用户名: 密码: 验证码:
德氏乳杆菌保加利亚亚种CAUH1酸耐受机制的蛋白组学研究及抗酸胁迫基因Ldb0677和pyk的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸奶对人体具有重要益生保健功能,但是后酸化问题一直以来制约着酸奶行业发展。研究表明控制发酵后期德氏乳杆菌保加利亚亚种(Lactobacillus delbrueckii subsp. bulgaricus)的生长代谢是解决后酸化的关键。本研究采用蛋白组学技术和转录水平分析相结合的研究手段,对L.bulgaricus CAUH1酸胁迫反应中的关键基因进行分离和功能鉴定,研究结果为全面揭示L.bulgaricus酸耐受机制奠定基础,为解决酸奶后酸化问题提供理论依据。研究内容及结果如下
     (1) L. bulgaricus CAUH1酸胁迫条件下差异蛋白的分离鉴定及转录水平分析。应用2-DE方法和MALDI-TOF/TOF-MS/MS质谱成功鉴定了26个差异蛋白。利用反转录-实时定量PCR方法分析CAUH1抗酸胁迫的差异蛋白在转录水平上变化,结果表明差异基因在蛋白水平上的变化同其在转录水平上的变化趋势一致。这说明L. bulgaricus CAUH1在应对酸胁迫时,一系列关键基因的表达主要是在转录水平上进行调控的。
     (2)生物信息学分析L. bulgaricus酸耐受反应机制。利用生物信息学分析差异基因的功能及参与的代谢途径,结果表明:在应对酸胁迫过程中,L. bulgaricus CAUH1提高了糖酵解途径相关酶的表达量,以加强碳水化合物分解代谢和能量供应;调整了丙酮酸代谢产物去向,使之进入脂肪酸合成途径,以提高细胞膜中饱和脂肪酸比例,增强膜的硬度和不透性;改变了延伸因子EF-Tu、EF-G和核糖体蛋白RpsA的表达量,来降低胞内蛋白的合成速率,提高蛋白合成时翻译的精确性。
     (3)抗酸胁迫差异基因的异源超量表达及功能验证。利用乳酸乳球菌NICE表达系统对6个抗酸胁迫差异基因进行超量表达,结果表明pyk的超量表达能够提高宿主菌在酸致死条件下的存活率45倍,Ldb0677的超量表达能够提高宿主菌的存活率200倍。通过SDS-PAGE检测到Pyk和Ldb0677蛋白的成功表达,进一步证实这两个蛋白在菌体酸耐受过程中的作用。另外,Ldb0677的超量表达还能够提高宿主菌对于胆盐的抗性,而Pyk的超量表达不仅提高了宿主菌对于胆盐胁迫的抗性,还提高了菌体对冷胁迫的抗性。
     (4)抗酸胁迫反应中新转录因子Ldb0677的功能研究。利用细菌单杂交系统确定了假定蛋白Ldb0677的DNA结合位点的保守基序SSTAGACR,通过DNA结合位点的序列特征预测出22个由Ldb0677调控的靶基因。采用乳酸乳球菌NICE系统表达带有组氨酸标签的Ldb0677蛋白,并通过镍柱亲和层析得到纯化的Ldb0677。利用EMSA实验体外验证了Ldb0677蛋白同靶基因LBU_1764和Ldb0486的特异性结合。结果表明,Ldb0677作为一个新的转录因子参与L. bulgaricus的酸耐受反应。
     (5)调控抗酸胁迫基因pyk表达的转录因子的分离鉴定。从L. bulgaricus CAUH1中克隆了65个转录因子,基于pB1H2w2-Prd载体构建了转录因子文库并通过Western blot确定了文库中转录因子同Omega亚基的融合表达。采用缺失序列法构建了无自激活现象的“诱饵”载体,并利用“诱饵”载体通过细菌单杂交实验从转录因子文库中筛选出调控pyk基因的转录因子——分解代谢物控制蛋白CcpA。生物信息学分析表明CcpA的结合位点位于pfk-pyk操纵子的启动子-35区上游,其序列为TGTAAGCCCTAACA。
Yoghurt has been considered beneficial to the human health, but post-acidification has been a serious problem which restricts the development of yogurt industry. Previous studies indicate that controlling the growth of Lactobacilus delbrueckii subsp. bulgaricus is the key to solve the post-acidification. In this study, proteomics approach complemented by transcriptional analysis was employed to separate and identify the proteins which were differentially expressed in response to acid stress, and further characterize their function during acid adaptation. This study will get more useful information for comprehensively understanding the mechanism of acid tolerance response in L. bulgaricus, meanwhile the results will also provide new insights and ideas for resolving the post-acidification problem in the yoghurt production and storage. The research contents and results in this dissertation were as followed.
     (1) Identification and transcriptional analysis of the proteins which were differentially expressed in L. bulgaricus CAUH1under acid stress. Twenty seven proteins were separated by2-DE approach and identified by MALDI-TOF/TOF-MS/MS. The changes of these proteins in L. bulgaricus CAUH1at transcription level were detected using real-time reverse transcription PCR. These results also demonstrated that all the changes in protein levels were accompanied by concordant changes in the expression of corresponding mRNAs, which further revealed that the expression of some key genes were regulated mainly at transcriptional level in L. bulgaricus under acid stress condition.
     (2) Bioinformatics analysis of the mechanism of acid tolerance response in L. bulgaricus. The metabolic pathways participated by the differently expressing genes and their functions were studied using bioinformatics analysis, revealing that when grown under acid stress condition, L. bulgaricus CAUH1enhanced the expression of glycolysis-associated enzymes to improve the carbohydrate catabolism and energy supply; rerouted the pyruvate metabolism to fatty acid biosynthesis to increase the ratio of saturated fatty acids in the cell membrane and enhance the rigidity and impermeability of the membrane; modulated the abundance of elongation factors (EF-Tu, EF-G) and ribosomal protein S1(RpsA) to reduce the rate of protein synthesis and enhance the translational accuracy.
     (3) Functional identification of acid stress-related genes by heterologous over-expression. Heterologous over-expression of six acid stress-related genes were carried out using the L. lactis NICE system. The results indicated that Pyk-overproducing strain showed45-fold increase in survival under acid stress condition and Ldb0677-overproducing strain showed200-fold increase in survival. SDS-PAGE indicated that Pyk and Ldb0677were successfully expressed, thus these two protein were considered to play important roles in acid tolerance response. In addtion, over-expression of Ldb0677also enhanced the bile resistance of the host strain. Over-expression of Pyk enhanced the bile and cold resistance of the host strain.
     (4) Characterization of a novel acid stress-related transcription factor Ldb0677. The DNA-binding motif (SSTAGACR) of Ldb0677was determined using bacterial one-hybrid. Twenty two target genes were predicted according to the DNA-binding sequence feature. The Ldb0677with a His-tag was expressed using L. lactis NICE system, and purified through Nickel-affinity chromatography column. And the DNA-binding specificity of Ldb0677to target genes LBU_1764and Ldb0486were further assessed by electrophoretic mobility shift assay (EMSA), respectively. These results indicated that Ldb0677was a novel transcription factor and might function as a major regulator in acid stress response in L. bulgaricus.
     (5) Identification of the transcription factor which regulates the acid stress-related gene pyk. Sixty five transcription factor genes were amplified by PCR from the genomic DNA of L. bulgaricus CAUH1and inserted into pB1H2w2to generate the L. bulgaricus transcription factor library. Western blot results confirmed that each TF had expressed as a carboxy-terminal fusion to the omega-subunit. The "Bait" vectors with no self-activation were constructed by deletion analysis method. The transcription factor which regulated the expression of pyk gene was identified to be the catabolite control protein A (CcpA) using the transcription factor library complemented by bacterial one-hybrid assay. Moreover, the binding site of CcpA was predicted to be upstream the-35region, and the sequence was TGTAAGCCCTAACA.
引文
1. Abdullah Al, M., Sugimoto, S., Higashi, C., et al. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microbiol.2010,76:4277-4285.
    2. Abranches J, Nascimento M M, Zeng L, et al. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol.2008,190:2340-2349.
    3. Arikado, E., H. Ishihara, T. Ehara, et al. Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem.1999,259:262-268.
    4. Bayoumi, S. Nisin and yoghurt manufacture. Chem Microbiol Technol Lebensm.1991,13:65-69.
    5. B(?)hle, L. A., Faergestad, E. M., Veiseth-Kent, E., et al. Identification of proteins related to the stress response in Enterococcus faecalis V583 caused by bovine bile. Proteome Sci.2010,8:37.
    6. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248-254.
    7. Branny, P., De La Torre, F., and Garel, J.R. The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. J Bacteriol.1996,178: 4727-4730.
    8. Brenowitz, M., Senear, D.F., and Kingston, R.E. DNase I Footprint Analysis of Protein-DNA Binding. Curr protoc mol biol.1989:12.14.11-12.14.16.
    9. Broadbent, J.R., Larsen, R.L., Deibel, V., et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol.2010,192:2445-2458.
    10. Buck, M.J., and Lieb, J.D. ChlP-chip:considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics.2004,83:349-360.
    11. Budin-Verneuil, A., Pichereau, V, Auffray, Y., et al. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics.2005,5:4794-4807.
    12. Burns, P., Sanchez, B., Vinderola, G., et al. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int J Food Microbiol.2010,142:132-141.
    13. Caldas, T.D., Laalami, S., and Richarme, G. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem.2000,275:855-860.
    14. Caldas, T.D., Yaagoubi, A.E., and Richarme, G. Chaperone properties of bacterial elongation factor EF-Tu. JBiol Chem.1998,273:11478-11482.
    15. Candiano, G., Bruschi, M., Musante, L., et al. Blue silver:A very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis.2004,25:1327-1333.
    16. Castaldo C, Siciliano R A, Muscariello L, et al. CcpA affects expression of the groESL and dnaK operons in Lactobacillus plantarum. Microb cell fact.2006,5:35.
    17. Champomier-Verges, M. C., Maguin, E., Mistou, M. Y., et al. Lactic acid bacteria and proteomics: current knowledge and perspectives. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences.2002,771:329-342.
    18. Cotter, P.D., and Hill, C. Surviving the acid test:responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev.2003,67:429-453.
    19. Cox, M. M., M. F. Goodman, K. N. Kreuzer, et al. The importance of repairing stalled replication forks. Nature.2000,404:37-41.
    20. Curran, T. M., J. Lieou, R. E. Marquis. Arginine deiminase system and acid adaptation of oral streptococci. Appl Environ Microbiol.1995,61:4494-4496.
    21. De Angelis, M., and Gobbetti, M. Environmental stress responses in Lactobacillus:a review. Proteomics 2004,4:106-122.
    22. De Angelis, M., L. Mariotti, J. Rossi, et al. Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol.2002,68:6193-6201.
    23. de Ruyter, P.G., Kuipers, O.P., and de Vos, W.M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol.1996,62: 3662-3667.
    24. Donkor, O.N., Henriksson, A., Vasiljevic, T., et al. Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int Dairy J.2006,16:1181-1189.
    25. Fernandez, A., Ogawa, J., Penaud, S., et al. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus. Proteomics.2008,8:3154-3163.
    26. Ferreira, A., Sue, D., O'Byrne, C.P., et al. Role of Listeria monocytogenes σB in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiology.2003,69: 2692-2698.
    27. Fordyce, P.M., Gerber, D., Tran, D., et al. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat biotechnol.2010,28: 970-975.
    28. Foster, J.W., and Hall, H.K. Adaptive acidification tolerance response of Salmonella typhimurium. JBacteriol.1990,172:771-778.
    29. Frees, D., Vogensen, F.K., and Ingmer, H. Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol.2003,87:293-300.
    30. Fujita, Y. Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem.2009,73:245-259.
    31. Fung, W. Y., Lye, H. S., Lim, T. J., et al. In:M. T. Liong (Ed.), Microbiology monographs 21:probiotics—biology,genetics and health aspects. Heidelberg:Springer.2011, pp.139-165.
    32. Galperin, M.Y. Bacterial signal transduction network in a genomic perspective. Environ Microbiol. 2004,6:552-567.
    33. Galperin, M.Y., and Koonin, E.V.'Conserved hypothetical' proteins:prioritization of targets for experimental study. Nucleic Acids Res.2004,32:5452-5463.
    34. Gill H S, and Guarner F. Probiotics and human health:a clinical perspective. Postgrad Med J.2004, 80:516-626
    35. Gosset, G., Zhang, Z., Nayyar, S., et al. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. JBacteriol.2004,186:3516-3524.
    36. Grundy, F.J., Waters, D.A., Allen, S.H., et al. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. JBacteriol.1993,175:7348-7355.
    37. Guo, M., Feng, H., Zhang, J., et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome res.2009,19:1301-1308.
    38. Hamon, E., Horvatovich, P., Bisch, M., et al. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. JProteome Res.2012,11:109-118.
    39. Hartke, A., S. Bouche, J. C. Giard, et al. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol.1996,33:194-199.
    40. Hellman, L.M., and Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Natprotoc.2007,2:1849-1861.
    41. Hutkins, R.W., and Nannen, N.L. pH Homeostasis in Lactic Acid Bacteria. J Dairy Sci.1993,76: 2354-2365.
    42. Joung, J.K., Ramm, E.I., and Pabo, C.O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci.2000,97:7382-7387.
    43. Kim, S.Y., Chung, H., and Thomas, T.L. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J.1997,11:1237-1251.
    44. Kim, W.S., Perl, L., Park, J.H., et al. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol.2001,43:346-350.
    45. Kiss, E., Huguet, T., Poinsot, V., et al. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant-Microbe Interact.2004,17:235-244.
    46. Koponen, J., Laakso, K., Koskenniemi, K., et al. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteomics.2012,75:1357-1374.
    47. Lee, K., Lee, H.-G., Pi, K., et al. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics.2008,8:1624-1630.
    48. Len, A.C.L., Harry, D.W.S., and Jacques, N.A. Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology.2004,150:1353-1366.
    49. Leroy F, and De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech.2004,15:67-78.
    50. Liang, H., Li, L., Dong, Z., et al. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol.2008, 190:6217-6227.
    51. Lim, E.M., Ehrlich, S.D., and Maguin, E. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis.2000,21:2557-2561.
    52. Luesink, E.J., Van Herpen, R.E.M.A., Grossiord, B.P., et al. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol.1998,30:789-798.
    53. Makarova, K., Mironov, A., and Gelfand, M. Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol.2001,2:1-9.
    54. Marinez-Antonio, A., and Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol.2003,6:482-489.
    55. Meng, X. and Wolfe, S.A. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc.2006,1:30-45.
    56. Meng, X., Brodsky, M.H., and Wolfe, S.A. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat biotechnol.2005,23:988-994.
    57. Mercenier, A., Pavan, S., and Pot, B. Probiotics as biotherapeutic agents:present knowledge and future prospects. Curr Pharm Des.2003,9:175-191.
    58. Mols, M., van Kranenburg, R., Tempelaars, M.H., et al. Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks, Int J Food Microbiol.2010,137:13-21.
    59. Novichkov, P.S., Laikova, O.N., Novichkova, E.S., et al. RegPrecise:a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res. 2010,38:D111-D118.
    60. Noyes, M.B., Meng, X., Wakabayashi, A., et al. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res.2008,36: 2547-2560.
    61. Obrist, M., and Narberhaus, F. Identification of a turnover element in region 2.1 of Escherichia coli o32 by a bacterial one-hybrid approach. JBacteriol.2005,87:3807-3813.
    62.Onal, A. A review:Current analytical methods for the determination of biogenic amines in foods. Food Chemistry.2007,103:1475-1486.
    63. Ongol, M.P., Sawatari, Y, Ebina, Y., et al. Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage. Int J Food Microbiol.2007,116:358-366.
    64. Penaud, S., Fernandez, A., Boudebbouze, S., et al. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Appl Environ Microbiol. 2006,72:7445-7454.
    65. Pfennig, P.P., and Flower, A.F. BipA is required for growth Escherichia coli K12 at low 。temperature. Mol Genet Genomics.2001,266:313-317.
    66. Poolman, B., Driessen, A.J., and Konings, W.N. Regulation of solute transport in streptococci by external and internal pH values. Microbiol Rev.1987,51:498-508.
    67. Ramos, A., Neves, A.R., Ventura, R., et al. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology.2004,150:1103-1111.
    68. Reese, M.G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem.2001,26:51-56.
    69. Renna, M.C., Najimudin, N., Winik, L.R., et al. Regulation of the Bacillus subtilis alsS, alsD and alsR genes involved in the post-exponential-phase production of acetoin. J Bacteriol.1993,175: 3863-3875.
    70. Reva, O.N., Weinel, C., Weinel, M., et al. Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol.2006,188:4079-4092.
    71. Rodionov, D.A. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev.2007,107:3467-3497.
    72. Rodnina, M.V., Savelsbergh, A., Katunin, V.I., et al. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature.1997,385:37-41.
    73. Roulet, E., Busso, S., Camargo, A. A., et al. High-throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites. Nat biotechnol.2002,20:831-835.
    74. Ruiz, L., Zomer, A., O'Connell-Motherway, M., et al. Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics. Applied and Environmental Microbiology.2012,78:1123-1131.
    75. Sanchez, B., Champomier-Verges, M.-C., Anglade, P., et al. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol.2005,187:5799-5808.
    76. Sanders M E. Probiotics:considerations for human health. Nutr Rev.2003,61:91-99
    77. Sanders, J. W., K. Leenhouts, J. Burghoom, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol.1998,27:299-310.
    78. Sauer, U., and Eikmanns, B.J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev.2005,29:765-794.
    79. Schick, J., Weber, B., Klein, J.R., et al. PepRl, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology.1999,145:3147-3154.
    80. Schmittgen, T.D., and Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat Protoc.2008,3:1101-1108.
    81. Shin, D.H., Yokota, H., Kim, R., et al. Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc Nat Acad Sci.2002,99:7980-7985.
    82. Smith, E.A., Erickson, M.G., Ulijasz, A.T., Weisblum, B., and Corn, R.M. Surface plasmon resonance imaging of transcription factor proteins:interactions of bacterial response regulators with DNA arrays on gold films. Langmuir.2003,19:1486-1492.
    83. Solovyev, V.V. and Salamov, A.A. Automatic annotation of microbial genomes and metagenomic sequences. In metagenomics and its applications in agriculture, biomedicine and environmental studies (Ed. R.W. Li), Nova Science Publishers,2011, p.61-78.
    84. Suokko, A., Poutanen, M., Savijoki, K., et al. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics.2008,8: 1029-1041.
    85. Sybesma, W., Hugenholtz, J., De Vos, W.M., et al. Safe use of genetically modified lactic acid bacteria in food:Bridging the gap between consumers, green groups, and industry. Electron J Biotechn.2006,9:0-0.
    86. Taranto, M.P., Fernandez Murga, M.L., Lorca, G., et al. Bile salts and cholesterol induce changes in the lipid cell membrane ofLactobacillus reuteri. J Appl Microbiol.2003,95:86-91.
    87. Torriani, S., Gardini, F., Guerzoni, M.E., et al. Use of response surface methodology to evaluate some variables affecting the growth and acidification characteristics of yoghurt cultures. Int Dairy J.1996,6:625-636.
    88. Tuohy K M, Probert H M, Smejkal C W, et al. Using probiotics and prebiotics to improve gut health. Drug Discov Today.2003,8:692-700
    89. Valentini, G., Chiarelli, L., Fortin, R., et al. The allosteric regulation of pyruvate kinase:A site-directed mutagenesis study. JBiol Chem.2000,75:18145-18152.
    90. van de Guchte, M., Penaud, S., Grimaldi, C., et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci. 2006,103:9274-9279.
    91. van de Guchte, M., Serror, P., Chervaux, C., et al. Stress responses in lactic acid bacteria. Antonie Leeuwenhoek.2002,82:187-216.
    92. van der Veen, S., and Abee, T. Bacterial SOS response:a food safety perspective. Curr Opin Biotech.2011,22:136-142.
    93. VanBogelen, R.A., and Neidhardt, F.C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci.1990,87:5589-5593.
    94. Venancio, T. M., and Aravind, L. Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. JBiol.2009,8(3),29.
    95. Viana, R., Perez-Martinez, G., Deutscher, J., et al. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA. Arch Microbiol.2005,183:385-393.
    96. Wang, Y., Delettre, J., Guillot, A., et al. Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology.2005,50:294-307.
    97. Wehmeier, L., Brockmann-Gretza, O., Pisabarro, A., et al. A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology.2001,147:691-700.
    98. Whitehead, K., Versalovic, J., Roos, S., et al. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol.2008,74: 1812-1819.
    99. Wilson, D., Charoensawan, V., Kummerfeld, S.K., et al. DBD--taxonomically broad transcription factor predictions:new content and functionality. Nucleic Acids Res.2008,36:D88-D92.
    100. Wilson, D.N., and Nierhaus, K.H. Ribosomal proteins in the spotlight. Crit Rev Biochem Mol Biol. 2005,40:243-267.
    101. Wu, R., Zhang, W., Sun, T., et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int JFood Microbiol.2011,147:181-187.
    102. Yasbin, R. E., D. Cheo, and D. Bol. DNA repair systems. In R. E. Yasbin, D. Cheo, and D. Bol (ed.), Bacillus subtilis and other gram-positive bacteria:biochemistry, physiology, and molecular genetics. (Am. Soc. Microbiol., Washington, DC),1993, pp.529-537.
    103. Zhang, Y., Lin, J., and Gao, Y. In silico identification of a multi-functional regulatory protein involved in Holliday junction resolution in bacteria. BMC Syst Biol.2012, C7-S20 6:1-10.
    104. Zhang, Y.-M., and Rock, C.O. Membrane lipid homeostasis in bacteria. Nat Rev Microiol.2008,6: 222-233.
    105. Zhu, L.J., Christensen, R.G., Kazemian, M., et al. FlyFactorSurvey:a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res.2011,39:D111-D117.
    106. Zhu, T., Tian, J., Zhang, S., et al. Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PloS one.2011,6:e17367.
    107. Zhu Y Y, Machleder E M, Chenchik A, et al. Reverse transcriptase template switching:A SMARTTM approach for full-length cDNA library construction. Biotechniques.2001,30:892-897.
    108. Zoraghi, R., See, R.H., Gong, H., et al. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry. 2010,49:7733-7747.
    109. Zotta, T., Ricciardi, A., Guidone, A., et al. Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. Int J Food Microbiol.2012,155:51-59.
    110.鲍盈盈,周斌,周桂飞.Nisin在凝固型酸奶后酸化控制中的应用.食品工业科学.2009,30(2):259-264.
    111.曹维强,王静,张英春,等.壳寡糖对酸乳后酸化抑制效果的研究.乳品研究.2005,31(8):115-118.
    112.陈志刚,巴吐尔,罗红霞,等.硫酸二乙酯诱变选育弱后酸化保加利亚乳杆菌.食品研究与开发2009,30(6):52-54.
    113.郭本恒.益生菌.北京:化学工业出版社,2004:61-134
    114.郭清泉,张兰威,王艳.酸奶发酵机理及后发酵控制措施.中国乳品工业.2001,29(2):17-19.
    115.郭兴华.益生乳酸细菌-分子生物学及生物技术.北京:科学出版社,2008:25-52
    116.侯爱香,周传云.乳酸菌胞外多糖的研究进展.现代食品科技.2006,22(2):282-284.
    117.李学红,苗笑亮,王辉.果胶酶解物延缓酸乳后酸化作用的研究.食品与发酵工业.2003,29(11):105-106.
    118.李莹,周剑忠,黄开红.60Co-γ射线诱变选育弱后酸化乳酸菌株.江西农业学报.2009,21(8):128-130.
    119.林炜,张京声,张世湘,等.干酪乳杆菌05-21在酸、胆盐和渗透压胁迫条件下的同源抗性和交叉抗性反应研究.中国乳品工业.2008,36(11):4-6.
    120.潘露,胡晓清,王小元.食品中乳酸菌危害因子的研究进展.食品工业科技.2011,6:447-451.
    121.徐成勇,吴昊,郑思聪,等.弱后酸化酸奶发酵剂的筛选.中国乳品工业.2007,35(3):12-16.
    122.徐成勇,吴昊,郑思聪,等.酸乳后酸化影响因子的初步研究.食品与发酵工业.2006,32(12):10-13.
    123.张刚.乳酸细菌-基础、技术与应用.北京:化学工业出版社,2007:2-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700