用户名: 密码: 验证码:
四种三唑类手性农药的环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三唑类农药是农业生产中应用最广泛的一类杀菌剂,同时一部分三唑类杀菌剂还具有一定的植物生长调节作用。几乎所有的三唑类农药都具有手性中心,具有两个或者多个对映异构体。研究表明手性三唑类杀菌剂对映体的毒性和活性存在巨大的差异,但是大部分该类手性农药目前仍以外消旋体形式生产和销售,这有可能对环境产生较大的负担,并且对人类的健康造成一定的损害。
     本文利用高效液相色谱手性固定相方法拆分制备了多效唑,烯唑醇,腈菌唑,戊唑醇四种三唑类农药光学纯异构体,结合旋光检测仪对其对映体旋光性进行分析,确定了其绝对构型。
     首先测定了四种手性三唑类农药对于对大型溞24h和48h的急性毒性。结果表明对映体毒性之间存在很大差异。多效唑的毒性大小顺序为:2S,3S-多效唑>Rac-多效唑>2R,3R-多效唑,其48h LC50分别为12.80,16.70,20.50μg/mL。对于烯唑醇,其R-体,外消旋体和S-体的48h LC50分别为2.11,2.22,2.82μg/mL。R-烯唑醇的毒性是S-烯唑醇的1.33倍,外消旋体介于两者之间。腈菌唑及其对映体对大型溞的急性毒性大小为:(+)-体>R外消旋体>(-)-体,并且随着暴露时间的增加,其毒性也逐渐增大,(+)-腈菌唑的毒性是(-)-腈菌唑的1.42-1.85倍。R-戊唑醇的毒性略微大于S-戊唑醇,其48h LC50分别为R-体3.00μg/mL,外消旋体3.54,S-体3.57μg/mL,对映体之间的差异并不明显。
     其次考察了四种手性三唑类农药对芒果炭疽,苹果炭疽,番茄早疫,黄瓜炭疽,小麦赤霉,蔬菜菌核和番茄灰霉等病原菌的杀菌活性。结果表明:R-多效唑的杀菌活性远远高于S-体,其外消旋体,R-体和S-体对番茄早疫96h EC50分别为0.87,0.51和9473.58μg/mL,两对映体活性差异高达18575倍;R-烯唑醇和R-戊唑醇杀菌活性也优于对应的外消旋体和S-体;腈菌唑生物活性大小为(+)-腈菌唑>外消旋体>(-)-腈菌唑。除了杀菌活性不同,三唑类农药对植物的生长调节作用也具有一定的选择性。通过考察多效唑和烯唑醇对映体对油菜和玉米幼苗生长的作用发现:多效唑和烯唑醇能够显著抑制植物茎的生长;低浓度的对映体能促进植物根的生长,随着浓度增加,其抑制作用增强。对于不用的对映体,其生长调节存在明显的选择性,S-体是主要活性体,R-体作用不明显。进一步测定了多效唑和烯唑醇处理后的玉米幼苗中抗氧化酶活性的脂质过氧化物(MDA)的含量,结果表明其对映体对植物体内抗氧化酶活性的影响具有选择性,并且都能提高超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT)的活性,同时能够显著降低MDA的含量,这在一定程度上提高了植物的抗逆性,延缓了植物的衰老。
     最后考察了三唑类手性农药在环境和动物体内的选择性降解代谢行为。结果表明多效唑两对映体在番茄和油菜体内的的降解存在着明显的立体选择性,R-多效唑降解速率快于S-体。同时发现戊唑醇对映体在苹果中降解存在立体选择性,R-戊唑醇的降解速率快于S-戊唑醇。在供试土壤中,戊唑醇两对映体并无明显的选择性差异。在家兔耳静脉外消旋体给药后,发现腈菌唑对映体在家兔体内的药代动力学是立体选择性的,其杀菌活性体(+)-腈菌唑比(-)-腈菌唑降解快;两对映体在家兔各组织中的降解也存在差异。
Triazole pesticides in agricultural production is the most widely used class of fungicides and plant growth regulators. Most of the triazole pesticides are chiral characteristics, studies have shown that the activity and toxicity of chiral triazole fungicide enantiomers are often very different, but the vast majority of such chiral pesticides are still sold in racemic form and may cause a lot of human and environmental safety risks.
     In this study, chiral separation and prepare of paclobutrazol, diniconazole, myclobutanil and tebuconazole enantiomers was achieved on a chiral HPLC column, and their absolute configurations were confirmed by optical rotatory dispersion (ORD) to determine absolute configuration.
     Acute toxicity of four chiral triazole pesticides to Daphnia magna were determined. The results showed great differences between enantiomers. For the two enantiomers of paclobutrazol:2S,3S> Raceme>2R,3R, where the size of S-isomer is1.4.60more toxic than R-isomer. For diniconazole R-isomer is1.33-2.23times toxic than S-isomer and racema. The toxicit myclobutanil is (+)-isomer> Raceme>(-)-isomer and with increasing exposure time. R-tebuconazole toxic is slightly larger than the S-form, but the difference was not significant.
     The bactericidal activity of four chiral triazole pesticides against several pathogens were investigated. The results showed:R-paclobutrazol fungicidal is much more activity than the S-form, the difference up to18575times; R-diniconazole and R-tebuconazole were more activity than racemic and S-isomer; myclobutanil bioactive is:(+)-isomer> racemic>(-)-isomer.
     Apart from the different bactericidal activity, triazole pesticides for plant growth regulating effects are also steroselective. Our study showed that paclobutrazol and diniconazole can significantly inhibit the growth of plant stems; low concentration of enantiomers can promote the growth of plant roots, with the concentration increases, the inhibition enhanced. For their enantiomers, S-enantiomers were more effective than R-enantiomers. The effects of paclobutrazol and diniconazole to antioxidant enzyme activity and lipid peroxides were determined and found racemate and both enantiomers all can improve SOD, POD and CAT activity, decreased MDA content, which enhaced the resistance of plants.
     The environmental behavior of chiral triazole pesticides were investigated. Results showed that the degradation of paclobutrazol in tomato and rape were steroselectivty:R-form degradated faster than S-isomer. Tebuconazole enantiomer also showed the enatioslectivty behavior:the degradation of R-tebuconazole is faster than S-tebuconazole; in the soil tested, the two enantiomers showed no significant differences in degradation. The metabolism of myclobutanil enantiomers in rabbits was investigated:results indicated the high bioactive (+)-enantiomer being preferentially metabolized and eliminated in plasma; the drgadation rates in diffirent tissues were also stereoselectivity.
引文
[1]玉聚,国参.除草剂混用原理与应用技术:中国农业科技出版社;1999.
    [2]刘志俊,谢德明,刘治波.国外农药发展现状及未来展望.农药科学与管理,2000,21(2):33-37.
    [3]Pimentel D, Acquay H, Biltonen M and et al. Assessment of environmental and economic impacts of pesticide use. The Pesticide Question:Springer; 1993. p 47-84.
    [4]王慧芳,张颖,孙晓红.未来农药的发展趋势.天津化工,2005,19(4):13-16.
    [5]章维华,杨春龙,王鸣华,等.不对称催化反应在手性农药不对称合成中的一些应用.有机化学,2003,23(8):741-749.
    [6]Eliel EL, Wilen SH. Stereochemistry of organic compounds:John Wiley & Sons; 2008.
    [7]Triggle DJ. Stereoselectivity of drug action. Drug Discovery Today,1997,2(4):138-147.
    [8]于平.手性化合物研究进展.化工进展,2002,21(9):635-638.
    [9]孙万儒.手性化合物的生物合成与转化.化工科技市场,2003,26(6):5-7.
    [10]郑卓.手性农药与手性技术(一).精细与专用化学品,2001,9(23):3-6.
    [11]李旭坤,刘凤玲.手性农药的合成技术.山东化工,2001,30(4):22-26.
    [12]Ulrich EM, Morrison CN, Goldsmith MR and et al. Chiral pesticides:identification, description, and environmental implications. Rev Environ Contam Toxicol,2012,217:1-74.
    [13]唐梦龄,王丹,傅柳松,等.手性农药毒性机制的对映体选择性.农药学学报,2011,13(4):335-340.
    [14]Armstrong DW, Reid Iii G, Hilton M and et al. Relevance of enantiomeric separations in environmental science. Environmental pollution,1993,79(1):51-58.
    [15]Lewis DL, Garrison AW, Wommack KE and et al. Influence of environmental changes on degradation of chiral pollutants in soils. Nature,1999,401 (6756):898-901.
    [16]Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. Journal of Chromatography A,2001,906(1):379-397.
    [17]Lurain AE, Walsh PJ. A catalytic asymmetric method for the synthesis of y-unsaturated β-amino acid derivatives. Journal of the American Chemical Society,2003,125(35):10677-10683.
    [18]Polec I, Cieslak L, Sledzinski B and et al. Simple syntheses of malathion and malaoxon enantiomers, and isomalathion diastereoisomers:toxicity-configuration relationship. Pesticide science, 1998,53(2):165-171.
    [19]原方圆,邵红兵,张昌军.不对称合成在光学活性药物合成中的应用.天津化工,2007,21(1):14-16.
    [20]Bystrom S, Hogberg H-E, Norin T. Chiral synthesis of (2s,3s,7s)-3,7-dimethylpentadecan-2-yl acetate and propionate, potential sex pheromone components of the pine saw-fly neodiprion sertifer (geoff.). Tetrahedron,1981,37(12):2249-2254.
    [21]Aratani T, Yoneyoshi Y, Nagase T. Asymmetric synthesis of chrysanthemic acid. An application of copper carbenoid reaction. Tetrahedron Letters,1977,18(30):2599-2602.
    [22]Lowenthal RE, Masamune S. Asymmetric copper-catalyzed cyclopropanation of trisubstituted and unsymmetrical cis-1,2-disubstituted olefins:modified bis-oxazoline ligands. Tetrahedron Letters, 1991,32(50):7373-7376.
    [23]Koeller KM, Wong C-H. Enzymes for chemical synthesis. Nature,2001,409(6817):232-240.
    [24]褚志义.生物合成药物学:上海医科大学出版社;1991.
    [25]Dingler C, Ladner W, Krei GA and et al. Preparation of (R)-2-(4-hydroxyphenoxy) propionic acid by biotransformation. Pesticide science,1996,46(1):33-35.
    [26]杜刚,梁勇.制备手性化合物的研究进展.甘肃科技,2008,23(12):67-68.
    [27]车超,覃兆海.手性农药合成研究进展.化学通报,2002,65(6).
    [28]梁舒萍.手性化合物的生物活性与制取方法.佛山科学技术学院学报:自然科学版,1998,16(4):59-64.
    [29]Nishizawa M, Shimizu M, Ohkawa H and et al. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase:cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Applied and environmental microbiology,1995,61(9):3208-3215.
    [30]Fukao M, Suzukamo G. Method for racemization of chrysanthemic acid or its ester. Google Patents; 1987.
    [31]Zhang Y, Wu D-R, Wang-Iverson DB and et al. Enantioselective chromatography in drug discovery. Drug Discovery Today,2005,10(8):571-577.
    [32]Dalgliesh C. The optical resolution of aromatic amino-acids on paper chromatograms. Journal of the Chemical Society (Resumed),1952:3940-3942.
    [33]Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A,2001,906(l):105-125.
    [34]Ward TJ, Ward KD. Chiral separations:a review of current topics and trends. Analytical chemistry, 2011,84(2):626-635.
    [35]向小莉,袁黎明.手性化合物.化学教育,2003,24(5):3-6.
    [36]Perez-Fernandez V, Garcia MA, Marina ML. Chiral separation of agricultural fungicides. Journal of Chromatography A,2011,1218(38):6561-6582.
    [37]Muller TA, Kohler HP. Chirality of pollutants-effects on metabolism and fate. Appl Microbiol Biotechnol,2004,64(3):300-16.
    [38]Nillos MG, Gan J, Schlenk D. Chirality of organophosphorus pesticides:analysis and toxicity. Journal of Chromatography B,2010,878(17):1277-1284.
    [39]Zhou S, Lin K, Li L and et al. Separation and toxicity of salithion enantiomers. Chirality, 2009,21(10):922-928.
    [40]杨光富,袁继伟,刘钊杰.合成农用化学品的手性—生物活性及安全性的思考.世界农药,1999,2:000.
    [41]Leader H, Casida JE. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide). Journal of Agricultural and Food Chemistry,1982,30(3):546-551.
    [42]Ohkawa H, Mikami N, Kasamatsu K and et al. Stereoselectivity in toxicity and acetylcholinesterase inhibition by the optical isomers of Papthion" and papoxon. Agricultural and Biological Chemistry,1976.
    [43]薛振祥.拟除虫菊酯与立体化学.现代农药,2002,1(5):1-7.
    [44]Kurihara N, Miyamoto J, Paulson G and et al. Chirality in synthetic agrochemicals:bioactivity and safety consideration. Pure Appl Chem,1997,69(6):1335-1348.
    [45]Bewick DW. Stereochemistry of fluazifop-butyl transformations in soil. Pesticide science, 1986,17(4):349-356.
    [46]Sakata G, Makino K, Morimoto K and et al. Synthesis and herbicidal activity of optically active ethyl 2-[4-(6-chloro-2-quinoxalinyloxy) phenoxy] propanoate. Journal of Pesticide Science,1985,10.
    [47]Buhler DD, Burnside OC. Herbicidal activity of fluazifop-butyl, haloxyfop-methyl, and sethoxydim in soil. Weed science,1984.
    [48]Sugavanam B,洪露.多效唑非对映体和对映体的制备及其生物活性.世界农药,1986,1:004.
    [49]Perrin D, Gilbert B, Purdy W and et al. International Union of Pure and Applied Chemistry.1983.
    [50]曹克广,杨夕强.三唑类化合物杀菌剂的发展现状与展望.精细石油化工,2008,24(6):82-86.
    [51]Kramer W, Berg D, Dutzmann S and et al. Chemistry, stereochemistry and biological properties of KWG 4168. Pesticide science,1999,55(5):610-614.
    [52]胡玲玲,刘慧君,赵媛.农药对环境生物的安全性评价.现代农业科学,2008(7):36-38.
    [53]Zhang Q, Wang C, Zhang X and et al. Enantioselective aquatic toxicity of current chiral pesticides. Journal of Environmental Monitoring,2012,14(2):465-472.
    [54]Xu D, Wen Y, Wang K. Effect of chiral differences of metolachlor and its (S)-isomer on their toxicity to earthworms. Ecotoxicology and environmental safety,2010,73(8):1925-1931.
    [55]Diao J, Xu P, Liu D and et al. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida. Journal of hazardous materials, 2011,192(3):1072-1078.
    [56]Xu P, Liu D, Diao J and et al. Enantioselective acute toxicity and bioaccumulation of benalaxyl in earthworm (Eisenia fedtia). Journal of Agricultural and Food Chemistry,2009,57(18):8545-8549.
    [57]Sun M, Liu D, Dang Z and et al. Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops. Journal of hazardous materials, 2012,237:140-146.
    [58]Xu P, Diao J, Liu D and et al. Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere,2011,83(8):1074-1079.
    [59]Besedovsky H, Sorkin E, Felix D and et al. Hypothalamic changes during the immune response. Eur. J. Immunol,1977,7(5):323-5.
    [60]Ansar Ahmed S. The immune system as a potential target for environmental estrogens (endocrine disrupters):a new emerging field. Toxicology,2000,150(1):191-206.
    [61]王涛,高志贤.环境内分泌干扰物质的检测.中国卫生检验杂志,2004,14(4):390-392.
    [62]刘德英,张剑波,丁剑.我国农药类环境内分泌干扰物使用现状和对策.环境保护,2005(6):45-50.
    [63]McBlain WA. The levo enantiomer of o, p'-DDT inhibits the binding of 17 β-estradiol to the estrogen receptor. Life sciences,1987,40(2):215-221.
    [64]McBlain W, Lewin V, Wolfe F. Estrogenic effects of the enantiomers of o, p'-DDT in Japanese quail. Canadian Journal of Zoology,1977,55(3):562-568.
    [65]McBlain W, Lewin V, Wolfe F. Differing estrogenic activities for the enantiomers of o, p'-DDT in immature female rats. Canadian Journal of Physiology and Pharmacology,1976,54(4):629-632.
    [66]Hoekstra PF, Burnison BK, Garrison AW and et al. Estrogenic activity of dicofol with the human estrogen receptor. Isomer-and enantiomer-specific implications. Chemosphere,2006,64(1):174-177.
    [67]Liu J, Yang Y, Zhuang S and et al. Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology,2011,290(1):42-49.
    [68]陆颖冲,张全,王萃.对溴磷及其对映体对人胎盘滋养层JEG-3细胞内分泌干扰的影响.浙江工业大学学报,2012,40(2):152-156.
    [69]Esquivel-Senties M, Barrera I, Ortega A and et al. Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway. Toxicology and applied pharmacology,2010,248(2):122-133.
    [70]Filby AL, Neuparth T, Thorpe KL and et al. Health impacts of estrogens in the environment, considering complex mixture effects. Environmental Health Perspectives,2007,115(12):1704.
    [71]Jin Y, Zheng S, Fu Z. Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish & shellfish immunology,2011,30(4):1049-1054.
    [72]Zhao M, Liu W. Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environmental toxicology and chemistry,2009,28(3):578-585.
    [73]Zhao M, Chen F, Wang C and et al. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environmental pollution, 2010,158(5):1968-1973.
    [74]Jiang C-L, Lu C-L, Liu X-Y. Multiple actions of cytokines on the CNS. Trends in neurosciences, 1995,18(7):296.
    [75]Straub RH, Miller LE, Scholmerich J and et al. Cytokines and hormones as possible links between endocrinosenescence and immunosenescence. Journal of neuroimmunology,2000,109(1):10-15.
    [76]Battershill JM, Edwards PM, Johnson MK. Toxicological assessment of isomeric pesticides:a strategy for testing of chiral organophosphorus (OP) compounds for delayed polyneuropathy in a regulatory setting. Food and chemical toxicology,2004,42(8):1279-1285.
    [77]Jianmongkol S, Berkman CE, Thompson CM and et al. Relative Potencies of the Four Stereoisomers of Isomalathion for Inhibition of Hen Brain Acetylcholinesterase and Neurotoxic Esterase in Vitro. Toxicology and applied pharmacology,1996,139(2):342-348.
    [78]Jarv J. Stereochemical aspects of cholinesterase catalysis. Bioorganic Chemistry, 1984,12(4):259-278.
    [79]Li L, Hu F, Wang C and et al. Enantioselective induction of oxidative stress by acetofenate in rat PC12 cells. Journal of Environmental Sciences,2010,22(12):1980-1986.
    [80]Hu F, Li L, Wang C and et al. Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC 12) cells. Environmental toxicology and chemistry, 2010,29(3):683-690.
    [81]刘维屏,张颖.手性农药毒性评价进展.浙江大学学报(农业与生命科学版),2012,38(1):63-70.
    [82]蔡道基.农药与环境.安徽化工,2000,26(1):13-18.
    [83]刘花粉,李忠义.农药与环境.邯郸农业高等专科学校学报,1996,3:015.
    [84]Newhart K. Environmental fate of malathion. California Environmental Protection Agency Department of Pesticide Regulation, Sacramento,2006.
    [85]Wong CS. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Analytical and bioanalytical chemistry,2006,386(3):544-558.
    [86]廖永,赵扬,潘灿平.手性农药的环境行为研究进展.农药科学与管理,2008,29(1):47-53.
    [87]Kallenborn R, Oehme M, Vetter W and et al. Enantiomer selective separation of toxaphene congeners isolated from seal blubber and obtained by synthesis. Chemosphere,1994,28(1):89-98.
    [88]Harner T, Wiberg K, Norstrom R. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environmental science & technology, 2000,34(1):218-220.
    [89]Williams A. Opportunities for chiral agrochemicals. Pesticide science,1996,46(1):3-9.
    [90]Mueller MD, Buser H-R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil. Environmental science & technology, 1995,29(8):2031-2037.
    [91]卢恰,张无敌.农药与环境的可持续发展.农业与技术,2003,23(1):1-5.
    [92]Jantunen L, Bidleman T. Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water. Archives of environmental contamination and toxicology,1998,35(2):218-228.
    [93]Jantunen LM, Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in Arctic regions. Journal of Geophysical Research:Atmospheres (1984-2012),1996,101(D22):28837-28846.
    [94]Wiberg K, Harner T, Wideman JL and et al. Chiral analysis of organochlorine pesticides in Alabama soils. Chemosphere,2001,45(6)-.843-848.
    [95]Bidleman TF, Wong F, Backe C and et al. Chiral signatures of chlordanes indicate changing sources to the atmosphere over the past 30 years. Atmospheric Environment,2004,38(35):5963-5970.
    [96]Buser H-R, Mueller MD. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environmental science & technology, 1995,29(3):664-672.
    [97]Muller MD, Buser H-R. Conversion reactions of various phenoxyalkanoic acid herbicides in soil.1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides. Environmental science & technology,1997,31(7):1953-1959.
    [98]Buerge IJ, Poiger T, Muller MD and et al. Enantioselective degradation of metalaxyl in soils:chiral preference changes with soil pH. Environmental science & technology,2003,37(12):2668-2674.
    [99]Qin S, Gan J. Enantiomeric differences in permethrin degradation pathways in soil and sediment. Journal of Agricultural and Food Chemistry,2006,54(24):9145-9151.
    [100]Lao W, Gan J. Enantioselective degradation of warfarin in soils. Chirality,2012,24(1):54.
    [101]Song B-A, Zhang K, Hu D and et al. Enantioselective Degradation of Dufulin in Four Types of Soil. Journal of Agricultural and Food Chemistry,2014.
    [102]Li Z, Li Q, Cheng F and et al. Enantioselectivity in degradation and transformation of quizalofop-ethyl in soils. Chirality,2012,24(7):552.
    [103]Xu Y, Zhang H, Zhuang S and et al. Different enantioselective degradation of pyraclofos in soils. Journal of Agricultural and Food Chemistry,2012,60(17):4173-4178.
    [104]Liu H, Liu D, Shen Z and et al. Chiral Separation and Enantioselective Degradation of Vinclozolin in Soils. Chirality,2014,26(3):155-159.
    [105]Buerge IJ, Muller MD, Poiger T. The chiral herbicide beflubutamid (Ⅱ):enantioselective degradation and enantiomerization in soil, and formation/degradation of chiral metabolites. Environmental science & technology,2012,47(13):6812-6818.
    [106]Li Y, Dong F, Liu X and et al. Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites:enantioselective transformation and degradation in soils. Environmental science & technology,2012,46(5):2675-2683.
    [107]曹巧,董丰收,刘新刚,等.手性农药三唑醇不同对映体在水体中的光解行为研究.农业环境科学学报,2008,27(6):2475-2477.
    [108]Falconer RL, Bidleman TF, Gregor DJ and et al. Enantioselective Breakdown of. alpha.-Hexachlorocyclohexane in a Small Arctic Lake and its Watershed. Environmental science & technology,1995,29(5):1297-1302.
    [109]Law SA, Diamond ML, Helm PA and et al. Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems. Environmental toxicology and chemistry,2001,20(12):2690-2698.
    [110]周碟,刘维屏,王胯停.异丙甲草胺及其高效体对我国南方潮土微生物的影响.
    [111]刘维屏,叶璟,张安平,等.植物与手性化合物的对映体选择性相互作用.应用生态学报,2008,19(2):441-448.
    [112]Okamoto M, Nakazawa H. Stereoselectivity of abscisic acid-oxygenase in avocado fruits. Bioscience, biotechnology, and biochemistry,1993,57(10):1768-1769.
    [113]Schneiderheinze J, Armstrong D, Berthod A. Plant and soil enantioselective biodegradation of
    racemic phenoxyalkanoic herbicides. Chirality,1999,11 (4):330-337.
    [114]Zadra C, Marucchini C, Zazzerini A. Behavior of metalaxyl and its pure R-enantiomer in sunflower plants (Helianthus annus). Journal of Agricultural and Food Chemistry, 2002,50(19):5373-5377.
    [115]Lee W-Y, Iannucci-Berger WA, Eitzer BD and et al. Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route. Chemosphere,2003,53(2):111-121.
    [116]Gu X, Lu Y, Wang P and et al. Enantioselective degradation of diclofop-methyl in cole (Brassica chinensis L.). Food chemistry,2010,121(1):264-267.
    [117]Gu X, Wang P, Liu D and et al. Stereoselective degradation of diclofop-methyl in soil and Chinese cabbage. Pesticide biochemistry and physiology,2008,92(1):1-7.
    [118]Gu X, Wang P, Liu D and et al. Stereoselective degradation of benalaxyl in tomato, tobacco, sugar beet, capsicum, and soil. Chirality,2008,20(2):125-129.
    [119]王萍.手性农药乙氧呋草黄对映体在生物体和环境中的活性及立体选择性行为的研究[D]:中国农业大学;2005.
    [120]Ruhland M, Engelhardt G, Pawlizki K. A comparative investigation of the metabolism of the herbicide glufosinate in cell cultures of transgenic glufosinate-resistant and non-transgenic oilseed rape (Brassica napus) and corn (Zea mays). Environmental biosafety research,2002,1(01):29-37.
    [121]蔡喜运,金美青,叶璟,等.禾草灵对小球藻生态毒性的对映体选择性.第三届全国环境化学学术大会论文集,2005.
    [122]Zhou Q, Xu C, Zhang Y and et al. Enantioselectivity in the phytotoxicity of herbicide imazethapyr. Journal of Agricultural and Food Chemistry,2009,57(4):1624-1631.
    [123]Qian H, Hu H, Mao Y and et al. Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere,2009,76(7):885-892.
    [124]Zhang Q, Zhao M, Qian H and et al. Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. Environmental science & technology,2012,46(15):8405-8412.
    [125]Wu T, Li X, Huang H and et al. Enantioselective Oxidative Damage of Chiral Pesticide Dichlorprop to Maize. Journal of Agricultural and Food Chemistry,2011,59(8):4315-4320.
    [126]Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon:I. Toxicity and antiesterase activities. Pesticide biochemistry and physiology,1978,8(2):146-157.
    [127]Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon:Ⅱ.< i> In vitro metabolism. Pesticide biochemistry and physiology,1978,8(2):158-169.
    [128]Wang Q, Qiu J, Zhu W and et al. Stereoselective degradation kinetics of theta-cypermethrin in rats. Environmental science & technology,2006,40(3):721-726.
    [129]Wang QX, Qiu J, Wang P and et al. Stereoselective kinetic study of hexaconazole enantiomers in the rabbit. Chirality,2005,17(4):186-192.
    [130]Qiu J, Wang Q, Wang P and et al. Enantioselective degradation kinetics of metalaxyl in rabbits. Pesticide biochemistry and physiology,2005,83(1):1-8.
    [131]Qiu J, Wang Q, Zhu W and et al. Stereoselective determination of benalaxyl in plasma by chiral high-performance liquid chromatography with diode array detector and application to pharmacokinetic study in rabbits. Chirality,2007,19(1):51-55.
    [132]Zhu W, Qiu J, Dang Z and et al. Stereoselective degradation kinetics of tebuconazole in rabbits. Chirality,2007,19(2):141-147.
    [133]Zhu W, Dang Z, Qiu J and et al. Stereoselective toxicokinetics and tissue distribution of ethofumesate in rabbits. Chirality,2007,19(8):632-637.
    [134]Zhu W, Dang Z, Qiu J and et al. Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro. Xenobiotica,2009,39(9):649-655.
    [135]Xu X, Diao J, Wang X and et al. Enantioselective metabolism and cytotoxicity of the chiral herbicide ethofumesate in rat and chicken hepatocytes. Pesticide biochemistry and physiology, 2012,103(1):62-67.
    [136]Zhang P, Zhu W, Dang Z and et al. Stereoselective metabolism of benalaxyl in liver microsomes from rat and rabbit. Chirality,2011,23(2):93-98.
    [137]Shen Z, Zhu W, Liu D and et al. Stereoselective degradation of tebuconazole in rat liver microsomes. Chirality,2012,24(1):67.
    [138]Yan J, Zhang P, Wang X and et al. Stereoselective Degradation of Chiral Fungicide Myclobutanil in Rat Liver Microsomes. Chirality,2013.
    [139]Herzke D, Kallenborn R, Nygard T. Organochlorines in egg samples from Norwegian birds of prey:congener-, isomer-and enantiomer specific considerations. Science of the total environment, 2002,291(1):59-71.
    [140]Moisey J, Fisk AT, Hobson KA and et al. Hexachlorocyclohexane (HCH) isomers and chiral signatures of a-HCH in the Arctic marine food web of the Northwater Polynya. Environmental science & technology,2001,35(10):1920-1927.
    [141]Fisk A, Moisey J, Hobson K and et al. Chlordane components and metabolites in seven species of Arctic seabirds from the Northwater Polynya:relationships with stable isotopes of nitrogen and enantiomeric fractions of chiral components. Environmental pollution,2001,113(2):225-238.
    [142]Buser HR, Mueller MD. Enantioselective determination of chlordane components, metabolites, and photoconversion products in environmental samples using chiral high-resolution gas chromatography and mass spectrometry. Environmental science & technology,1993,27(6):1211-1220.
    [143]Iwata H, Tanabe S, Iida T and et al. Enantioselective accumulation of a-hexachlorocyclohexane in northern fur seals and double-crested cormorants:Effects of biological and ecological factors in the higher trophic levels. Environmental science & technology,1998,32(15):2244-2249.
    [144]Vetter W, Luckas B. Enantioselective determination of persistent and partly degradable toxaphene congeners in high trophic level biota. Chemosphere,2000,41(4):499-506.
    [145]Wiberg K, Letcher RJ, Sandau CD and et al. The enantioselective bioaccumulation of chiral chlordane and a-HCH contaminants in the polar bear food chain. Environmental science & technology, 2000,34(13):2668-2674.
    [146]Hegeman WJ, Laane RW. Enantiomeric enrichment of chiral pesticides in the environment. Reviews of Environmental Contamination and Toxicology 173,2001,173:85-116.
    [147]张一宾.全球三唑类杀菌剂的市场,品种,特点及发展.中国农药,2010(012):11-13.
    [148]白雪,周成合,米佳丽.三唑类化合物研究与应用.化学研究与应用,2007,19(7).
    [149]Crowell SR, Henderson WM, Kenneke JF and et al. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans. Toxicology letters,2011,205(2):154-162.
    [150]Goetz AK, Dix DJ. Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals. Toxicological sciences,2009,110(2):449-462.
    [151]Taxvig C, Hass U, Axelstad M and et al. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological sciences,2007,100(2):464-473.
    [152]Sancho E, Villarroel M, Fernandez C and et al. Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio). Ecotoxicology and environmental safety,2010,73(3):370-376.
    [153]Kahle M, Buerge IJ, Hauser A and et al. Azole fungicides:occurrence and fate in wastewater and surface waters. Environmental science & technology,2008,42(19):7193-7200.
    [154]李远播.几种典型手性三唑类杀菌剂对映体的分析,环境行为及其生物毒性研究:中国农业科学院;2013.
    [155]曹雅虹,李巧玲,李朝阳,等.手性三唑类农药环境行为研究进展.江苏农业科学,2011(3):515-517.
    [156]杨丽萍,李树正.三种三唑类杀菌剂对映体生物活性的研究.农药学学报,2002,4(2):67-70.
    [157]Ledan Huang DL, Ping Zhang, Jinling Diao, Zhiqiang Zhou. Enantioselectiye Toxic Effects of Hexaconazole Enantiomers Against Obliquus Scenedesmus. Chirality,2012,24:610-614.
    [158]Cheng C, Huang L, Diao J and et al. Enantioselective Toxic Effects and Degradation of Myclobutanil.2013.
    [159]Han J, Jiang J, Su H and et al. Bioactivity, toxicity and dissipation of hexaconazole enantiomers. Chemosphere,2013,93(10):2523-2527.
    [160]Dong F, Li J, Chankvetadze B and et al. Chiral triazole fungicide difenoconazole:absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environmental science & technology,2013,47(7):3386-3394.
    [161]Kishorekumar A, Jaleel CA, Manivannan P and et al. Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids and Surfaces B: Biointerfaces,2008,62(2):307-311.
    [162]毕彦博,潘红艳,张晓庆,等.三唑类杀菌剂调节植物逆境生长研究进展.中国农学通报,2012,28(30):213-217.
    [163]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展.中国农学通报,2007,23(1):105-110.
    [164]樊高琼,杨文钰,任万君and et al.烯效唑干拌种对小麦叶片衰老期间碳氮代谢的效应. 麦类作物学报,2004,24(4):88-91.
    [165]Abdul Jaleel C, Lakshmanan G, Gomathinayagam M and et al. Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. South African Journal of Botany,2008,74(1):126-132.
    [166]Manivannan P, Jaleel CA, Somasundaram R and et al. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes rendus biologies,2008,331(6):418-425.
    [167]李合生.植物生理生化实验原理和技术:高等教育出版社;2000.
    [168]冯兆忠,王静.三唑酮对离体黄瓜子叶膜系统的影响.西北植物学报,2002,22(3):651-655.
    [169]Burden RS, Carter GA, Clark T and et al. Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pesticide science,1987,21(4):253-267.
    [170]Lenton J, Appleford N, Temple-Smith K. Growth retardant activity of paclobutrazol enantiomers in wheat seedlings. Plant growth regulation,1994,15(3):281-291.
    [171]Zhang A, Xie X, Liu W. Enantioselective separation and phytotoxicity on rice seedlings of paclobutrazol. Journal of Agricultural and Food Chemistry,2011,59(8):4300-4305.
    [172]Sun J, Zhang A, Zhang J and et al. Enantiomeric resolution and growth-retardant activity in rice seedlings of uniconazole. Journal of Agricultural and Food Chemistry,2011,60(1):160-164.
    [173]武彤,李朝阳,李巧玲,等.三唑类手性农药高效液相色谱分离的研究.河北科技大学学报,2009,29(4):279-282.
    [174]Wang P, Jiang S, Liu D and et al. Direct enantiomeric resolutions of chiral triazole pesticides by high-performance liquid chromatography. Journal of biochemical and biophysical methods, 2005,62(3):219-230.
    [175]Zhou Z, Wang P, Jiang S and et al. Preparation of Polysaccharide-Based Chiral Stationary Phases and the Direct Separation of Six Chiral Pesticides and Related Intermediates. Journal of liquid chromatography & related technologies,2003,26(17):2873-2880.
    [176]江正瑾,阎超.微径高效液相色谱法分离三唑类手性化合物的对映体.色谱,2001,19(3):253-255.
    [177]Pan CX, Shen BC, Xu B and et al. Comparative enantioseparation of seven triazole fungicides on (S, S)-Whelk 01 and four different cellulose derivative columns. Journal of separation science, 2006,29(13):2004-2011.
    [178]金丽霞.手性三唑类杀菌剂和芳氧苯氧丙酸类除草剂高效液相色谱对映体分离:浙江工业大学:2012.
    [179]Clark T, Deas AH. Separation of enantiomers of fungicides and some analogues by capillary gas chromatography using Chirasil Val. Journal of Chromatography A,1985,329:181-185.
    [180]Buerge IJ, Poiger T, Mueller MD and et al. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environmental science & technology, 2006,40(17):5443-5450.
    [181]Wu YS, Lee HK, Li SF. Simultaneous chiral separation of triadimefon and triadimenol by sulfated P-cyclodextrin-mediated capillary electrophoresis. Electrophoresis,2000,21(8):1611-1619.
    [182]Wu Y, Lee H, Li S. High-performance chiral separation of fourteen triazole fungicides by sulfated p-cyclodextrin-mediated capillary electrophoresis. Journal of Chromatography A,2001,912(1):171-179.
    [183]Wan Ibrahim WA, Hermawan D, Sanagi MM. On-line preconcentration and chiral separation of propiconazole by cyclodextrin-modified micellar electrokinetic chromatography. Journal of Chromatography A,2007,1170(1):107-113.
    [184]Ibrahim WAW, Hermawan D, Sanagi MM and et al. Stacking and sweeping in cyclodextrin-modified MEKC for chiral separation of hexaconazole, penconazole and myclobutanil. Chromatographia,2010,71 (3-4):305-309.
    [185]Toribio L, Del Nozal M, Bernal J and et al. Chiral separation of some triazole pesticides by supercritical fluid chromatography. Journal of Chromatography A,2004,1046(1):249-253.
    [186]冯硕立,徐明仙,高伟亮;ind et al.超临界色谱拆分6种唑类手性农药.浙江工业大学学报,2011,39(4):424-428.
    [187]Zhang H, Qian M, Wang X and et al. Analysis of Tebuconazole and Tetraconazole Enantiomers by Chiral HPLC-MS/MS and Application to Measure Enantioselective Degradation in Strawberries. Food Analytical Methods,2012,5(6):1342-1348.
    [188]Zhang H, Qian M, Wang X and et al. HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases. Journal of separation science,2012,35(7):773-777.
    [189]Clark T, Wong WWC, Vogeler K. Comparative fate in soil of the enantiomers of triadimenol when applied individually to barley seed. Pesticide science,1991,33(4):447-453.
    [190]李朝阳,张艳川,李巧玲,等.三唑农药的手性拆分及对映体的转化.分析化学,2010,38.
    [191]Li Z, Zhang Y, Li Q and et al. Enantioselective degradation, abiotic racemization, and chiral transformation of triadimefon in soils. Environmental science & technology,2011,45(7):2797-2803.
    [192]Li Z, Li Q, Zhao J and et al. Stereoselective degradation and microbial epimerization of triadimenol in soils. Chirality,2013,25(6):355-360.
    [193]Dong F, Liu X, Zheng Y and et al. Stereoselective degradation of fungicide triadimenol in cucumber plants. Chirality,2010,22(2):292-298.
    [194]Li J, Dong F, Xu J and et al. Enantioselective determination of triazole fungice tetraconazole by chiral high-performance liquid chromatography and its application to pharmacokinetic study in cucumber, muskmelon, and soils. Chirality,2012,24(4):294.
    [195]曹巧.三唑醇对映体在黄瓜植株中的残留行为及其光解研究[D]:中国农业科学院;2008.
    [196]Liang H, Qiu J, Li L and et al. Stereoselective dissipation of epoxiconazole in grape Vitis vinifera and soil under field conditions. Chemosphere,2012,87(8):982-987.
    [197]Liang H, Li L, Qiu J and et al. Stereoselective transformation of triadimefon to metabolite triadimenol in wheat and soil under field conditions. Journal of hazardous materials,2013,260:929-936.
    [198]Li Y, Dong F, Liu X and et al. Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography-tandem mass spectrometry. Chirality,2013,25(3):160-169.
    [199]朱文涛,邱静,王秋霞,等.手性农药立体选择性环境行为研究进展[C].2005.
    [200]Wang Q, Qiu J, Zhou Z and et al. Stereoselective pharmacokinetics of diniconazole enantiomers in rabbits. Chirality,2009,21(7):699-703.
    [201]Zhang P, Dang Z, Shen Z and et al. Enantioselective degradation of hexaconazole in rat hepatic microsomes in vitro. Chirality,2012,24(4):283.
    [202]Liu C, Wang B, Xu P and et al. Enantioselective determination of triazole fungicide epoxiconazole bioaccumulation in tubifex based on HPLC-MS/MS. Journal of Agricultural and Food Chemistry,2013.
    [203]Konwick BJ, Garrison AW, Avants JK and et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss). Aquatic toxicology,2006,80(4):372-381.
    [204]Kenneke JF, Ekman DR, Mazur CS and et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout. Chirality,2010,22(2):183-192.
    [205]徐超.几种内分泌干扰物的对映体选择性毒性及其降解:浙江大学;2008.
    [206]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125.
    [207]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700