用户名: 密码: 验证码:
金刚石珩磨抛光油石结合剂结构和性能及其珩磨应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石珩磨抛光油石已经在气缸套加工中得到应用,结合剂的结构和性能是决定金刚石珩磨抛光油石珩磨性能的关键。然而,对珩磨油石结合剂的微观结构及对磨损性能的研究很少。因此,根据珩磨加工的特殊要求,研究金刚石珩磨抛光油石结合剂组织结构和性能变化对珩磨性能的影响,是研发金刚石珩磨抛光油石首要解决的关键问题。
     本文以Cu-Sn结合剂制备珩磨油石,研究Sn含量及合金元素对Cu-Sn结合剂的结构和性能的影响。采用数值模拟,研究Sn含量及合金元素对Cu-Sn结合剂与金刚石之间热应力的影响。根据试验结果和模拟规律,优化结合剂成分并制备成珩磨油石进行珩磨试验。另外,设计树脂金属复合结合剂,对其性能和结构进行初步研究;设计氧化物/Fe基结合剂,研究氧化物对结合剂和金刚石之间热应力的影响,并验证了模拟结果的可靠性。取得主要研究结果如下:
     随着Sn含量的增加,Cu-Sn结合剂烧结时产生的液相增多,生成硬脆的ε相、δ相和共析体—α+δ增加,烧结后样品的硬度和自锐性提高,抗折强度和热膨胀系数降低。选用Fe、Co和Ni改善Cu75Sn25结合剂的结构和性能,三种合金元素在Cu-Sn结合剂中的固溶程度依次增加。虽然加入合金元素后,Cu75Sn25结合剂的硬度和抗折强度下降,但是Fe的加入提高了自锐性并降低了热膨胀系数;Ni的加入提高了耐高温性能,减少了烧结时液相的流失。
     采用ANSYS有限元软件模拟计算金刚石和结合剂之间热应力。模拟计算结果显示:随着Sn含量的增加,界面处应力逐渐减小,结合剂对金刚石的把持力增加。Sn含量由15wt.%增加到25wt.%时,界面处应力由895MPa下降到827MPa。Co和Ni加入到Cu75Sn25后,界面处的应力分别提高到1055MPa和1091MPa;Fe加入到Cu75Sn25后,界面处的应力降低到753MPa。
     制备不同硬度的Cu-Sn-Fe-Ni结合剂金刚石珩磨油石,在格林珩磨机上加工气缸套。硬度为HRB71的结合剂微观结构中含有少量孔隙且磨损量适中,珩磨油石具备良好容屑能力和自锐性,珩磨单个气缸套用时48.0s,每副油石可加工气缸套数量1508个,珩磨加工的气缸套达到欧Ⅴ排放标准。
     选用Cu65Zn20Ag15和耐热酚醛树脂为原料;以球磨方式提高Cu65Zn20Ag15粉末活性,降低反应活化能,细化晶粒;采用先固化,再热压烧结的工艺制备Cu-Zn-Ag/酚醛树脂复合结合剂。当树脂的含量为10wt.%,热压烧结温度460℃时,Cu-Zn-Ag/酚醛树脂复合结合剂的抗折强度达到最大(150.7MPa),其强度与Cu65Zn20Ag15相当。树脂和金属的浸润性良好,形成相互交叉的三维网络结构。
     添加Y_2O_3、La_2O_3、V_2O_5和CeO_2降低Fe基结合剂和金刚石之间的热应力,降低程度依次增加。磨损试验结果表明含Y_2O_3、La_2O_3、V_2O_5和CeO_2的结合剂磨损失重量依次减少,结合剂和金刚石之间的缝隙依次变小。磨损试验结果与有限元模拟的规律一致,验证了有限元模拟结合剂对金刚石把持力的可靠性。
The diamond honing and polish stones have been applied in honing cylinder liners.The structures and properties of the bonds in stones determine the honing performance.However, there has been little research in the microstructure and wear mechanism of thestones. According to the special requirements of honing, the primary issue that should besolved in developing the stones is the influence of the changes of the microstructure in thestones on honing performance.
     In this paper, the Cu-Sn bonds were used as the bonds of stones, and the influence ofthe amount of Sn and alloy elements on the microstructures and properties of Cu-Sn bondswas studied. The residual stresses between bonds and diamonds were simulated with finiteelement software. The influence of the amount of Sn and alloy elements on the residualstress was studied. After that, the optimal bonds were used to make honing stones forhoning experiment. The resin-metal bond was designed, and its microstructures andproperties were studied. The Fe-based bonds with oxides were designed, and the influenceof oxides on the residual stress was studied. And the reliability of the simulation result wasvalidated. Results for this paper are as follows:
     With increasing the amount of Sn, the amount of brittle phase (ε-phsae, δ-phase andeutectoid α+δ) increased. Therefore, the hardness and self-sharpening properties ofCu-Sn bonds increased, and the transverse rupture strength and coefficients of thermalexpansion of Cu-Sn bonds decreased. Fe, Co and Ni were added in Cu75Sn25forimproving its microstructures and properties, respectively. The solid solubility of Fe, Coand Ni in Cu-Sn bonds increased. After adding Fe, Co and Ni in Cu75Sn25, the hardnessand transverse rupture strength of the samples decreased. The self-sharpening property ofthe sample was improved, and the coefficients of thermal expansion decreased afteradding Fe. The temperature resistance of the sample was improved, and the loss of hightemperature liquid decreased after adding Ni.
     The residual stress between bond and diamond was simulated by ANSYS. Withincreasing the amount of Sn, the residual stress decreased which indicated the increase ofdiamond retention properties. When the amount of Sn was increased from15wt.%to25 wt.%, the residual stress decreased from895MPa to827MPa. After adding Co and Ni inCu75Sn25, the residual stress increased to1055MPa and1091MPa, respectively. Afteradding Fe in Cu75Sn25, the residual stress decreased to753MPa.
     The Cu-Sn-Fe-Ni bonds in different hardness were utilized in the diamond honingstones. Honing cylinder liners were carried out on a vertical honing machine (Gehring no.Z800-180). A few pores in the bond hardness of HRB71were available to absorb themetal chip from the cylinder liner, so better chip accommodation and self-sharpeningproperties were obtained. And the throughput of cylinder liners was1,508and the honingefficiency was48s. The surface quality of honed cylinder liner met with the requirementsof Euro V regulations on vehicles.
     The low melt temperature alloy of Cu65Zn20Ag15and modified phenolic resin wereutilized in the resin-metal bond. The Cu65Zn20Ag15was prealloyed in ball-milling forreducing its activity and active energy and refining grains. After that, the Cu65Zn20Ag15and modified phenolic resin were cured and hot pressed. When the hot-pressedtemperature is460°C, the transverse rupture strength of the sample reached the maximum(150.7MPa) with10wt.%modified phenolic resin. This strength was close to that ofCu65Zn20Ag15. The resin had good wettability with metal, which formed athree-dimensional network structure.
     CeO_2, La_2O_3, Y_2O_3, and V_2O_5were added in a Fe-based bond, and residual stressesbetween the diamonds and bonds decreased and the decrement increased in the same order.The weight losses of the bonds follow the order Y_2O_3> La_2O_3> V_2O_5> CeO_2, and thegaps between bonds and diamonds decreased in the same order. Therefore, the reliabilityof the simulation result had been validated.
引文
[1]鲍兴鹏.珩磨机床的应用与发展[J].世界制造技术与装备市场,2012,5:64-68.
    [2]李艳平,王双喜,孙家森,等.超硬珩磨油石的发展现状[J].工具技术,2010,5:12-16.
    [3]廉洁.珩磨技术的发展[J].现代车用动力,2004,2:53.
    [4]陈海玲.强力珩磨工艺的试验研究[D].济南:山东大学硕士学位论文,2006:3-10.
    [5]彭海,张敏,刘庆功.混合磨料珩磨油石的磨削性能研究[J].金刚石与磨料磨具工程,2006,4:50-54.
    [6]张然治.德国格林公司发动机激光珩磨技术[J].车用发动机,2008,2:59.
    [7]董克安.浅析CFTEC发动机缸体生产线及制造工艺[J].制造技术与机床,2011,1:153-156.
    [8]黄载强.卧式珩磨机在偶件生产中的应用[J].现代车用动力,1999,1:47-50.
    [9]程丹,贺绍府,李红杰,等.内燃机气缸套磨损原因分析及研究[J].内燃机与配件,2013,7:32-34.
    [10]张加中.气缸套平台网纹及加工控制[J].内燃机与配件,2011,8:12-13.
    [11]薛德喜,行心聪,党向军.气缸套内孔磨削加工技术[J].内燃机配件,2006,6:14-15.
    [12]杨卫民.缸套内孔珩磨网纹参数及其检测[J].内燃机与配件,2010,1:19-23.
    [13]行心聪,薛德喜,邹悟会.欧美“低排放”发动机气缸套网纹的特点[J].内燃机配件,2008,5:27-28.
    [14]贾秀杰,梁明柱,李剑峰.金刚石平台网纹珩磨工艺及加工参数分析[J].工具技术,2006,4:61-64.
    [15] Pawlus P, Cieslak T, Mathia T. The study of cylinder liner plateau honing process[J]. Journal ofMaterials Processing Technology,2009,209(20):6078-6086.
    [16] Goeldel B, Voisin J, Dumur D, et al. Flexible right sized honing technology for fast enginefinishing[J]. CIRP Annals-Manufacturing Technology,2013,62(1):327-330.
    [17]王德泉.砂轮特性与磨削加工[M].北京:中国标准出版社,2001:202-203.
    [18]杨茂奎,李雅卿,史兴宽,等.陶瓷结合剂CBN砂轮磨削GH4169高温合金的磨削加工性与磨削表面完整性[J].工具技术,1996,1:6-10.
    [19] Burkhard G, Rehsteiner F, Schumacher B. High efficiency abrasive tool for honing[J]. CIRPAnnals-Manufacturing Technology,2002,51(1):271-274.
    [20]曲贵龙.浅谈金刚石珩磨油石加工气缸套内孔平顶网纹[J].磨床与磨削,2000,4:64-66.
    [21]刘明耀,邵强,莫文萃,等.加工摩托车发动机连杆用CBN珩磨油石的研制[J].磨料磨具与磨削,1994,4:8-10.
    [22]陈锋,刘明耀,方莉俐.加工渗硼45#钢及离子氮化1Cr18Ni9Ti不锈钢工件用金刚石和CBN珩磨油石的研制[J].金刚石与磨料磨具工程,1996,5:15-18.
    [23]陈锋,刘明耀,方向前,等.摩托车发动机气缸及连杆珩磨加工用超硬材料珩磨油石的研制[J].金刚石与磨料磨具工程,1998,6:7-9.
    [24]舒智,许华松.新型金刚石珩磨油石的研制[J].探矿工程(岩土钻掘工程),2006,6:57-59.
    [25] Sabri L, Mansori M El. Process variability in honing of cylinder liner with vitrified bondeddiamond tools[J]. Surface and Coatings Technology,2009,204(6-7):1046-1050.
    [26]邹文俊,韩平,彭进,等.汽缸套平台网纹加工专用金刚石珩磨油石性能的研究[J].金刚石与磨料磨具工程,2010,1:29-33.
    [27] Sabri L, Mezghani S, Mansori M El. A study on the influence of bond material on honing enginecylinder bores with coated diamond stones[J]. Surface and Coatings Technology,2010,205(5):1515-1519.
    [28] Artini C, Muolo M L, Passerone A. Diamond-metal interfaces in cutting tools: a review[J]. Journalof Materials Science,2012,47(7):3252-3264.
    [29] Reeber R, Wang K. Thermal expansion, molar volume and specific heat of diamond from0to3000k[J]. Journal of Electronic Materials,1996,25(1):63-67.
    [30] Zou Q H, Zhao H M, Zhang D Y, et al. Thermophysics characteristics and densification of powdermetallurgy composites[J]. Powder Metallurgy,2006,49(2):183-188.
    [31] Webb S W. Diamond retention in sintered cobalt bonds for stone cutting and drilling[J]. Diamondand Related Materials,1999,8(11):2043-2052.
    [32]李菊丽,李长诗,郭健明.金属结合剂金刚石砂轮的研究进展[J].工具技术,2003,9:3-6.
    [33]王双喜,刘雪敬,耿彪,等.金属结合剂金刚石磨具的研究进展[J].金刚石与磨料磨具工程,2006,4:71-75.
    [34] Liao Y S, Luo S Y. Effects of matrix characteristics on diamond composites[J]. Journal ofMaterials Science,1993,28(5):1245-1251.
    [35] Spriano S, Chen Q, Settineri L, et al. Low content and free cobalt matrixes for diamond tools[J].Wear,2005,259(7-12):1190-1196.
    [36]姜荣超,陶先罗,郑日升.预合金粉末的发展、性能测试与应用[J].超硬材料工程,2009,2:1-7.
    [37] Weber G, Weiss C. Diamix-a family of bonds based on diabase-V21[J]. Industrial DiamondReview,2005,2:28–32.
    [38] Li W, Zhan J, Wang S, et al. Characterizations and mechanical properties of impregnated diamondsegment using Cu-Fe-Co metal matrix[J]. Rare Metals,2012,31(1):81-87.
    [39]毕晓勤,胡小丽,王洁.金刚石锯片铜基节块的组织与力学性能[J].金属热处理,2009,2:36-39.
    [40] Wu Y, Funkenbusch P. Microstructure and mechanical properties of commercial, bronze-bond,diamond-abrasive tool materials[J]. Journal of Materials Science,2010,45(1):251-258.
    [41]张哲,黄安钢,江永宁.金刚石锯片结合剂中Sn和Zn的重要作用[J].金刚石与磨料磨具工程,1996,6:6-7.
    [42]王艳辉,王明智,臧建兵.超硬材料工具制造(Ⅰ)[J].金刚石与磨料磨具工程,1998,5:8-12.
    [43] Barbosa A P, Bobrovnitchii G S, Skury A L D, et al. Structure, microstructure and mechanicalproperties of PM Fe-Cu-Co alloys[J]. Materials&Design,2010,31(1):522-526.
    [44] Hsieh Y Z, Lin S T. Diamond tool bits with iron alloys as the binding matrices[J]. MaterialsChemistry and Physics,2001,72(2):121-125.
    [45] Oliveira L J, Bobrovnitchii G S, Filgueira M. Processing and characterization of impregnateddiamond cutting tools using a ferrous metal matrix[J]. International Journal of Refractory Metalsand Hard Materials,2007,25(4):328-335.
    [46] Dai Q L, Luo C B, Xu X P, et al. Effects of rare earth and sintering temperature on the transverserupture strength of Fe-based diamond composites[J]. Journal of Materials Processing Technology,2002,129(1-3):427-430.
    [47]邓相荣,肖长江,栗正新.稀土对铁基结合剂金刚石节块性能的影响[J].超硬材料工程,2010,5:18-20.
    [48] Klimiankou M, Lindau R, M slang A. HRTEM Study of yttrium oxide particles in ODS steels forfusion reactor application[J]. Journal of Crystal Growth,2003,249(1-2):381-387.
    [49] Galy J, Dolle M, Hungria T, et al. A new way to make solid state chemistry: Spark plasmasynthesis of copper or silver vanadium oxide bronzes[J]. Solid State Sciences,2008,10(8):976-981.
    [50]肖娜,徐三魁,彭进,等.酚醛树脂的耐热改性研究进展[J].化工新型材料,2009,10:11-13.
    [51]徐湘涛.聚酰亚胺树脂结合剂金刚石砂轮的制造与应用简介[J].珠宝科技,2004,6:18-21.
    [52]徐翠平,徐三魁,彭进,等.超硬磨具用耐高温酚醛树脂结合剂的合成与表征[J].金刚石与磨料磨具工程,2012,3:74-77.
    [53]彭进,侯永改,张琳琪,等.超硬树脂磨具用聚酰亚胺树脂的性能研究[J].河南化工,2008,6:17-19.
    [54]张小福,卢安贤,张红霞.陶瓷结合剂与金刚石高温下的界面结合机理研究[J].金刚石与磨料磨具工程,2007,3:43-46.
    [55]陈锋,孙如芳,羊松灿,等.铜锡合金粉对树脂金刚石切割砂轮切割性能的影响及作用机理[J].金刚石与磨料磨具工程,2012,5:52-56.
    [56]陈锋,吴磊涛,王威.树脂结合剂超硬制品中铜锡合金粉的应用与分析[J].金刚石与磨料磨具工程,2011,5:48-50.
    [57]陈锋,吴磊涛,羊松灿.铜锡合金粉对树脂结合剂超硬制品力学性能影响的机理分析[J].金刚石与磨料磨具工程,2011,1:20-23.
    [58]王金龙.基于有限元的金属基复合材料热残余应力分析[J].煤矿机械,2007,8:75-76.
    [59]张博明,杨仲,孙新杨,等.含界面相复合材料热残余应力分析[J].固体力学学报,2010,2:142-148.
    [60]邹晋,陆德平,陆磊,等.颗粒增强铝基复合材料热残余应力分析[J].粉末冶金工业,2008,6:27-31.
    [61] Tanaka T, Isono Y. Influences of metal constituents to the characteristics and grinding abilities ofmetal bonded diamond wheel[J]. Journal of Materials Processing Technology,1997,63(1-3):175-180.
    [62] Hsieh Y Z, Chen J F, Lin S T. Pressureless sintering of metal-bonded diamond particle compositeblocks[J]. Journal of Materials Science,2000,35(21):5383-5387.
    [63] Zeren M, Karag z. Sintering of polycrystalline diamond cutting tools[J]. Materials&Design,2007,28(3):1055-1058.
    [64]王秦生.超硬材料制造[M].北京:中国标准出版社,2000:83-100.
    [65] Konstanty J. Powder metallurgy diamond tools[M]. Amsterdam: Elsevier,2005:76-82.
    [66]孙毓超.金刚石工具与金属学基础[M].北京:中国建材工业出版社,1999:159-170.
    [67] Venkateswarlu K, Ray A K, Gunjan M K, et al. Tribological wear behavior of diamond reinforcedcomposite coating[J]. Materials Science and Engineering: A,2006,418(1-2):357-363.
    [68]熊洁,汪礼敏,庞鹏沙,等. CuSn10青铜粉末热压烧结行为及性能的研究[J].粉末冶金工业,2008,3:18-21.
    [69]段隆臣,徐少林,李俊萍.青铜结合剂金刚石砂轮胎体性能评价的研究(1)——胎体金相分析[J].金刚石与磨料磨具工程,2011,5:51-55.
    [70] Tavakoli A, Liu R, Wu X J. Improved mechanical and tribological properties of tin–bronze journalbearing materials with newly developed tribaloy alloy additive[J]. Materials Science andEngineering: A,2008,489(1-2):389-402.
    [71] Li M, Du Z, Guo C, et al. Thermodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems[J].Journal of Alloys and Compounds,2009,477(1-2):104-117.
    [72] Fürtauer S, Li D, Cupid D, et al. The Cu-Sn phase diagram, Part I: New experimental results[J].Intermetallics,2013,34:142-147.
    [73] Li D, Franke P, Fürtauer S, et al. The Cu-Sn phase diagram part II: New thermodynamicassessment[J]. Intermetallics,2013,34:148-158.
    [74] Valloton J, Wagnière J D, Rappaz M. Competition of the primary and peritectic phases inhypoperitectic Cu-Sn alloys solidified at low speed in a diffusive regime[J]. Acta Materialia,2012,60(9):3840-3848.
    [75] Mohammed K S, Rahmat A, Ahmad K R. Sintering behavior and microstructure evolution ofmechanically alloyed W-bronze composite powders by two-step ball milling process[J]. Journal ofMaterials Science&Technology,2013,29(1):59-69.
    [76] Zhao Y, Bian X, Qin J, et al. Structural evolution in the solidification process of Cu-Sn alloys[J].Journal of Non-Crystalline Solids,2007,353(52-54):4845-4848.
    [77]段隆臣,徐少林,李俊萍.青铜结合剂金刚石砂轮胎体性能评价的研究(2)——评价方法[J].金刚石与磨料磨具工程,2011,6:38-42.
    [78] Banovic S W. Microstructural characterization and mechanical behavior of Cu-Sn frangiblebullets[J]. Materials Science and Engineering: A,2007,460-461:428-435.
    [79] Kirpo M. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT[J].Journal of Crystal Growth,2013,371:60-69.
    [80] Tchalla A, Belouettar S, Makradi A, et al. An ABAQUS toolbox for multiscale finite elementcomputation[J]. Composites Part B: Engineering,2013,52:323-333.
    [81] Li B, Amaral P M, Reis L, et al.3D-modelling of the local plastic deformation and residualstresses of PM diamond–metal matrix composites[J]. Computational Materials Science,2010,47(4):1023-1030.
    [82] Reis L, Amaral P M, Li B, et al. Evaluation of the residual stresses due to the sintering process ofdiamond–metal matrix hot-pressed tools[J]. Theoretical and Applied Fracture Mechanics,2008,49(2):226-231.
    [83] Dimkovski Z, Anderberg C, Rosén B G, et al. Quantification of the cold worked material inside thedeep honing grooves on cylinder liner surfaces and its effect on wear[J]. Wear,2009,267(12):2235-2242.
    [84] Dubey A K, Shan H S, Jain N K. Analysis of surface roughness and out-of-roundness in theelectro-chemical honing of internal cylinders[J]. The International Journal of AdvancedManufacturing Technology,2008,38(5-6):491-500.
    [85]梁全顺.柴油机气缸套内表面平台珩磨网纹技术的探讨[J].内燃机车,2001,11:18-21.
    [86] Dimkovski Z, Anderberg C, Ohlsson R, et al. Characterisation of worn cylinder liner surfaces bysegmentation of honing and wear scratches[J]. Wear,2011,271(3-4):548-552.
    [87]曾谊晖,柏春旺.金刚石砂轮磨损颗粒自砺条件的研究[J].机械制造,2004,8:54-56.
    [88]董洪峰,路阳,李文生,等.不同烧结工艺制备的Fe基孕镶金刚石磨头结构和摩擦磨损性能[J].粉末冶金材料科学与工程,2013,1:125-131.
    [89]黄辉,詹友基,徐西鹏.磨削花岗石过程中钎焊金刚石磨损特征分析[J].摩擦学学报,2007,3:279-283.
    [90]苏钰,郭桦,王进保,等.绳锯金刚石磨损形状及出刃高度实验研究[J].超硬材料工程,2009,1:9-15.
    [91]赫青山,苏宏华,冯晓杰.陶瓷磨削中新型多孔金属结合剂金刚石砂轮磨损特征研究[J].金刚石与磨料磨具工程,2009,3:16-19.
    [92]孙浩,邵浩明,吕智,等.钎焊金刚石微观形貌与磨粒磨损状态关系研究[J].超硬材料工程,2009,1:5-8.
    [93]杨伟光,李晨,吴振芳,等.金刚石工具磨损形式的观察与分析[J].粉末冶金技术,1995,1:14-20.
    [94] K stková M, Filip P, Weiss Z, et al. Influence of metals on the phenol-formaldehyde resindegradation in friction composites[J]. Polymer Degradation and Stability,2004,84(1):49-60.
    [95] Luo S Y. Effect of fillers of resin-bonded composites on diamond retention and wear behavior[J].Wear,1999,236(1-2):339-349.
    [96] Zuo K S, Xi S Q, Zhou J E. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Crsystem[J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1206-1214.
    [97] Andrade-Gamboa J, Gennari F C, Larochette P A, et al. Stability of Cu-Zn phases under lowenergy ball milling[J]. Materials Science and Engineering: A,2007,447(1-2):324-331.
    [98]胡淑宜,黄碧中.酚醛树脂浸渍木粉DTA/TG曲线解析[J].林产化学与工业,2000,1:47-51.
    [99] Rogachev A S, Shkodich N F, Vadchenko S G, et al. Influence of the high energy ball milling onstructure and reactivity of the Ni-Al powder mixture[J]. Journal of Alloys and Compounds,2013,577:600-605.
    [100] Son J H, Oh M W, Kim B S, et al. Effect of ball milling time on the thermoelectric properties ofp-type (Bi,Sb)2Te3[J]. Journal of Alloys and Compounds,2013,566:168-174.
    [101]肖长江,赵延军,尚秋元.烧结工艺对铁基结合剂金刚石节块力学性能的影响[J].硅酸盐通报,2011,5:1068-1071.
    [102]孙毓超,宋月清.金刚石工具制造理论与实践[M].郑州:郑州大学出版社,2005:10-13.
    [103] Xu Z R, Chawla K K, Mitra R, et al. Effect of particle size on the thermal expansion of TiCAlXD composites[J]. Scripta Metallurgica et Materialia,1994,31(11):1525-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700