. Yu, and P. V. Braun. Three-Dimensional Bicontinuous Ultrafast-Charge and-Discharge Bulk Battery Electrodes. Nature Nanotechnology,2011,6(5):277-281.
    [29]Y. Ren, A. R. Armstrong, F. Jiao, and P. G. Bruce. Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries. Journal of the American Chemical Society, 2010,132(3):996-1004.
    [30]M. Ge, J. Rong, X. Fang, and C. Zhou. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters,2012,12(5):2318-2323.
    [31]Z. Lin, W. Yue, D. Huang, J. Hu, X. Zhang, Z. Y. Yuan, and X. Yang. Pore Length Control of Mesoporous CO3O4 and Its Influence on the Capacity of Porous Electrodes for Lithium-Ion Batteries. RSC Advances,2012,2(5):1794-1797.
    [32]K. Saravanan, K. Ananthanarayanan, and P. Balaya. Mesoporous TiO2 with High Packing Density for Superior Lithium Storage. Energy & Environmental Science,2010,3(7): 939-948.
    [33]L. Dupont, S. Laruelle, S. Grugeon, C. Dickinson, W. Zhou, and J. M. Tarascon. Mesoporous Cr2O3 as Negative Electrode in Lithium Batteries:TEM Study of the Texture Effect on the Polymeric Layer Formation. Journal of Power Sources,2008,175(1):502-509.
    [34]E. M. Sorensen, S. J. Barry, H. K. Jung, J. M. Rondinelli, J. T. Vaughey, and K. R. Poeppelmeier. Three-Dimensionally Ordered Macroporous Li4Ti5O12:Effect of Wall Structure on Electrochemical Properties. Chemistry of Materials,2006,18(2):482-489.
    [35]I. D. Kim, A. Rothschild, and H. L. Tuller. Advances and New Directions in Gas-Sensing Devices. Acta Materialia,2013,61(3):974-1000.
    [36]A. Tricoli, M. Righettoni, and A. Teleki. Semiconductor Gas Sensors:Dry Synthesis and Application. Angewandte Chemie, International Edition,2010,49(42):7632-7659.
    [37]倪星元,张志华.传感器敏感功能材料及应用.北京:化学工业出版社,2005:166-167.
    [38]T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann. Mesoporous Materials as Gas Sensors. Chemical Society Reviews,2013,42(9):4036-4053.
    [39]Aleksander Gurlo. Nanosensors:towards Morphological Control of Gas Sensing Activity. SnO2, In2O3, ZnO and WO3 case Studies. Nanoscale,2011,3(1):154-165.
    [40]H. J. Kim and J. H. Lee. Highly Sensitive and Selective Gas Sensors using p-Type Oxide Semiconductors:Overview. Sensors and Actuators, B:Chemical,2013,192:607-627.
    [41]Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, and J. H. Liu. Metal Oxide Nanostructures and Their Gas Sensing Properties:A Review. Sensors,2012,12(3): 2610-2631.
    [42]H. Ogawa, M. Nishikawa, and A. Abe. Hall Measurement Studies and an Electrical Conduction Model of Tin Oxide Ultrafine Particle Films. Journal of Applied Physics,1982, 53:4448-4455.
    [43]C. Zhao, J. Fu, Z. Zhang, and E. Xie. Enhanced Ethanol Sensing Performance of Porous Ultrathin NiO Nanosheets with Neck-Connected Networks. RSC Advances,2013,3: 4018-4023.
    [44]T. Waitz, T. Wagner, T. Sauerwald, C. D. Kohl, and M. Tiemann. Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor. Advanced Functional Materials,2009,19(4):653-661.
    [45]X. Sun, H. Hao, H. Ji, X. Li, S. Cai, and C. Zheng. Nanocasting Synthesis of In2O3 with Appropriate Mesostructured Ordering and Enhanced Gas-Sensing Property. ACS Applied Materials & Interfaces,2014,6(1):401-409.
    [46]H. Liu, X. Du, X. Xing, G. Wang, and S. Z. Qiao. Highly Ordered Mesoporous Cr2O3 Materials with Enhanced Performance for Gas Sensors and Lithium Ion Batteries. Chemical Communications,2012,48(6):865-867.
    [47]M. D'Arienzo, L. Armelao, C. M. Mari, S. Polizzi, R. Ruffo, R. Scotti, and F. Morazzoni. Macroporous WO3 Thin Films Active in NH3 Sensing:Role of the Hosted Cr Isolated Centers and Pt Nanoclusters. Journal of the American Chemical Society,2011,133(14): 5296-5304.
    [48]H. Nguyen and S. A. El-Safty. Meso-and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors. Journal of Physical Chemistry C,2011,115(17):8466-8474.
    [49]J. Zhang, S. Wang, M. J. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, and S. Wu. Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth & Design,2009,9(8):3532-3537.
    [50]Z. Liu, T. Fan, D. Zhanga, X. Gong, and J. Xu. Hierarchically Porous ZnO with High Sensitivity and Selectivity to H2S Derived from Biotemplates. Sensors and Actuators, B: Chemical,2009,136(2):499-509.
    [51]L. Jia and W. Cai. Micro/Nanostructured Ordered Porous Films and Their Structurally Induced Control of the Gas Sensing Performances. Advanced Functional Materials,2010, 20(21):3765-3773.
    [52]C. M. A. Parlett, K. Wilson, and A. F. Lee. Hierarchical Porous Materials:Catalytic Applications. Chemical Society Reviews,2013,42(9):3876-3893.
    [53]吴忠标,蒋新,赵伟荣.环境催化原理及应用.北京:化学工业出版社,2006:20-31.
    [54]J. Rosen, G. S. Hutchings, and F. Jiao. Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society,2013,135(11): 4516-4521.
    [55]J. M. Wu, M. Antonietti, S. Gross, M. Bauer, and B. M. Smarsly. Ordered Mesoporous Thin Films of Rutile TiO2 Nanocrystals Mixed with Amorphous Ta2O5. ChemPhysChem,2008, 9(5):748-757.
    [56]L. Peng, J. Zhang, Z. Xue, B. Han, J. Li, and G Yang. Large-Pore Mesoporous Mn3O4 Crystals Derived from Metal-Organic Frameworks. Chemical Communications,2013,49(99): 11695-11697.
    [57]F. Iskandar, A. B. D. Nandiyanto, K. M. Yun, C. J. Hogan Jr., K. Okuyama, and P. Biswas. Enhanced Photocatalytic Performance of Brookite TiO2 Macroporous Particles Prepared by Spray Drying with Colloidal Templating. Advanced Materials,2007,19(10):1408-1412.
    [58]M. Srinivasa and T. White. Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania. Environmental Science & Technology,2007,41(12):4405-4409.
    [59]X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, and Z. Zou. Enhanced Incident Photon-to-Electron Conversion Efficiency of Tungsten Trioxide Photoanodes Based on 3D-Photonic Crystal Design. ACS Nano,2011,5(6):4310-4318.
    [60]Z. Y. Cai, Z. G Xiong, X. M. Lu, and J. H. Teng. In Situ Gold-Loaded Titania Photonic Crystals with Enhanced Photocatalytic Activity. Journal of Materials Chemistry A,2014, 2(2):545-553.
    [61]Y. Wei, Jian Liu, Z. Zhao, Y. Chen, C. Xu, A. J. Duan, G Jiang, and H. He. Highly Active Catalysts of Gold Nanoparticles Supported on Three-Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation. Angewandte Chemie, International Edition,2011,50(10): 2326-2329.
    [62]X. Wang, J. C. Yu, C. Ho, Y. Hou, and X. Fu. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania. Langmuir,2005,21(6):2552-2559.
    [63]S. A. El-Safty, M. Khairy, M. Ismael, and H. Kawarada. Multidirectional Porous NiO Nanoplatelet-Like Mosaics as Catalysts for Green Chemical Transformations. Applied Catalysis, B:Environmental,2012,123-124:162-173.
    [64]陈永.多孔材料制备与表征.合肥:中国科学技术大学,2010:120-150.
    [65]J. N. Israelachivili. Intermolecular and Surface Forces. London:Academic Press,1991.
    [66]N. D. Petkovich and A. Stein. Controlling Macro-and Mesostructures with Hierarchical Porosity through Combined Hard and Soft Templating. Chemical Society Reviews,2013, 42(9):3721-3738.
    [67]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky. Triblock Copolymer Synthesis of Mesoporous Silica with Period 50 to 300 Angstrom Pores. Science,1998,279(5350):548-552.
    [68]L. Guo, H. Hagiwara, S. Ida, T. Daio, and T. Ishihara. One-Pot Soft-Templating Method to Synthesize Crystalline Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting. ACS Applied Materials & Interfaces,2013,5(21):11080-11086.
    [69]N. Dahal,1. A. Ibarra, and S. M. Humphrey. High Surface Area Mesoporous Co3O4 from a Direct Soft Template Route. Journal of Materials Chemistry,2012,22(25):12675-12681.
    [70]J. C. Yu, G. Li, X. Wang, X. Hu, C. W. Leung, and Z. Zhang. An Ordered Cubic Im3m Mesoporous Cr-TiO2 Visible Light Photocatalyst. Chemical Communications,2006,22(25): 2717-2719.
    [71]J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. Disalvo, and U. Wiesne. Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores. Nature Materials,2008,7(3):222-228.
    [72]S. Lepoutre, J. H. Smatt, C. Laberty, H. Amenitsch, D. Grosso, and M. Linden. Detailed Study of the Pore-Filling Processes during Nanocasting of Mesoporous Films Using SnO2/SiO2 as a Model System. Microporous and Mesoporous Materials,2009,123(1-3):185-192.
    [73]J. Deng, L. Zhang, H. Dai, Y. Xia, H. Jiang, H. Zhang, and H. He. Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO2 and Co3O4 with High Surface Areas and Polycrystalline Walls. Journal of Physical Chemistry C,2010,114(6):2694-2700.
    [74]T. A. Crowley, K. J. Ziegler, D. M. Lyons, D. Erts, H. Olin, M. A.Morris, and J. D. Holmes. Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays within a Mesoporous Silica Template. Chemistry of Materials,2003,15(18):3518-3522.
    [75]J. Parmentier, L. A. Solovyov, F. Ehrburger-Dolle, J. Werckmann, O. Ersen, F. Bley, and J. Patarin. Structural Peculiarities of Mesostructured Carbons Obtained by Nanocasting Ordered Mesoporous Templates via Carbon Chemical Vapor or Liquid Phase Infiltration Routes. Chemistry of Materials,2006,18(26):6316-6323.
    [76]S. Polarz, A. V. Orlov, F. Schuth, and A. H. Lu. Preparation of High-Surface-Area Zinc Oxide with Ordered Porosity, Different Pore Sizes, and Nanocrystalline Walls. Chemistry-A European Journal,2007,13(2):592-597.
    [77]F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, and P. G. Bruce. Synthesis of Ordered Mesoporous NiO with Crystalline Walls and a Bimodal Pore Size Distribution. Journal of the American Chemical Society,2008,130(15):5262-5266.
    [78]W. Yue and W. Zhou. Synthesis of Porous Single Crystals of Metal Oxides via a Solid-Liquid Route. Chemistry of Materials,2007,19(9):2359-2363.
    [79]E. J. W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber, and H. J. Snaith. Mesoporous TiO2 Single Crystals Delivering Enhanced Mobility and Optoelectronic Device Performance. Nature,2013,495(7440):215-219.
    [80]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature,2008, 453(7195):638-641.
    [81]Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. J. Zeng, X. Chen, F. Chen, Y. Gan, and X. Tao. Biotemplated Fabrication of Hierarchically Porous NiO/C Composite from Lotus Pollen Grains for Lithium-Ion Batteries. Journal of Materials Chemistry,2012,22(18):9209-9215.
    [82]H. W. Shim, A. H. Lim, J. C. Kim, E. J. Jang, S. D. Seo, G H. Lee, T. D. Kim, and D. W. Kim. Scalable One-Pot Bacteria-Templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes. Scientific Reports,2013,3:2325.
    [83]C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, and X. W. (David) Lou. Growth of Ultrathin Mesoporous Co3O4 Nanosheet Arrays on Ni Foam for High-Performance Electrochemical Capacitors. Energy & Environmental Science,2012,5(7):7883-7887.
    [84]S. Xiong, J. S. Chen, X. W. Lou, and H. C. Zeng. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-Like Co(CO3)0.5(OH)·0.11H20 and Their Lithium-Storage Properties. Advanced Functional Materials,2012,22(4):861-871.
    [85]C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, and C. Sanchez. Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials. Advanced Materials, 2011,23(5):599-623.
    [86]R. Amutha, M. Muruganandham, M. Sathish, S. Akilandeswari, R. P. S. Suri, E. Repo, and M. Sillanpaa. Crystallization-Induced Top-Down Wormlike Hierarchical Porous γ-Fe2O3 Self-Assembly. Journal of Physical Chemistry C,2011,115(14):6367-6374.
    [87]K. H. Lee and S. W. Song. One-Step Hydrothermal Synthesis of Mesoporous Anatase TiO2 Microsphere and Interfacial Control for Enhanced Lithium Storage Performance. ACS Applied Materials & Interfaces,2011,3(9):3697-3703.
    [88]A. Stein, B. E. Wilson, and S. G Rudisill. Design and Functionality of Colloidal-Crystal-Templated Materials-Chemical Applications of Inverse Opals. Chemical Society Reviews,2013,42(7):2763-2803.
    [89]T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, and T. Tatsumi. Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids. Journal of the American Chemical Society,2006,128(42):13664-13665.
    [90]F. Li, J. He, W. L. Zhou, and J. B. Wiley. Synthesis of Porous Wires from Directed Assemblies of Nanospheres. Journal of the American Chemical Society,2003,125(52):16166-16167.
    [91]M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, and J. Zhang. ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition. Advanced Materials,2006,18(8):1001-1004.
    [92]X. Li, Y. Jiang, Z. Shi, and Z. Xu. Two Growth Modes of Metal Oxide in the Colloidal Crystal Template Leading to the Formation of Two Different Macroporous Materials. Chemistry of Materials,2007,19(22):5424-5430.
    [93]W. Chanmanee, A. Watcharenwong, C. R. Chenthamarakshan, P. Kajitvichyanukul, N. R. de Tacconi, and K. Rajeshwar. Formation and Characterization of Self-Organized TiO2 Nanotube Arrays by Pulse Anodization. Journal of the American Chemical Society,2008, 130(3):965-974.
    [94]Y. Yang, S. P. Albu, D. Kim, and P. Schmuki. Enabling the Anodic Growth of Highly Ordered V2O5 Nanoporous/Nanotubular Structures. Angewandte Chemie, International Edition,2011, 50(39):9071-9075.
    [95]J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins, and A. J. Frank. Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO2 Nanotube Arrays. Nano Letters,2010,10(10):4099-4104.
    [96]C. Y. Lee, K. Lee, and P. Schmuki. Anodic Formation of Self-Organized Cobalt Oxide Nanoporous Layers. Angewandte Chemie, International Edition,2013,52(7):2077-2081.
    [97]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki. Evolution of Nanoporosity in Dealloying. Nature,2001,410(6827):450-453.
    [98]M. Rajamathi, S. Thimmaiah, P. E. D. Morgan, and R. Seshadri. Macroporous Materials from Crystalline Single-Source Precursors through Decomposition Followed by Selective Leaching. Journal of Materials Chemistry,2001,11(10):2489-2492.
    [99]M. Panda, M. Rajamathi, and R. Seshadri. A Template-Free, Combustion-Chemical Route to Macroporous Nickel Monoliths Displaying a Hierarchy of Pore Sizes. Chemistry of Materials,2002,14(11):4762-4767.
    [100]E. S. Toberer and R. Seshadri. Template-Free Routes to Porous Inorganic Materials. Chemical Communications,2006,30:3159-3165.
    [101]E. S. Toberer, J. C. Weaver, K. Ramesha, and R. Seshadri. Macroporous Monoliths of Functional Perovskite Materials through Assisted Metathesis. Chemistry of Materials,2004, 16(11):2194-2200.
    [102]E. S. Toberer and R. Seshadri. Spontaneous Formation of Macroporous Monoliths of Mesaoporous Manganese Oxide Crystals. Advanced Materials,2005,17(18):2244-2246.
    [103]H. C. Shin and M. Liu. Copper Foam Structures with Highly Porous Nanostructured Walls. Chemistry of Materials,2004,16(25):5460-5464.
    [104]S. Wang, S. Li, Y. Sun, X. Feng, and C. Chen. Three-Dimensional Porous V2O5 Cathode with Ultra High Rate Capability. Energy & Environmental Science,2011,4(8):2854-2857.
    [105]J. P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A. F. Lee, and K. Wilson. An Efficient Route to Highly Organized, Tunable Macroporous-Mesoporous Alumina. Journal of the American Chemical Society,2009,131(36):12896-12897.
    [106]X. Li, M. Sun, J. C. Rooke, L. Chen, and B. L. Su. Synthesis and Applications of Hierarchically Porous Catalysts. Chinese Journal of Catalysis,2013,34(1):22-47.
    [107]A. Vantomme, A. Leonard, Z. Y. Yuan, and B. L. Su. Self-Formation of Hierarchical Micro-Meso-Macroporous Structures:Generation of the New Concept "Hierarchical Catalysis". Colloids and Surfaces, A:Physicochemical and Engineering,2007,300(1-2): 70-78.
    [108]J. Yu, Y. Su, and B. Cheng. Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania. Advanced Functional Materials,2007, 17(12):1984-1990.
    [109]A. S. Mukasyan, P. Epstein, and P. Dinka. Solution Combustion Synthesis of Nanomaterials. Proceeding of Combustion Institute,2007,31(2):1789-1795.
    [110]S. T. Aruna and A. S. Mukasyan. Combustion Synthesis and Nanomaterials. Current Opinion Solid State & Materials Science,2008,12(3-4):44-50.
    [111]H. Birol, C. R. Rambo, M. Guiotoku, and D. Hotza. Preparation of Ceramic Nanoparticles via Cellulose-Assisted Glycine Nitrate Process:A Review. RSC Advances 2013,3(9):2873-2884.
    [112]F. Bernard and E. Gaffet. Mechanical Alloying in SHS Research. International Journal of Self-Propagating High-Temperature Synthesis,2001,10:109-132.
    [113]L. Stobierski, Z. Wegrzyn, J. Lis, and M. Buck. SHS Synthesis of Nanocomposite AIN-SiC Powders. International Journal of Self-Propagating High-Temperature Synthesis, 2001,10:217-228.
    [114]I. P. Borovinskaya, T. I. Ignat'eva, V. I. Vershinnikov, G. G. Khurtina, and N. V. Sachkova. Preparation of Ultrafine Boron Nitride Powders by Self-propagating High-Temperature Synthesis. Inorganic Materials,2003,39(6):588-593.
    [115]J. J. Kingsley and K. C. Patil. A Novel Combustion Process for the Synthesis of Fine Particle a-alumina and Related Oxide Materials. Materials Letters,1988,6(11-12):427-432.
    [116]K. C. Patil, M. S. Hegde, R. Yanu, and S. T. Atuna. Chemistry of Nanocrystalline Oxide Materials:Combustion Synthesis, Properties and Applications, Singapore:World Scientific, 2008.
    [117]Maximilian Lackner. Combustion Synthesis:Novel Routes to Novel Materials. Betham Science Publishers,2010.
    [118]S. R. Jain, K. C. Adiga, and V. R. Pai Verneker. A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures. Combustion and Flame,1981,40(1): 71-79.
    [119]M. P. Saradhi and U. V. Varadaraju. Photoluminescence Studies on Eu2+ Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting. Chemistry of Materials,2006,18(22):5267-5272.
    [120]R. Ianos and P. J. Barvinschi. Solution Combustion Synthesis of Calcium Zirconate, CaZrO3, Powders. Journal of Solid State Chemistry,2010,183(3):491-496.
    [121]K. Rajeshwar and N. R. de Tacconi. Solution Combustion Synthesis of Oxide Semiconductors for Solar Energy Conversion and Environmental Remediation. Chemical Society Reviews,2009,38(7):1984-1998.
    [122]K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro, and N. P. Lalla. Formation of Ce1-xPdxO2-δ Solid Solution in Combustion Synthesized Pd/CeO2 Catalyst:XRD, XPS and EXAFS Investigation. Chemistry of Materials,2002,14(5): 2120-2128.
    [123]X. Guo, D. Mao, G. Lu, S. Wang, and G. Wu. Glycine-Nitrate Combustion Synthesis of CuO-ZnO-ZrO2 Catalysts for Methanol Synthesis from CO2 Hydrogenation. Journal of Catalysis,2010,271(2):178-185.
    [124]W. Morales, M. Cason, O. Aina, N. R. de Tacconi, and K. Rajeshwar. Combustion Synthesis and Characterization of Nanocrystalline WO3. Journal of the American Chemical Society,2008,130(20):6318-6319.
    [125]S. Ekambarama, K. C. Patil, and M. Maazac. Synthesis of Lamp Phosphors:Facile Combustion Approach. Journal of Alloys and Compounds,2005,393(1-2):81-92.
    [126]Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma. Combustion Synthesis of Long-Persistent Luminescent MA12O4:Eu2+, R3+(M= Sr, Ba, Ca, R= Dy, Nd and La) Nanoparticles and Luminescence Mechanism Research. Acta Materialia,2007,55(8): 2615-2620.
    [127]S. S. Yao, L. H. Xue, and Y. W. Yan. Synthesis and Luminescent Properties of Eu2+ Doped BaZn2Si2O7 Phosphors by Combustion-Assisted Synthesis Method. Journal of Alloys and Compounds,2011,509(5):1870-1873.
    [128]H. Mohebbi, T. Ebadzadeh, and F. A. Hesari. Synthesis of Nano-Crystalline (Ni/NiO)-YSZ by Microwave-Assisted Combustion Synthesis Method:The Influence of pH of Precursor Solution. Journal of Power Sources,2008,178(1):64-68.
    [129]M. A. Raza, I. Z. Rahman, and S. Beloshapkin. Synthesis of Nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) Perovskite by Solution Combustion Method for Solid Oxide Fuel Cell Application. Journal of Alloys and Compounds,2009,485(1-2):593-597.
    [130]S. L. Chung and C. M. Wang. Solution Combustion Synthesis of TiO2 and Its Use for Fabrication of Photoelectrode for Dye-sensitized Solar Cell. Journal of Materials Science & Technology,2012,28(8):713-722.
    [131]S. A. Kelkar, P. A. Shaikh, P. Pachfule, and S. B. Ogale. Nanostructured Cd2SnO4 as an Energy Harvesting Photoanode for Solar Water Splitting. Energy & Environmental Science, 2012,5(2):5681-5685.
    [132]K. Sivaranjani, S. Agarkar, S. B. Ogale, and C. S. Gopinath. Toward a Quantitative Correlation between Microstructure and DSSC Efficiency:A Case Study of TiO2-xNx Nanoparticles in a Disordered Mesoporous Framework. Journal of Physical Chemistry C, 2012,116(3):2581-2587.
    [133]P. Manikandan, M. V. Ananth, T. P. Kumar, M. Raju, P. Periasamy, and K. Manimaran. Solution Combustion Synthesis of Layered LiNi0.5Mn0.5O2 and Its Characterization as Cathode Material for Lithium-Ion Cells. Journal of Power Sources,2011,196(23): 10148-10155.
    [134]G. T. K. Fey, Y. D. Cho, and T. P. Kumar. Nanocrystalline LiMn2O4 Derived by HMTA-Assisted Solution Combustion Synthesis as a Lithium-Intercalating Cathode Material. Materials Chemistry and Physics,2006,99(2-3):451-458.
    [135]M. G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks. Low-Temperature Fabrication of High-Performance Metal Oxide Thin-Film Electronics via Combustion Processing. Nature Materials,2011,10(5):382-388.
    [136]J. W. Hennek, M. G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks. Exploratory Combustion Synthesis:Amorphous Indium Yttrium Oxide for Thin-Film Transistors. Journal of the American Chemical Society,2012,134(23):9593-9596.
    [137]A. S. Mukasyan and P. Dinka. Novel Method for Synthesis of Nano-Materials: Combustion of Active Impregnated Layers. Advanced Engineering Materials,2007,9(8): 653-657.
    [138]A. Cuneyt Tas. Combustion Synthesis of Calcium Phosphate Bioceramic Powders. Journal of the European Ceramic Society,2000,20(14-15):2389-2394.
    [139]M. T. Colomer, S. Gallini, and J. R. Jurado. Synthesis and Characterisation of a Green NiO/La(Sr)PO4-δ Cermet Anode for Phosphate Based Solid Oxide Fuel Cells. Journal of the European Ceramic Society,2007,27(23):4237-4240.
    [140]I. M. Nagpure, K. N. Shinde, V. Kumar, O. M. Ntwaeaborwa, S. J. Dhoble, and H. C. Swart. Combustion Synthesis and Luminescence Investigation of Na3Al2(PO4)3:RE (RE=Ce3+, Eu3+ and Mn2+) Phosphor. Journal of Alloys and Compounds,2010,492(1-2): 384-388.
    [141]B. Zhao, X. Yu, R. Cai, R. Ran, H. Wang, and Z. Shao. Solution Combustion Synthesis of High-Rate Performance Carbon-Coated Lithium Iron Phosphate from Inexpensive Iron (Ⅲ) Raw Material. Journal of Materials Chemistry,2012,22(7):2900-2907.
    [142]L. Zhang, H. Xiang, Z. Li, and H. Wang. Porous Li3V2(PO4)3/C Cathode with Extremely High-Rate Capacity Prepared by a Sol-Gel-Combustion Method for Fast Charging and Discharging. Journal of Power Sources,2012,203:121-125.
    [143]M. Dahbi, S. Urbonaite, and T. Gustafsson. Combustion Synthesis and Electrochemical Performance of Li2FeSiO4/C Cathode Material for Lithium-Ion Batteries. Journal of Power Sources,2012,205:456-462.
    [144]D. Wang, B. A. Doull, L. C. Oliveira, and E. G. Yukihara. Controlled Synthesis of Li2B4O7:Cu for Temperature Sensing. RSC Advances,2013,3(48):26127-26131.
    [145]R. K. Tukhtaev, V. V. Boldyrev, A. I. Gavrilov, S. V. Larionov, L. I. Myachina, and Z. A. Savel'eva. Metal Sulfide Synthesis by Self-Propagating Combustion of Sulfur-Containing Complexes. Inorganic Materials,2002,38(10):985-991.
    [146]S. Arora and S. S. Manoharan. Size-Dependent Photoluminescent Properties of Uncapped CdS Particles Prepared by Acoustic Wave and Microwave Method. Journal of Physics and Chemistry of Solids,2007,68(10):1897-1901.
    [147]R. Amutha, M. Muruganandham, G. J. Lee, and J. J. Wu. Facile Microwave-Combustion Synthesis of Wurtzite CdS Nanoparticles. Journal of Nanoscience and Nanotechnology,2011,11(9):7940-7944.
    [148]G. R. Rao, B. G. Mishra, and H. R. Sahu. Synthesis of CuO, Cu and CuNi Alloy Particles by Solution Combustion Using Carbohydrazide and N-tertiarybutoxy-carbonylpiperazine Fuels. Materials Letters,2004,58(27-28):3523-3527.
    [149]C. H. Jung, S. Jalota, and S. B. Bhaduri. Quantitative Effects of Fuel on the Synthesis of Ni/NiO Particles Using a Microwave-Induced Solution Combustion Synthesis in Air Atmosphere. Materials Letters,2005,59(19-20):2426-2432.
    [150]P. Erri, J. Nader, and A. Varma. Controlling Combustion Wave Propagation for Transition Metal/Alloy/Cermet Foam Synthesis. Advanced Materials,2008,20(7): 1243-1245.
    [151]Y. Jiang, S. Yang, Z. Hua, and H. Huang. Sol-Gel Autocombustion Synthesis of Metals and Metal Alloys. Angewandte Chemie, International Edition,2009,48(45):8529-8531.
    [152]A. Kumar, E. E. Wolf, and A. S. Mukasyan. Solution Combustion Synthesis of Metal Nanopowders:Nickel-Reaction Pathways. AIChE Journal,2011,57(8):2207-2214.
    [153]A. Kumar, E. E. Wolf, and A. S. Mukasyan. Solution Combustion Synthesis of Metal Nanopowders:Copper and Copper/Nickel Alloys. AIChE Journal,2011,57(12):3473-3479.
    [154]K. V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A. S. Rogachev, E. E. Wolf, and A. S. Mukasyan. Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. Journal of Physical Chemistry C,2013,117(46):24417-24427.
    [155]Z. Hua, Y. Deng, K. Li, and S. Yang. Low-Density Nanoporous Iron Foams Synthesized by Sol-Gel Autocombustion. Nanoscale Research Letters,2012,7(1):1-7.
    [156]Z. H. Hua, Z. W. Cao, Y. Deng, Y. W. Liang, and S. G Yang. Sol-Gel Autocombustion Synthesis of Co-Ni Alloy Powder. Materials Chemistry and Physics,2011 126(3):542-545.
    [157]P. Gomez-Romero, J. Frailec, and B. Ballesteros. Fractal Porosity in Metals Synthesized by a Simple Combustion Reaction. RSC Advances,2013,3(7):2351-2354.
    [158]A. Kumara, J. T. Miller, A. S. Mukasyan, and E. E. Wolf. In Situ XAS and FTIR Studies of a Multi-component Ni/Fe/Cu Catalyst for Hydrogen Production from Ethanol. Applied Catalysis, A:General,2013,467:593-603.
    [159]Y. Yuan, C. S. Liu, Y. Zhang, and X. Q. Shan. Sol-Gel Auto-Combustion Synthesis of Hydroxyapatite Nanotubes Array in Porous Alumina Template. Materials Chemistry and Physics,2008,112(1):275-280.
    [160]J. Ding, S. Sun, J. Bao, Z. Luo, and C. Gao. Synthesis of CaIn2O4 Rods and Its Photocatalytic Performance Under Visible-light Irradiation. Catalysis Letters,2009,130(1-2): 147-153.
    [161]P. A. Deshpande and G. Madras. Combustion Synthesized Vanadia Rods for Environmental Applications. AIChE Journal,2011,57(8):2215-2228.
    [162]W. Chen, M. Liu, Y. Lin, Y. Liu, L. Yu, T. Li, and J. Hong. A Novel Synthesis Route to Sn1-xRExO2-x/2 Nanorods via Microwave-Induced Salt-Assisted Solution Combustion Process. Ceramics International,2013,39(7):7545-7549.
    [163]S. Jalota, A. C. Tas, and S. B. Bhaduri. Microwave-Assisted Synthesis of Calcium Phosphate Nanowhiskers. Journal of Materials Research,2004,19(6):1876-1881.
    [164]X. Y. Tao, X. N. Wang, and X. D. Li. Nanomechanical Characterization of One-Step Combustion-Synthesized Al4B209 and Al18B4O33 Nanowires. Nano Letters,2007,7(10): 3172-3176.
    [165]B. C. Cheng, Z. D. Zhang, H. J. Liu, Z. H. Han, Y. H. Xiao, and S. J. Lei. Power- and Energy-Dependent Photoluminescence of Eu3+ Incorporated and Segregated ZnO Polycrystalline Nanobelts Synthesized by a Facile Combustion Method Followed by Heat Treatment. Journal of Materials Chemistry,2010,20(36):7821-7826.
    [166]B. C. Cheng, Z. D. Zhang, Z. H. Han, Y. H. Xiao, and S. J. Lei. SrAlxOy:Eu2+, Dy3+(x= 4) Nanostructures:Structure and Morphology Transformations and Long-Lasting Phosphorescence Properties. CrystEngComm,2011,13(10):3545-3550.
    [167]M. Mapa and C. S. Gopinath. Combustion Synthesis of Triangular and Multifunctional ZnO1-xNx (x≤0.15) Materials. Chemistry of Materials,2009,21(2):351-359.
    [168]M. Umadevi and A. J. Christy. Synthesis, Characterization and Photocatalytic Activity of CuO Nanoflowers. Spectrochimica Acta, Part A:Molecular and Biomolecular,2013,109: 133-137.
    [169]A. S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. M. Tarascon, and A. K. Shukla. Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 as High-Rate Performance Li-Ion Battery Anode. Chemistry of Materials,2010,22(9):2857-2863.
    [170]G Sivalingam, K. Nagaveni, M. S. Hegde, and G Madras. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2. Applied Catalysis, B: Environmental,2003,45(1):23-38.
    [171]K. Nagaveni, M. S. Hegde, N. Ravishankar, G N. Subbanna, and G Madras. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir,2004,20(7):2900-2907.
    [172]K. Nagaveni, M. S. Hegde, and G Madras. Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M= W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method. Journal of Physical Chemistry B,2004,108(52):20204-20212.
    [173]A. D. Mani, V. Laporte, P. Ghosal, and C. Subrahmanyam. Combustion Synthesized TiO2 for Enhanced Photocatalytic Activity under the Direct Sunlight-Optimization of Titanylnitrate Synthesis. Materials Research Bulletin,2012,47(9):2415-2421.
    [174]K. Sivaranjani and C. S. Gopinath. Porosity Driven Photocatalytic Activity of Wormhole Mesoporous TiO2-xNx in Direct Sunlight. Journal of Materials Chemistry,2011,21(8): 2639-2647.
    [175]K. Sivaranjani, S. Agarkar, S. B. Ogale, and C. S. Gopinath. Toward a Quantitative Correlation between Microstructure and DSSC Efficiency:A Case Study of TiO2-xNx Nanoparticles in a Disordered Mesoporous Framework. Journal of Physical Chemistry C,2012,116(3):2581-2587.
    [176]S. S. Negi, K. Sivaranjani, A. P. Singh, and C. S. Gopinath. Disordered Mesoporous V/TiO2 System for Ambient Oxidation of Sulfides to Sulfoxides. Applied Catalysis, A: General,2013,452:132-138.
    [177]S. Pany, K. M. Parida, and B. Naik. Facile Fabrication of Mesoporosity Driven N-TiO2@CS Nanocomposites with Enhanced Visible Light Photocatalytic Activity. RSC Advances,2013,3(15):4976-4984.
    [178]B. Nagappa and G T. Chandrappa. Mesoporous Nanocrystalline Magnesium Oxide for Environmental Remediation. Microporous and Mesoporous Materials,2007,106(1-3): 212-218.
    [179]M. Pavese and S. Biamino. Mesoporous Alumina Obtained by Combustion Synthesis without Template. Journal of Porous Materials,2009,16(1):59-64.
    [180]W. Chen, F. Li, J. Yu, and L. Liu. A Facile and Novel Route to High Surface Area Ceria-Based Nanopowders by Salt-assisted Solution Combustion Synthesis. Materials Science & Engineering, B:Solid-State Materials,2006,133(1):151-156.
    [181]W. Chen, J. Hong, and Y. Li. Facile Fabrication of Perovskite Single-Crystalline LaMnO3 Nanocubes via a Salt-assisted Solution Combustion Process. Journal of Alloys and Compounds,2009,484(1-2):846-850.
    [182]X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, and F. Li. Salt-Assisted Combustion Synthesis of Highly Dispersed Superparamagnetic CoFe2O4 Nanoparticles. Journal of Alloys and Compounds,2009,475(1-2):L34-L37.
    [183]R. Chal, C. G6rardin, M. Bulut, and S. van Donk, Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem,2011,3(1):67-81.
    [184]马承愚,彭英利.高浓度难降解有机废水的治理与控制.北京:化学工业出版社,2006.
    [185]X. Zhuang, Y. Wan, C. M. Feng, Y. Shen, and D. Y. Zhao. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chemistry of Materials,2009,21(4):706-716.
    [186]K. Pazdzior, A. Klepacz-SmOlka, S. Ledakowicz, J. SOjka-Ledakowicz, Z. Mrozinska, and R Zylla. Integration of Nanofiltration and Biological Degradation of Textile Wastewater Containing Azo Dye. Chemosphere,2009,75(2):250-255.
    [187]J. Cao, L. Wei, Q. Huang, L. Wang, and S. Han. Reducing Degradation of Azo Dye by Zero-Valent Iron in Aqueous Solution. Chemosphere,1999,38(3):565-571.
    [188]J. A. Mielczarski, G. M. Atenas, and E. Mielczarski. Role of Iron Surface Oxidation Layers in Decomposition of Azo-Dye Water Pollutants in Weak Acidic Solutions. Applied Catalysis, B:Environmental,2005,56(4):289-303.
    [189]A. D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar. Iron-Nickel Bimetallic Nanoparticles for Reductive Degradation of Azo Dye Orange G in Aqueous Solution. Applied Catalysis, B:Environmental,2008,79(3):270-278.
    [190]A. Georgi, A. Schierz, U. Trommler, C. P. Horwitz, T. J. Collins, F. D. Kopinke. Humic Acid Modified Fenton Reagent for Enhancement of the Working pH Range. Applied Catalysis, B:Environmental,2007,72(1):26-36.
    [191]J. M. Giraudon, A. Elhachimi, and G. Leclercq. Catalytic Oxidation of Chlorobenzene over Pd/Perovskites. Applied Catalysis, B:Environmental,2008,84(1):251-261.
    [192]X. J. Dai, Y. S. Luo, W. D. Zhang, and S. Y. Fu. Facile Hydrothermal Synthesis and Photocatalytic Activity of Bismuth Tungstate Hierarchical Hollow Spheres with an Ultrahigh Surface Area. Dalton Transactions,2010,39(14):3426-3432.
    [193]M. D. Carvalho, M. M. Cruz, A. Wattiaux, J. M. Bassat, F. M. Costa, and M. Godinho. Influence of Oxygen Stoichiometry on the Electronic Properties of La4Ni3O10±δ. Journal of Applied Physics,2000,88(1):544-549.
    [194]G Q. Wu, J. J. Neumeier, and M. F. Hundley. Magnetic Susceptibility, Heat Capacity, and Pressure Dependence of the Electrical Resistivity of La3Ni4O7 and La4Ni3O10. Physical Review B:Condensed Matter and Materials Physics,2001,63(24):245120.
    [195]G. Amow, I. J. Davidson, and S. J. Skinner. A Comparative Study of the Ruddlesden-Popper Series, Lan+iNinO3n+1 (n=1,2 and 3), for Solid-Oxide Fuel-Cell Cathode Applications. Solid State Ionics,2006,177(13):1205-1210.
    [196]C. D. Ling, D. N. Argyriou, G. Wu, and J. J. Neumeier. Neutron Diffraction Study of La3Ni2O7:Structural Relationships Among n=1,2, and 3 Phases Lan+1NinO3n+1. Journal of Solid State Chemistry,1999,152(2):517-525.
    [197]M. D. Carvalho, F. M. A. Costa, I. D. S. Pereira, A. Wattiaux, J. M. Bassat, J. C. Grenier, and M. Pouchard. New Preparation Method of Lan+1NinO3n+1-δ (n=2,3). Journal of Materials Chemistry,1997,7(10):2107-2111.
    [198]X. L. Weng, P. Boldrin, I. Abrahams, S. J. Skinner, and J. A. Darr. Direct Syntheses of Mixed Ion and Electronic Conductors La4Ni3O10 and La3Ni2O7 from Nanosized Coprecipitates. Chemistry of Materials,2007,19(18):4382-4384.
    [199]Y. S. Seo, C. Lee, K, H. Lee, and K. B. Yoon.1:1 and 2:1 Chargetransfer Complexes between Aromatic Hydrocarbons and Dry Titanium Dioxide. Angewandte Chemie, International Edition,2005,44(6):910-913.
    [200]X. Z. Li, C. C. Chen, and J. C Zhao. Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation. Langmuir,2001,17(3):4118-4122.
    [201]S. Kim and W. Choi. Visible-Light-Induced Photocatalytic Degradation of 4-Chlorophenol and Phenolic Compounds in Aqueous Suspension of Pure Titania: Demonstrating the Existence of a Surface-Complex-Mediated Path. Journal of Physical Chemistry B,2005,109(11):5143-5149.
    [202]T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama. Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation. Journal of Physical Chemistry C,2007,111(21): 7574-7577.
    [203]R. Nakamura, A. Okamoto, H. Osawa, H. Irie, and K. Hashimoto. Design of All-Inorganic Molecular-Based Photocatalysts Sensitive to Visible Light:Ti(IV)-O-Ce(III) Bimetallic Assemblies on Mesoporous Silica. Journal of the American Chemical Society, 2007,129(31):9596-9597.
    [204]A. S. Mukasyan, C. Costello, K. P. Sherlock, D. Lafarga, and A. Varma. Perovskite Membranes by Aqueous Combustion Synthesis:Synthesis and Properties. Separation and Purification Technology,2001,25(1-3):117-126.
    [205]T. Striker and J. A. Ruud. Effect of Fuel Choice on the Aqueous Combustion Synthesis of Lanthanum Ferrite and Lanthanum Manganite. Journal of the American Ceramic Society, 2010,93(9):2622-2629.
    [206]I. S. Lee, N. Lee, J. Park, B. H. Kim, Y. W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik, T. Hyeon. Ni/NiO Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins. Journal of the American Chemical Society,2006,128(33): 10658-10659.
    [207]X. H. Huang, J. P. Tu, B. Zhang, C. Q. Zhang, Y. Li, Y. F. Yuan, and H. M. Wu. Electrochemical Properties of NiO-Ni Nanocomposite as Anode Material for Lithium Ion Batteries. Journal of Power Sources,2006,161(1):541-544.
    [208]X. F. Li, A. Dhanabalan, K. Bechtold, and C. L. Wang. Binder-Free Porous Core-Shell Structured Ni/NiO Configuration for Application of High Performance Lithium Ion Batteries. Electrochemistry Communications 2010,12(9):1222-1225.
    [209]A. C. Johnston-Peck, J. Wang, and J. B. Tracy. Synthesis and Structural and Magnetic Characterization of Ni (Core)/NiO (Shell) Nanoparticles. ACS Nano,2009,3(5):1077-1084.
    [210]J. M. Wu. Photodegradation of Rhodamine B in Water Assisted by Titania Nanorod Thin Films Subjected to Various Thermal Treatments. Environmental Science & Technology, 2007,41(5):1723-1728.
    [211]D. H. Prasad, H. Y. Jung, H. G. Jung, B. K. Kim, H. W. Lee, and J. H. Lee. Single Step Synthesis of Nano-sized NiO-Ce0.75Zr0.25O2 Composite Powders by Glycine Nitrate Process. Materials Letters,2008,62(4-5):587-590.
    [212]Y. P. Tong, S. B. Zhao, X. Wang, and L. D. Lu. Synthesis and Characterization of Er2Sn2O7 Nanocrystals by Salt-Assistant Combustion Method. Journal of Alloys and Compounds,2009,479(1-2):746-749.
    [213]F. H. Chung. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. III. Simultaneous Determination of a Set of Reference Intensities. Journal of Applied Crystallography,1975,8 (1):17-19.
    [214]A. Querejeta-Femandez, M. Parras, A. Varela, F. del Monte, M. Carcia-Hernandez, and J. M. Gonzalez-Calbet. Urea-Melt Assisted Synthesis of Ni/NiO Nanoparticles Exhibiting Structural Disorder and Exchange Bias. Chemistry of Materials,2010,22(24):6529-6541.
    [215]J. B. Wiley and R. B. Kaner. Rapid Solid-State Precursor Synthesis of Materials. Science,1992,255(5048):1093-1097.
    [216]B. Xia, I. W. Lenggoro, and K. Okuyama. Nanoparticle Separation in Salted Droplet Microreactors. Chemistry of Materials,2002,14(6):2623-2627.
    [217]A. I. Lesnikovich, V. V. Sviridov, G. V. Printsev, O. A. Ivashkevich, and P. N. Gaponik. A New Type of Self-Organization in Combustion. Nature,1986,323(323):706-707.
    [218]K. Deshpande, A. Mukasyan, and A. Varma. Direct Synthesis of Iron Oxide Nanopowders by the Combustion Approach:Reaction Mechanism and Properties. Chemistry of Materials,2004,16(24):4896-4904.
    [219]W. Brockner, C. Ehrhardt, and M. Gjikaj. Thermal Decomposition of Nickel Nitrate Hexahydrate, Ni(NO3)2-6H2O, in Comparison to Co(NO3)2-6H2O and Ca(NO3)2-4H2O. Thermochimica Acta,2007,456(1):64-68.
    [220]X. F. Song and L. Gao. Facile Route to Nanoporous NiO Structures from the Alpha-Ni(OH)2/EG Precursor and Application in Water Treatment. Journal of the American Ceramic Society,2008,91(12):4105-4108.
    [221]X. F. Song and L. Gao. Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties. Journal of Physical Chemistry C,2008,112(39):15299-15305.
    [222]Z. Song, L. F. Chen, J. C. Hu, and R. Richards. NiO(111) Nanosheets as Efficient and Recyclable Adsorbents for Dye Pollutant Removal from Wastewater. Nanotechnology,2009, 20(27):275707 (9 pp).
    [223]L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Advanced Materials,2006,18(18):2426-2431.
    [224]M. Armand and J. M. Tarascon. Building Better Batteries. Nature,2008,451(7179): 652-657.
    [225]L. Liu, Y. Li, S. M. Yuan, M. Ge, M. M. Ren, C. S. Sun, and Z. Zhou. Nanosheet-Based NiO Microspheres:Controlled Solvothermal Synthesis and Lithium Storage Performances. Journal of Physical Chemistry C,2010,114(1):251-255.
    [226]Y. Yu, C. H. Chen, J. L. Shui, and S. Xie. Supported Reticular CoO-Li2O Composite Anode Materials for Lithium Ion Batteries. Angewandte Chemie, International Edition,2005, 44(43):7085-7089.
    [227]W. L. Yao, J. L. Wang, J. Yang, and G. D. Du. Novel Carbon Nanofiber-Cobalt Oxide Composites for Lithium Storage with Large Capacity and High Reversibility. Journal of Power Sources,2008,176(1):369-372.
    [228]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, and L. A. Archer. Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials,2008,20(2):258-262.
    [229]Y. G. Li, B. Tan, and Y. Y. Wu. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters,2008,8(1):265-270.
    [230]H. Zhang, J. B. Wu, C. X. Zhai, X. Y. Ma, N. Du, J. P. Tu, and D. R. Yang. From Cobalt Nitrate Carbonate Hydroxide Hydrate Nanowires to Porous Co3O4 Nanorods for High Performance Lithium-Ion Battery Electrodes. Nanotechnology,2008,19(4):O35711(5pp).
    [231]X. W. Lou, D. Deng, J. Y. Lee, and L. A. Archer. Thermal Formation of Mesoporous Single-Crystal Co3O4 Nano-Needles and Their Lithium Storage Properties. Journal of Materials Chemistry,2008,18(37):4397-4401.
    [232]F. M. Zhan, B. Y. Geng, and Y. J. Guo. Porous Co3O4 Nanosheets with Extraordinarily High Discharge Capacity for Lithium Batteries. Chemistry-A European Journal,2009, 15(25):6169-6174.
    [233]J. Q. Hu, Z. H. Wen, Q. Wang, X. Yao, Q. Zhang, J. H. Zhou, and J. H. Li. Controllable Synthesis and Enhanced Electrochemical Properties of Multifunctional AucoreCo3O4shell Nanocubes. Journal of Physical Chemistry B,2006,110(48):24305-24310.
    [234]F. F. Tao, C. L. Gao, Z. H. Wen, Q. Wang, J. H. Li, and Z. Xu. Cobalt Oxide Hollow Microspheres with Micro- and Nano-Scale Composite Structure:Fabrication and Electrochemical Performance. Journal of Solid State Chemistry,2009,182(5):1055-1060.
    [235]B. Liu, X. B. Zhang, H. Shioyama, T. Mukai, T. Sakai, and Q. Xu. Converting Cobalt Oxide Subunits in Cobalt Metal-Organic Framework into Agglomerated Co3O4 Nanoparticles as an Electrode Material for Lithium Ion Battery. Journal of Power Sources, 2010,195(3):857-861.
    [236]Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, and H. M. Cheng. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010, 4(6):3187-3194.
    [237]K. V. Rao and C. S. Sunandana. Co3O4 Nanoparticles by Chemical Combustion:Effect of Fuel to Oxidizer Ratio on Structure, Microstructure and EPR. Solid State Communications, 2008,148(1-2):32-37.
    [238]L. H. Ai and J. Jiang. Rapid Synthesis of Nanocrystalline Co3O4 by a Microwave-Assisted Combustion Method. Powder Technology,2009,195(1):11-14.
    [239]J. C. Toniolo, A. S. Takimi, and C. P. Bergmann. Nanostructured Cobalt Oxides (Co3O4 and CoO) and Metallic Co Powders Synthesized by the Solution Combustion Method. Materials Research Bulletin,2010,45(6):672-676.
    [240]G. X. Wang, Y. Chen, K. Konstantinov, J. Yao, J. H. Ahn, H. K. Liu, and S. X. Dou. Nanosize Cobalt Oxides as Anode Materials for Lithium-Ion Batteries. Journal of Alloys and Compounds,2002,340(1-2):L5-L10.
    [241]Y. Liu, C. H. Mi, L. H. Su, and X. G. Zhang. Hydrothermal Synthesis of Co3O4 Microspheres as Anode Material for Lithium-Ion Batteries. Electrochimica Acta,2008,53(5): 2507-2513.
    [242]K. M. Shaju and P. G. Bruce. Macroporous Li(Ni1/3Co1/3Mn1/3)O2:A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries. Advanced Materials,2006,18(17): 2330-2334.
    [243]P. Viswanathan, S. Chirasatitsin, K. Ngamkham, A. J. Engler, and G. Battaglia. Cell Instructive Microporous Scaffolds through Interface Engineering. Journal of the American Chemical Society,2012,134 (49):20103-20109.
    [244]T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter. Ultralight Metallic Microlattices. Science,2011,334(6058): 962-965.
    [245]J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, and W. P. King. High-Power Lithium Ion Microbatteries from Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes. Nature Communications,2013,4:1732.
    [246]W. J. Cui, H. J. Liu, C. X. Wang, and Y. Y. Xia. Highly Ordered Three-Dimensional Macroporous FePO4 as Cathode Materials for Lithium-Ion Batteries. Electrochemistry Communications,2008,10(10):1587-1589.
    [247]H. Yan, C. F. Blanford, B. T. Holland, M. Parent, W. H. Smyrl, and A. Stein. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni. Advanced Materials, 1999,11(12):1003-1006.
    [248]T. T. Srinivasan, P. Ravindranathan, L. E. Cross, R. Roy, R. E. Newnham, S. G. Sankar, K. C. Patil, Studies on High-Density Nickel Zinc Ferrite and Its Magnetic Properties using Novel Hydrazine Precursors. Journal of Applied Physics,1988,63(8):3789-3791.
    [249]J. W. Park, E. H. Chae, S. H. Kim, J. H. Lee, J. W. Kim, S. M. Yoon, and J. Y. Choi. Preparation of Fine Ni Powders from Nickel Hydrazine Complex. Materials Chemistry and Physics,2006,97(2-3):371-378.
    [250]M. A. Mohamed, S. A. Halawy, and M. M. Ebrahim. Non-Isothermal Decomposition of Nickel Acetate Tetrahydrate. Journal of Analytical and Applied Pyrolysis,1993,27(2): 109-110.
    [251]J. C. D. Jesus, I. Gonzalez, A. Quevedo, and T. Puerta. Thermal Decomposition of Nickel Acetate Tetrahydrate:An Integrated Study by TGA, QMS and XPS Techniques. Journal of Molecular Catalysis A:Chemical,2005,228(1-2):283-291.
    [252]S. Grugeon, S. Laruelle, L. Dupont, and J. M. Tarascon. An Update on the Reactivity of Nanoparticles Co-Based Compounds towards Li. Solid State Sciences,2003,5(6):895-904.
    [253]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J. M. Tarascon. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential. Journal of the Electrochemical Society,2002,149(5):A627-A634.
    [254]P. Balaya, H. Li, L. Kienle, and J. Maier. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Advanced Functional Materials, 2003,13(8):621-625.
    [255]L. Li, K. H. Seng, Z. Chen, Z. Guo, and H. K. Liu. Self-Assembly of Hierarchical Star-Like Co3O4 Micro/Nanostructures and Their Application in Lithium Ion Batteries. Nanoscale,2013,5(5):1922-1928.
    [256]J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, and D. Wang. Accurate Control of Multishelled Co3O4 Hollow Microspheres as High-Performance Anode Materials in Lithium-Ion Batteries. Angewandte Chemie, International Edition,2013,52(25):6417-6420.
    [257]L. Hu, N. Yan, Q. Chen, P. Zhang, H. Zhong, X. Zheng, Y. Li, and X. Hu. Fabrication Based on the Kirkendall Effect of Co3O4 Porous Nanocages with Extraordinarily High Capacity for Lithium Storage. Chemistry-A European Journal,2012,18(29):8971-8977.
    [258]N. Du, H. Zhang, B. Chen, J. Wu, X. Ma, Z. Liu, Y. Zhang, D. Yang, X. Huang, and J. Tu. Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates:A Highly Efficient Material For Li-Battery Applications. Advanced Materials, 2007,19(24):4505-4509.
    [259]Y. Xiao, C. Hu, and M. Cao. Facile Microstructure Control of Mesoporous Co1.29Ni1.71O4 and the Effect of the Microstructure on Lithium-Storage Performance. Chemistry-A European Journal,2013,19(31):10193-10200.
    [260]C. H. Chen, B. J. Hwang, J. S. Do, J. H. Weng, M. Venkateswarlu, M. Y. Cheng, R. Santhanam, K. Ragavendran, J. F. Lee, J. M. Chen, and D. G Liu. An Understanding of Anomalous Capacity of Nano-Sized CoO Anode Materials for Advanced Li-Ion Battery. Electrochemistry Communications,2010,12(3):496-498.
    [261]D. Su, M. Ford, and G. Wang. Mesoporous NiO Crystals with Dominantly Exposed {110} Reactive Facets for Ultrafast Lithium Storage. Scientific Reports,2012,2:924.
    [262]L. Tao, J. Zai, K. Wang, Y. Wan, H. Zhang, C. Yu, Y. Xiao, and X. Qian. 3D-Hierarchical NiO-Graphene Nanosheet Composites as Anodes for Lithium Ion Batteries with Improved Reversible Capacity and Cycle Stability. RSC Advances,2012,2(8): 3410-3415.
    [263]G. Oberdorster, V. Stone, and K. Donaldson. Toxicology of Nanoparticles:a Historical Perspective. Nanotoxicology,2007,1(1):2-25.
    [264]B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. Subba Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, and C. H. Sow. Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chemistry of Materials,2008,20(10): 3360-3367.
    [265]E. Hosono, S. Fujihara, I. Honma, and H. Zhou. The High Power and High Energy Densities Li Ion Storage Device by Nanocrystalline and Mesoporous Ni/NiO Covered Structure. Electrochemistry Communications,2006,8(2):284-288.
    [266]V. Aravindan, P. S. Kumar, J. Sundaramurthy, W. C. Ling, S. Ramakrishna, and S. Madhavi. Electrospun NiO Nanofibers as High Performance Anode Material for Li-Ion Batteries. Journal of Power Sources,2013,227:284-290.
    [267]Y. M. Kang, K. T. Kim, J. H. Kim, H. S. Kim, P. S. Lee, J. Y. Lee, H. K. Liu, and S. X. Dou. Electrochemical Properties of Co3O4, Ni-Co3O4 Mixture and Ni-Co3O4 Composite as Anode Materials for Li Ion Secondary Batteries. Journal of Power Sources,2004,133(2): 252-259.
    [268]D. J. Xue, S. Xin, Y. Yan, K C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan. Improving the Electrode Performance of Ge through Ge@C Core-Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society,2012,134(5):2512-2515.
    [269]G. Zhou, D. W. Wang, L. C. Yin, N. Li, F. Li, and H. M. Cheng. Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage. ACS Nano, 2012,6(4):3214-3223.
    [270]X. Wang, L. Li, Y. G. Zhang, S. T. Wang, Z. D. Zhang, L. F. Fei, and Y. T. Qian. High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance. Crystal Growth & Design,2006,6(9):2163-2165.
    [271]I. R. M. Kottegoda, N. H. Idris, L. Lu, J. Z. Wang, and H. K. Liu. Synthesis and Characterization of Graphene-Nickel Oxide Nanostructures for Fast Charge-Discharge Application. Electrochimica Acta,2011,56(16):5815-5822.
    [272]X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He. Nanostructured NiO Electrode for High Rate Li-Ion Batteries. Journal of Materials Chemistry,2011,21(11): 3571-3573.
    [273]X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang, and D. He. NiO Nanocone Array Electrode with High Capacity and Rate Capability for Li-ion Batteries. Journal of Materials Chemistry,2011,21(27):9988-9990.
    [274]D. Applestone, S. Yoon, and A. Manthiram. Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C,2011,115(38):18909-18915.
    [275]J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson. Face-Selective Electrostatic Control of Hydrothermal Zinc Oxide Nanowire Synthesis. Nature Materials, 2011,10(8):596-601.
    [276]Z. Jing and J. Zhan. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials,2008,20(23):4547-4551.
    [277]Y. D. Wang, I. Djerdj, M. Antonietti, and B. Smarsly. Polymer-Assisted Generation of Antimony-Doped SnO2 Nanoparticles with High Crystallinity for Application in Gas Sensors. Small,2008,4(10):1656-1660.
    [278]T. Chen, Q. Y. Mu, Z. L. Zhou, and Y. D. Wang. Synthesis and Formaldehyde Sensing Properties of Pd-Doped SnO2 Nanoparticles. Sensor Letters,2010,8(2):238-242.
    [279]X. Liu, J. Zhang, X. Guo, S. Wu, and S. Wang. Amino Acid-Assisted One-Pot Assembly of Au, Pt Nanoparticles onto One-Dimensional ZnO Microrods. Nanoscale,2010, 2(7):1178-1184.
    [280]T. Chen, Q. J. Liu, Z. L. Zhou, and Y. D. Wang. A High Sensitivity Gas Sensor for Formaldehyde Based on CdO and In2O3 Doped Nanocrystalline SnO2. Nanotechnology, 2008,19(9):095506.
    [281]C. W. Na, H. S. Woo, and J. H. Lee. Design of Highly Sensitive Volatile Organic Compound Sensors by Controlling NiO Loading on ZnO Nanowire Networks. RSC Advances,2012,2(2):414-417.
    [282]Q. Zhou, Y. Mou, X. Ma, L. Xue, and Y. Yan, Effect of Fuel-to-Oxidizer Ratios on Combustion Mode and Microstructure of Li2Ti03 Nanoscale Powders. Journal of the European Ceramic Society,2014,34(3):801-807.
    [283]X. Xu, R. Cao, S. Jeong, and J. Cho, Spindle-like Mesoporous a-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Letters,2012,12(9): 4988-4991.
    [284]L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, and X. W. Lou. Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society,2012,134(42): 17388-17391.
    [285]F. Meng, Z. Fang, Z. Li, W. Xu, M. Wang, Y. Liu, J. Zhang, W. Wang, D. Zhao, and X. Guo. Porous Co3O4 Materials Prepared by Solid-State Thermolysis of a Novel Co-MOF Crystal and Their Superior Energy Storage Performances for Supercapacitors. Journal of Materials Chemistry A,2013,1(24):7235-7241.
    [286]M. A. Tamor and W. C. Vassell. Raman "Fingerprinting"of Amorphous Carbon Films. Journal of Applied Physics,1994,76(6):3823-3830.
    [287]M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Physical Chemistry Chemical Physics,2007,9(11):1276-1290.
    [288]W. Mei, J. Huang, L. Zhu, Z. Ye, Y. Mai, and J. Tu. Synthesis of Porous Rhombus-Shaped Co3O4 Nanorod Arrays Grown Directly on a Nickel Substrate with High Electrochemical Performance. Journal of Materials Chemistry,2012,22(18):9315-9321.
    [289]Y. Sun, X. Hu, W. Luo, and Y. Huang. Self-Assembled Mesoporous CoO Nanodisks as a Long-Life Anode Material for Lithium-Ion Batteries. Journal of Materials Chemistry,2012, 22(27):13826-13831.
    [290]S. S. Shinde, P. S. Shinde, Y. W. Oh, D. Haranath, C. H. Bhosale, and K. Y. Rajpure. Investigation of Structural, Optical and Luminescent Properties of Sprayed N-doped Zinc Oxide Thin Films. Journal of Analytical and Applied Pyrolysis,2012,97:181-188.
    [291]L. Lai, J. Zhu, Z. Li, D. Y. W. Yu, S. Jiang, X. Cai, Q. Yan, Y. M. Lam, Z. Shen, and J. Lin. Co3O4/Nitrogen Modified Graphene Electrode as Li-Ion Battery Anode with High Reversible Capacity and Improved Initial Cycle Performance. Nano Energy,2014,3: 134-142.
    [292]P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, and X. W. Fan. Optical and Electrical Properties of.p-Type ZnO Fabricated by NH3 Plasma Post-Treated ZnO Thin Films. Applied Surface Science,2008,254(9):2900-2904.
    [293]C. L. Perkins, S. H. Lee, X. Li, S. E. Asher, and T. J. Coutts. Identification of Nitrogen Chemical States in N-Doped ZnO via X-ray Photoelectron Spectroscopy. Journal of Applied Physics,2005,97(3):034907(7pp).
    [294]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga. Visible-light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293(5528):269-271.
    [295]X. Li, L. Qiao, D. Li, X. Wang, W. Xie, and D. He. Three-Dimensional Network Structured α-Fe2O3 Made from a Stainless Steel Plate as a High-Performance Electrode for Lithium Ion Batteries. Journal of Materials Chemistry A,2013,1(21):6400-6406.
    [296]Y. Sun, X. Hu, W. Luo, F. Xia, and Y. Huang. Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials,2013,23(19):2436-2444.
    [297]J. S. Luo, X. H. Xia, Y. S. Luo, C. Guan, J. L. Liu, X. Y. Qi, C. F. Ng, T. Yu, H. Zhang, and H. J. Fan. Rationally Designed Hierarchical TiO2@Fe2O3 Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials,2013,3(6):737-743.
    [298]W. H. Ryu, J. Shin, J. W. Jung, and I. D. Kim. Cobalt (Ⅱ) Monoxide Nanoparticles Embedded in Porous Carbon Nanofibers as a Highly Reversible Conversion Reaction Anode for Li Ion Batteries. Journal of Materials Chemistry A,2013,1(10):3239-3243.
    [299]X. L. Huang, R. Z. Wang, D. Xu, Z. L. Wang, H. G Wang, J. J. Xu, Z. Wu, Q. C. Liu, Y. Zhang, and X. B. Zhang. Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries. Advanced Functional Materials,2013,23(35): 4345-4353.
    [300]Y. M. Sun, X. Hu, W. Luo, and Y. Huang. Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012,116(39):20794-20799.
    [301]K. H. Kim, D. W. Jung, V. H. Pham, J. S. Chung, B. S. Kong, J. K. Lee, K. Kim, and E. S. Oh. Performance Enhancement of Li-Ion Batteries by the Addition of Metal Oxides (CuO, Co3O4)/Solvothermally Reduced Graphene Oxide Composites. Electrochimica Acta,2012, 69:358-563.
    [302]X. Lang, A. Hirata, T. Fujita, and M. Chen. Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nature Nanotechnology,2011,6(4):232-236.
    [303]J. Qin, C. He, N. Zhao, Z. Wang, C. Shi, E. Z. Liu, and J. Li. Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano,2014,8(2): 1728-1738.
    [304]X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, and Y. Bando. Three-Dimensional Structured Graphene Grown by Substrate-Free Sugar Blowing for High-Power-Density Supercapacitors. Nature Communications,2013,4: 3905.
    [305]Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, and K. Mullen. Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society,2012, 134(48):19532-19535.
    [306]H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. Kingondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, and D. Mitlin. Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano,2013,7(6):5131-5141.
    [307]J. Xing, H. F. Wang, C. Yang, D. Wang, H. J. Zhao, G. Z. Lu, P. Hu, and H. G. Yang. Ceria Foam with Atomically Thin Single-Crystal Walls. Angewandte Chemie, International Edition,2012,51(15):3611-3615.
    [308]Y. Zhang, N. Zhang, Z. R. Tang, and Y. J. Xu. A Unique Silk Mat-Like Structured Pd/CeO2 as an Efficient Visible Light Photocatalyst for Green Organic Transformation in Water. ACS Sustainable Chemistry & Engineering,2013,1(10):1258-1266.
    [309]Y. Ma, C. Fang, B. Ding, G Ji, and J. Y. Lee. Fe-Doped MnxOy with Hierarchical Porosity as a High Performance Lithium-ion Battery Anode. Advanced Materials,2013, 25(33):4646-4652.
    [310]J. E. Panels, J. Lee, K. Y. Park, S. Y. Kang, M. Marquez, U. Wiesner, and Y. L. Joo. Synthesis and Characterization of Magnetically Active Carbon Nanofiber/Iron Oxide Composites with Hierarchical Pore Structures. Nanotechnology,2008,19(45):455612.
    [311]S. S. Lo and D. Huang. Morphological Variation and Raman Spectroscopy of ZnO Hollow Microspheres Prepared by a Chemical Colloidal Process. Langmuir,2010,26(10): 6762-6766.
    [312]C. Petit and T. J. Bandosz. Role of Aluminum Oxycations in Retention of Ammonia on Modified Activated Carbons. Journal of Physical Chemistry C,2007,111(44):16445-16452.
    [313]X. C. Li, G. H. He, G. K. Xiao, H. J. Liu, and M. Wang. Synthesis and Morphology Control of ZnO Nanostructures in Microemulsions. Journal of Colloid and Interface Science, 2009,333(2):465-473.
    [314]M. E. Aguirre, H. B. Rodrguez, E. S. Romn, A. Feldhoff, and M. A. Grela. Ag@ZnO Core-Shell Nanoparticles Formed by the Timely Reduction of Ag+ Ions and Zinc Acetate Hydrolysis in N, N-Dimethylformamide:Mechanism of Growth and Photocatalytic Properties. Journal of Physical Chemistry C,2011,115(50):24967-24974.
    [315]H. Sun, H. M. Ang, M. O. Tade, and S. Wang, Co3O4 Nanocrystals with Predominantly Exposed Facets:Synthesis, Environmental and Energy Applications. Journal of Materials Chemistry A,2013,1(46):14427-14442.
    [316]S. S. Nath, M. Choudhury, D. Chakdar, G. Gope, and R. K. Nath. Acetone Sensing Property of ZnO Quantum Dots Embedded on PVP. Sensors and Actuators, B:Chemical, 2010,148(2):353-357.
    [317]W. Shen, Y. Zhao, and C. Zhang. The Preparation of ZnO Based Gas-Sensing Thin Films by Ink-Jet Printing Method. Thin Solid Films,2005,483(1):382-387.
    [318]C. Gu, J. Huang, Y. Wu, M. Zhai, Y. Sun, and J. Liu. Preparation of Porous Flower-Like ZnO Nanostructures and Their Gas-Sensing Property. Journal of Alloys and Compounds, 2011,509(13):4499-4504.
    [319]R. C. Pawar, J. S. Shaikh, A. V. Moholkar, S. M. Pawar, J. H. Kim, J. Y. Patil, S. S. Suryavanshi, and P. S. Patil. Surfactant Assisted Low Temperature Synthesis of Nanocrystalline ZnO and Its Gas Sensing Properties. Sensors and Actuators, B:Chemical, 2010,151(1):212-218.
    [320]Y. Liu, J. Dong, P. J. Hesketh, and M. Liu. Synthesis and Gas Sensing Properties of ZnO Single Crystal Flakes. Journal of Materials Chemistry,2005,15(23):2316-2320.
    [321]M. Chen, Z. H. Wang, D. M. Han, F. B. Gu, and G. S. Guo. Porous ZnO Polygonal Nanoflakes:Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. Journal of Physical Chemistry C,2011,115(26):12763-12773.
    [322]Z. Chen, I. Belharouak, Y. K. Sun, and K. Amine. Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Advanced Functional Materials,2013,23(8):959-969.
    [323]G. N. Zhu, Y. G. Wang, and Y. Y. Xia. Ti-Based Compounds as Anode Materials for Li-Ion Batteries. Energy & Environmental Science,2012,5(5):6652-6667.
    [324]J. Liu, J. S. Chen, X. Wei, X. W. Lou, and X. W. Liu. Sandwich-Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Advanced Materials,2011,23(8): 998-1002.
    [325]S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, and S. Che. Nanosheet-Constructed Porous TiO2-B for Advanced Lithium Ion Batteries. Advanced Materials,2012,24(24):3201-3204.
    [326]G. Kim, C. Jo, W. Kim, J. Chun, S. Yoon, J. Lee, and W. Choi. TiO2 Nanodisks Designed for Li-ion Batteries:A Novel Strategy for Obtaining an Ultrathin and High Surface Area Anode Material at the Ice Interface. Energy & Environmental Science,2013,6(10): 2932-2938.
    [327]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, and X. W. Lou. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society,2010,132(17):6124-6130.
    [328]N. Wu, J. Wang, D. N. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. Liu, S. S.Leonard, and A. Manivannan. Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society,2010,132(19):6679-6685.
    [329]K. Kiatkittipong, J. Scott, and R. Amal. Hydrothermally Synthesized Titanate Nanostructures:Impact of Heat Treatment on Particle Characteristics and Photocatalytic Properties. ACS Applied Materials & Interfaces,2011,3(10):3988-3996.
    [330]W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang. Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small,2013,9(1):140-147.
    [331]R. Yoshida, Y. Suzuki, and S. Yoshikawa. Syntheses of TiO2(B) Nanowires and TiO2 Anatase Nanowires by Hydrothermal and Post-Heat Treatments. Journal of Solid State Chemistry,2005,178(7):2179-2185.
    [332]W. Li, Y. Deng, Z. Wu, X. Qian, J. Yang, Y. Wang, D. Gu, F. Zhang, B. Tu, and D. Zhao. Hydrothermal Etching Assisted Crystallization:A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society,2011,133(40):15830-15833.
    [333]Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, and X. Chen. Three-Dimensional CdS-Titanate Composite Nanomaterials for Enhanced Visible-Light-Driven Hydrogen Evolution. Small,2013,9(7):996-1002.
    [334]D. V. Bavykin, J. M. Friedrich, and F. C. Walsh. Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications. Advanced Materials,2006, 18(21):2807-2824.
    [335]P. Liu, H. Zhang, H. Liu, Y. Wang, X. Yao, G Zhu, S. Zhang, and H. Zhao. A Facile Vapor-Phase Hydrothermal Method for Direct Growth of Titanate Nanotubes on a Titanium Substrate via a Distinctive Nanosheet Roll-Up Mechanism. Journal of the American Chemical Society,2011,133(47):19032-19035.
    [336]N. Sutradhar, A. Sinhamahapatra, S. K. Pahari, H. C. Bajaj, and A. B. Panda. Room Temperature Synthesis of Protonated Layered Titanate Sheets Using Peroxo Titanium Carbonate Complex Solution. Chemical Communications,2011,47(27):7731-7733.
    [337]J. M. Wu, T. W. Zhang, Y. W. Zeng, S. Hayakawa, K. Tsuru, and A. Osaka. Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity. Langmuir, 2005,2(15):6995-7002.
    [338]J. Y. Piquemal, E. Briot, and J. M. Bregeault. Preparation of Materials in the Presence of Hydrogen Peroxide:from Discrete or "Zero-Dimensional" Objects to Bulk Materials. Dalton Transactions,2013,42(1):29-45.
    [339]Y. Mao, M. Kanungo, T. Hemraj-Benny, and S. S. Wong. Synthesis and Growth Mechanism of Titanate and Titania One-Dimensional Nanostructures Self-Assembled into Hollow Micrometer-Scale Spherical Aggregates. Journal of Physical Chemistry B,2006, 110(2):702-710.
    [340]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. The Structure of Suspended Graphene Sheets. Nature,2007,446(7131):60-63.
    [341]L. Ortolani, E. Cadelano, G P. Veronese, C. D. E. Boschi, E. Snoeck, L. Colombo, and V. Morandi. Folded Graphene Membranes:Mapping Curvature at the Nanoscale. Nano Letters, 2012,12(10):5207-5212.
    [342]H. G Yang and H. C. Zeng. Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O and ZnO/TiO2 Nanocomposites. Journal of the American Chemical Society,2005,127(1):270-278.
    [343]V. Gentili, S. Brutti, L. J. Hardwick, A. R. Armstrong, S. Panero, and P. G Bruce. Lithium Insertion into Anatase Nanotubes. Chemistry of Materials,2012,24(22): 4468-4476.
    [344]L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, and A. Zukal. Surfactant-Templated TiO2 (Anatase):Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures. Journal of Physical Chemistry B,2000,104(50):12012-12020.
    [345]D. Deng, M. G, Kim, J. Y. Lee, and J. Cho. Green Energy Storage Materials: Nanostructured TiO2 and Sn-Based Anodes for Lithium-Ion Batteries. Energy & Environmental Science,2009,2(8):818-837.
    [346]J. Y. Shin, D. Samuelis, and J. Maier. Sustained Lithium-Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates:Emphasis on Interfacial Storage Phenomena. Advanced Functional Materials,2011,21(18):3464-3472
    [347]Z. Wang and X. W. Lou. TiO2 Nanocages:Fast Synthesis, Interior Functionalization and Improved Lithium Storage Properties. Advanced Materials,2012,24(30):4124-4129.
    [348]S. Brutti, V. Gentili, H. Menard, B. Scrosati, and P. G Bruce. TiO2-(B) Nanotubes as Anodes for Lithium Batteries:Origin and Mitigation of Irreversible Capacity. Advanced Energy Materials,2012,2(3):322-327.
    [349]X. L. Wang, W. Q. Han, H. Chen, J. Bai, T. A. Tyson, X. Q. Yu, X. J. Wang, and X. Q. Yang. Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life. Journal of the American Chemical Society,2011,133(51): 20692-20695.
    [350]J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, and L. Qi. Nanoporous Anatase TiO2 Mesocrystals:Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. Journal of the American Chemical Society,2011, 133(4):933-940.
    [351]P. Tartaj and J. M. Amarilla. Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystal-Like Porous Assemblies. Advanced Materials,2011,23(42): 4904-4907.
    [352]Z. Hong, M. Wei, T. Lan, L. Jiang, and G Cao. Additive-Free Synthesis of Unique TiO2 Mesocrystals with Enhanced Lithium-Ion Intercalation Properties. Energy & Environmental Science,2012,5(1):5408-5413.
    [353]S. Yang, X. Feng, and K. Mullen. Sandwich-Like, Graphene-Based Titania Nanosheets with High Surface Area for Fast Lithium Storage. Advanced Materials,2011,23(31): 3575-3579.
    [354]W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia, and D. Zhao. Sol-Gel Design Strategy for Ultradispersed TiO2 Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013,135(49):18300-18303.
    [355]S. Ding, J. S. Chen, and X. W. Lou. One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties. Advanced Functional Materials,2011,21(21):4120-4125.
    [356]H. Han, T. Song, J. Y. Bae, L. F. Nazar, H. Kim, and U. Paik. Nitridated TiO2 Hollow Nanofibers as an Anode Material for High Power Lithium Ion Batteries. Energy & Environmental Science,2011,4(11):4532-4536.
    [357]Y. G Guo, Y. S. Hu, W. Sigle, and J. Maier. Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks. Advanced Materials,2007,19(16):2087-2091.
    [358]W. Jiao, N. Li, L. Wang, L. Wen, F. Li, G Liu, and H. M. Cheng. High-Rate Lithium Storage of Anatase TiO2 Crystals Doped with both Nitrogen and Sulfur. Chemical Communications,2013,49(33):3461-3463.
    [359]H. Wu, M. Xu, Y. Wang, and G Zheng. Branched Co3O4/Fe2O3 Nanowires as High Capacity Lithium-Ion Battery Anodes. Nano Research,2013,6(3):167-173.
    [360]J. Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, and Z. Chen. Multifunctional TiO2-C/MnO2 Core-Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Letters,2013,13(11):5467-5473.
    [361]Y. Wang, B. M. Smarsly, and I. Djerdj. Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials,2010,22(24):6624-6631.
    [362]B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, and P. Yang. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. Journal of the American Chemical Society,2013,135(27):9995-9998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700