用户名: 密码: 验证码:
密闭仓式污泥高温好氧快速发酵资源化技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究依托于北京市科技计划子课题“污泥制生物碳土技术集成优化与示范”与机械科学研究总院技术发展基金“污泥隧道式动态好氧发酵关键技术及示范研究”,以研发密闭仓式污泥高温好氧快速发酵资源化技术的工程应用为目标,针对该技术关键工艺参数进行中试试验研究,并建立具有推广意义的示范工程。
     首先,进行了反应机理研究,根据物料衡算、回流比计算、孔隙度和自由空域的计算、热力学分析、通风系统的计算等分析,对中试密闭仓反应器进行了设计和搭建,在中试试验中:在三种回流比模式下比较了堆体温度、含水率、C/N、pH、堆体容重、氨气、硫化氢产生量、引风口的温湿度等参数变化,并对发酵产物进行了资源化评价。提出密闭仓高温好氧快速发酵技术中试试验的强制通气流量常数为0.26m3/(min﹒m3)。
     针对传统条垛式发酵技术在实际工程生产中产生臭气进行了监测,明确臭气主要污染物为氨气。为了降低氨气量,研究了不同物料添加比下氮素转化的规律,研究发现:添加42.5%的花生壳试验组,升温和含水率降低均最快,全氮损失较少,说明添加碳源较高的添加剂可以保证堆体通气量,控制堆体含水率,在发酵过程中达到很好的保氮效果,但从经济性考虑,采用添加7.5%花生壳+42.5%返混料的方式也可达到较好的保氮效果。针对条垛式敞开式臭气散逸特点,进行了生物滤池的模拟处理试验,研究结果表明,活性填料采用发酵产品:陶粒:树皮=2:5:3比例配制,惰性填料D50:D25=1:1比例配制,可稳定运行,氨气的去除率达99%以上。
     根据前期试验,进行示范工程设计及调试。对不同曝气方式下,堆体温度的变化进行了研究,发现在较大曝气量下利于堆体保持合适温度,而在较小曝气量下利于堆体升温段起温速度和高温的维持,在堆体的高温段和降温段通风强制系数应采用0.24-0.39m3/(min﹒m3),而升温段应当采用0.1-0.2m3/(min﹒m3)。在不同返混比例下,对堆体发酵温度、含水率、有机物变化进行了研究。对发酵过程中产生的臭气浓度进行了监测。在工程中对通风量进行了核算,并通过Tecplot建立了曝气引风模型,研究了堆体温度梯度对发酵仓中引风压力的影响,并研究了不同条件下排风湿度的变化规律。对技术的工程应用进行了说明。
This research was based on the sub-project integration and demonstration of sludgemade as biological carbon soil of Beijing Science and Technology Plan, andDevelopment Fund subject key technology and demonstration research of sewagesludge aerobic fermentation in tunnel cabin organized by China Academy ofMachinery Science technology. In order to search the engineering use of sewagesludge aerobic fermentation of tunnel cabin in a fast and high temperature way, amid-scale research and engineering project was established which aimed at the keyprocess parameters.First, based on the calculation of material, reflux ratio, degree of porosity, freeboard,
     the analysis of thermodynamics and ventilation system, the mid-scale seal cabin wasestablished. During the test, the changes of comparison was made among threepatterns, including pile temperature, moisture content, value of C/N, pH, pile density,value of ammonia, hydrogen sulfide generation, and humidity up the vent. Andfermentation resource products were evaluated. Then the value of ventilation capacityof fast and seal cabin sewage sludge aerobic fermentation was0.26m3/(min.m3).
     It was monitored that technology of sewage sludge aerobic fermentation in tunnelcabin would yield stink whose main composition is free ammonia during practicalproduction. In order to reduce the amount of ammonia, it was studied that the law ofnitrogen transformation under different material feed ratio. The studies show that theexperimental group containing42.5%peanut shells whose temperature rise faster andmoisture content reduce sooner and total nitrogen loss fewer.It was indicating thathigh carbon content of additives could ensure ventilation and moisture content controlof the pile and keeping nitrogen content well during fermentation. The biologicalfilter simulation test was processed according on stink escape of open crib type. Thetest showed that the active packing with proportion of fermented products: ceramsite:bark=2:5:3and inert packing with proportion of D50: D25=1:1could operate stablyand the removal rate of ammonia will exceed99%. According to preliminary tests, the design and commissioning of the demonstrationproject was carried out. The variation of pile temperature was studied under differentaeration ways. The results showed that more aeration quantity contributed to keep theappropriate temperature and less aeration quantity contributed to the temperaturerising and keep the higher temperature. The aeration intensity coefficient during thehigh temperature period and temperature dropping period is0.24to0.39m3/(min﹒m3)but0.1to0.2m3/(min﹒m3)during the temperature rising period. The variationof aerobic composting temperature, water content and organics content were studiedunder different back mixing rate. The odor concentration was monitored during thecomposting. Moreover, the aeration quantity was checked, and the aeration-inducedair model set up by Tecplot. Thanks to the model, the effect of pile temperaturegradient on the induced-air pressure in the composting seal cabin and the variation ofexhaust air moisture under different conditions was studied. The character of thedemonstration project and the devices were illustrated too.
引文
Agnew J M, Leonard J J. The Physical Prope rties of Compost. Compost Science&Utilization.2003,11(3):238.
    Baddi,GA., Hafidi,M., Cegarra,J., Alburquerque,J.A., Gonzalvez,J., Gilard,V.Revel,J.C. Characterization of fulvic aeidsby elemental and speetroseopie (FTIR andC-MR) analyses during composting of olive mill wastes plus straw. BioresourceTechnology,2004,93:285-90.
    Barrington S,Choiniere D,Trigui M,et al. Effect of carbon source on compostnitrogen and carbon losses. Bioresouree Technology,2002,83:189-194.
    Bergkvist P, Jarvis N, Berggren D, et al. Long-term effects of sewage sludgeapplications on soil properties, cadmium availability and distribution in arable soil.Agriculture, Ecosystems and Environment.2003,97:167~179.
    Brazilian Amazon: Compost, fertilizer, manure and charcoal applications. WeedBiology Management.2005,5:69-76.
    Brodieil L, Canl E, Condon P. A. Comparison of static pile and turned windrowmethods for plant litter compost production. Compost Sei. Util.,2000,8(3):178-189.
    Burken, J. G., Shars, J. V. ThomPson,P. L. Phytoremediation and Plantmetabolism of explosives and nitroaromatic compounds. In: J.SPian, J.B. Hughes andH.J. Knaeklnuss, Editors, Biodegradation of nitroaromatic compounds and explosives,Lewin Publishers, Boca Raton.2000,357-395.
    Campitelli P,Ceppi S. Effects of composting technologies on the chemical andphysicochemical properties of humic acids. Geoderma.2008,144:325~333.
    Das M., Uppal H. S. Co-composting of physic nut (Jatropha curcus) deoiledcake with rice straw and different animal dung. Bioresource Technology,2011,102(11):6541-6546.
    De Guardia A, Petiot C, Rogeau D. Influence of aeration rate andbiodegradability fractionation on composting kinetics. Waste Management,2008,28(1):73-84.
    Domeizel M, Khalil A, Prudent P. UV spectroscopy: A tool for monitoringhumification and for proposing an index of the maturity of compost. Biore sourceTechnology,2004.94(2):177-184.
    DroussiZ, D’OrazioV, Hafidi M, et al. Elemental and spectroscopiccharacterization of humic-acid-like compounds during composting of olive millby-products. Journal of Hazardous Materials,2009,163:1289-1297
    CasadoVela,J., Selle,S., Navarro,J., Evaluation of composted sewage sludge asnutritional source for horticultural soils. Waste Management,2006,269:46-52.
    Chiang K Y, Yoi S D, Lin H N, et, al. Stabilization of heavy metals in sewagesludge composting process. Water Science and Technology,2001,44(10):95-100.
    Davis. R. D. The impact of EU and UK environmental pressures on future ofsludge treatment and disposal. Water Environ. Manage.1996,10(2):10-13.
    Cheng, H.F., Xu, W.P., Liu,J.L., Zhao,Q.J., He, Y.Q., Chen,G. Application ofcomposted sewage sludge (CSS) as a soil amendment or turf grass growth. EeologicalEngineering.2007,29:96-104.
    Do J P,Dail eader K L,Duran M. Anaerobic digestion of biosolids at elevatedthermophilic temperatures: Inactivation of pathogens for Class A biosolidsdesignation. IWA proceeding of specialists conference on wastewater biosolidssustainability,Canada,2007.
    Fang M, Wong J W C, Wong M H, et al. Co-composting of sewage sludge andcoal fly ash:nutrient transformations. Bio-resource Technology,1999,67(1):19-24.
    Fang M, Wong J W C. Effects of lime amendment on availability of heavy metalsand maturation iin sewage sludge composting. Environmental Pollution,1999,106(1):83-89.
    Grube M, LinJ G, Lee PH,et al. Evaluation of sewage sludge-based compost byFTIR spectroscopy.Geoderma,2006,130:324~333
    Hamed. Thermal assessment of a multiple effect boiling (MEB) desalinationsystem. Desalination,1992,86:325-339.
    Hseu, Z.Y. Extractability and bioavailability of zinc over time in three tropicalsoils in cubated with biosolids. ChemosPhere.2006,63:762-771.
    Iwegbue, C.M.A., Emuh, F.N. Isirimah, N.O., Egun,A.C. Fractionation,characterization and speciation of heavy metals in composts and compost-amendedsoils. African Journal of Biotechnology.2007,6(2):67-78.
    Iyobe, T., Asada, T., Kawata, K., Oikawa, K. Comparison of removal efficienciesfor ammonia and amine gases between woody chareoal and activated carbon. Joumalof Health Seienee.2004,50:148-153.
    JFriis B Beck, Smars S, Jonsson H, et al. Gaseous emissions of carbon dioxide,ammonia and nitrous oxide from organic household waste in a composting reactorunder different temperature regimes. Agric Eng Res,2001,78(4):423-430.
    Jiang Zili,Meng Dawei,Mu Hongyan,et al. Experimental study on hydrothermaldrying for sewage sludge in large-scale commercial plan. Journal of EnvironmentalScience and Engineering,2011,13(7):900-910.
    Kim H, Murthy S, Peot C, Ramirez Mark, Strawn M, Park C H, McConnell L L.Examination of Mechanisms for Odor Compound Generation During LimeStabilization. Water Environment Research,2003,75(2):121-125
    Komatsu T, Kudo K, Inoue Y, et al. Anaerobic co-digestion of sewage sludge andrice straw, IWA proceeding of specialists conference on wastewater biosolidssustainability, Canada,2007.
    Liang C, Dds K C, McClendon R W. The influence of temperature and moisturecontents regimes on the aerobic microbial activity of a bio-solids composting blend.Bio-resource Technology,2003,86(2):131-137.
    MacNicol R. D., Beckett P. H. The distribution of heavy metal between theprincipal components of digested sewage sludge. Wat. Res.,1989,23(2):199-206.
    Maia G D, Day G B, Gates R S, et al. Moisture effects on greenhouse gasesgeneration in nitrifying gas-phase compostbiofilters. Water Research,2012,46(9):3023-3031.
    Major, J., Steiner, C. Ditommaso, A., Falcao, N.P.S., Lenmann, J. Weedcomposition and cover after three years of soil fertility management in the central
    Manios T, Maniadakis K, Boutzakis P, et al. Methane and carbon dioxideemission in a two-phase olive oil mill sludge windrow pile during composting. WasteManagement,2007,27(9):1092-1098.
    Neklyudov A. D., Fedotov G. N., Ivankin A. N. Aerobic processing of organicwaste into composts. Applied Biochemistry and Microbiology,2006,42(4):341-353
    Paredes, C., Bemal, M.P., Cegarra, J., Roig, A. Biodegradation of olive millWastewater sludge by its co-composting with agricultural wastes. BioresourceTeehnology,2002,85: l-8.
    Raviv M, Medina S, Karasnovsky A, et al. Conserving nitrogen duringcomposting. Bio Cycle,2002,43(9):48.
    Sommer S G. Effect of composting on nutrient loss and nitrogen availability ofcattle deep litter. European Journal of Agronomy,2001,14:123-133.
    Song U., Lee E.J. Environmental and economical assessment of sewage sludgecompost application on soil and plants in a landfill. Resources Conservation andRecycling.2010,54(12):1109-1116
    Stern J C, Chanton J, Abichou T, et al. Use of a biologically active cover toreduce landfill methane emissions and enhance methane oxidation. WasteManagement,2007,27(9):1248-1258.
    Suna Cinar,Turgut T Onay,Aysen Erdincler. Co-disposal alternatives of variousmunicipal waste water treatment plant sludge with refuse.Advances in EnvironmentalResearch,2004(8):47-482.
    Tang J. C.; Maie N., Tada Y., et al. Characterization of the maturing process ofcattle manure compost. Process Biochemistry.2006,41(2):380-389.
    Tateda M, Trung L D, Hung N V. Comprehensive temperature monitoring in anirrvessel forced-aeration static-bed composting process. Journal of Material Cyclesand Waste Management,2002,4:62-69.
    Tiquia S M, Richard T L, Honeyman M S. Carbon,nutrient,andmass loss duringcomposting. Nutrient Cycling in Agroecosystems,2002,62:15-24.
    V Darees Boucher, Revel J C,Guiresse M, et al. Reduce ammonia losses byadding Fecl3during composting of sewage sludge. Water, air, and soil pollution,1999,112:229-239.
    Wei, Y.J., Liu, YS. Effects of sewage sludge compost application on crops andcropland in a3-year field study. ChemosPhere.2005,59:1257-1265.
    Wilson C A,Murthy S M,Fang Y,et al. The Effect of Temperature on thePerformance and Stability of Thermophilic Anaerobic Digestion. IWA proceeding ofspecialists.2004.
    Witter E, Kirchmann H J M. Nitrogen losses during the composting of sewagesludge and the effectiveness of clay soil,zeolite,and compost in adsorbing thevolatilezed ammonia. Biological Waste,1988,23:279-294.
    Yuan X. Z., Ren F. Y., Zeng G. M., et al. Adsorption of surfactants on aPseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property.Applied Microbiology Biotechnology,2007,76(5):1189-1198.
    Zhong J, Wei Y, Wan H, et al. Greenhouse gas emission from the full process ofswine manure composting and land application of compost,2013.
    Zorpas, A. A., Kapetanios, E., Zorpas, GA. Compost produced from organicfraction of municipal solid waste, primary stabilized sewage sludge and natural zeolite.Joumal of Hazardous materials B,2000,77:149-159.
    班福忱,刘明秀,李亚峰.城市污水处理厂污泥资源化研究探讨.环境科学与管理.2006,31(5):45~47.
    鲍士旦.土壤农化分析(第3版).北京:中国农业出版社.2000.178-201
    牛华寺,张向阳,吴星五,等.发酵中腐熟污泥替代外源添加剂的研究,四川环境,2008,27(6):1-4
    蔡建成.发酵工程与发酵工厂.机械工业出版社.1990.
    陈晨子.滴滤/淹没微曝气双模式生物滤池处理生活污水与H2S恶臭气体的试验研究:[硕士学位论文].北京:中国地质大学(北京),2012.
    陈玲,赵建夫,李宇庆等.城市污水厂污泥快速好氧发酵技术研究.环境科学.2005,26(5):192~195.
    陈同斌,黄启飞,高定,等.城市污泥发酵温度动态变化过程及层次效应.生态学报,2002,22(5):736-741.
    陈同斌,郑国砥,高定.污水处理厂污泥生物发酵技术.建设科技,2009(7):56-57.
    城市污水处理厂污泥检验方法(CJ/T221-2005).中华人民共和国住房和城乡建设部.
    城镇污处理厂污泥处理技术规程(CJJ131-2009).中华人民共和国住房和城乡建设部.2009.
    城镇污水处理厂污泥处置-单独焚烧用泥质(GB/T24602-2009).中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.
    城镇污水处理厂污泥处置-分类(GB/T23484-2009).中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.
    城镇污水处理厂污泥处置-混合填埋用泥质(GB/T23485-2009).中华人民共和国住房和城乡建设部.
    城镇污水处理厂污泥处置-农用泥质(GJ/T309-2009).中华人民共和国住房和城乡建设部.
    城镇污水处理厂污泥处置-水泥熟料生产用泥质(GJ/T314-2009).中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.
    城镇污水处理厂污泥处置-土地改良用泥质(GB/T24600-2009).中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.
    城镇污水处理厂污泥处置-园林绿化用泥质(GB/T23486-2009).中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.
    戴芳.发酵改良剂生物表面活性剂的开发与应用研究,[硕士论文].长沙,湖南大学.2005.
    杭世珺,陈吉宁等.污泥处理处置的认识误区与控制对策.国际污泥无害化经验交流会论文汇编,2004.
    贺琪,李国学,张亚宁,等.高温发酵过程中的氮素损失及其变化规律.农业环境科学学报.2005,24(1):169-173.
    胡菊. VT菌剂在好氧发酵中的作用机理及肥效研究,[硕士论文].北京,中国农业大学.2005
    蒋晓云.几种污染环境下五氯酚的微生物修复研究,[博士论文].长沙,湖南大学.2008.
    康军,杨凌城市污泥高效好氧发酵研究:[博士毕业论文].西安,西北农林科技大学.2012.
    李端,周少奇,陈晓武.城市污泥的重金属生物活性及其控制.环境污染治理技术与设备.2003,4(7):60-64
    李国学,张福锁.固体废物发酵化与有机复混肥生产.北京:化学工业出版社,
    李季,彭生平.臭味控制.发酵工程实用手册.北京:化学工业出版社,2005,10:74-81.
    李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用.2003,23(11):2464-2474.
    林小凤,李国学,贺琪,等.发酵化过程中氮素损失控制材料的添加试验研究.农业环境科学学报,2005,24(5):975-978.
    刘峰,蔡红,刘英.城市污泥农用存在的问题与对策.中国农学通报,2010,26(17):304-309.
    彭琦,孙志坚.国内污泥处理与综合利用现状及发展.能源工程,2008,5:47-50.
    石海峰.发酵工艺及专用有机无机复合肥的研制,[硕士论文].武汉,华中农业大学.2008.
    王刚.国内外污泥处理处置技术现状与发展趋势.环境工程,2013,31:530-533.
    王静,卢宗文,田顺,等.国内外污泥研究现状及进展.市政技术,2006,24(3):140-142.
    王涛. SACT污泥全机械化发酵工艺与自动控制系统.中国环保产业.2010.
    王涛.污泥发酵项目中除臭技术的选择与设计.中国环保产业.2010
    王助贫,黄鸥,王伟,等.我国污泥处理处置的市场分析.中国建设信息,2009,5:6-16.
    吴敬东,熊建新等,北京市污水处理厂污泥处理处置现状及对策.北京水务.2010,(5):4-6.
    解光武,蔡明招,郑文芝.国内外污泥处理与处置技术.环境技术,2003,5:24-26.
    熊建军,刘淑英,邹国元,等.高温发酵过程中除臭保氮技术研究进展.中国农学通报,2008,24(1):444-448.
    杨丽标.污泥有机氮矿化及对杨树生长和土壤质量的影响.硕士论文.2009.
    余杰,田宁宁,王凯军,等.中国城市污水处理厂污泥处理、处置问题探讨分析.环境工程学报,2007,1(1):83-86.
    于文清,隋文志,赵晓峰,等.发酵-生物滤池两步除臭工艺研究.现代化农业.2012,11:30-34.
    余群.国内外发酵技术研究进展.安徽农业大学学报,2003,30(1):109-112.
    张玉兰,孙彩霞,段争虎,等.发酵原位保氮技术研究.土壤通报,2010,41(4):1000-1003.
    张义安,高定,陈同斌,等.城市污泥不同处理处置方式的成本和效益分析.生态环境,2006,15(2):234-238.
    赵秋,鲍艳宇.发酵过程中氮素损失的控制.中国农学通报,2007,23(7):375-375.
    赵素芬.猪粪好氧发酵过程中磷元素变化规律的研究,[硕士论文].浙江,浙江大学.2005.
    赵宇,徐磊,杨学权,等.基于水泥窑处理城市生活垃圾的预处理过程中发酵抑制及除臭方法的研究.新世纪水泥导报.2010
    郑玉琪,陈同斌,高定,等.静态垛好氧发酵堆体中氧气浓度和耗氧速率的垂直分布特征.环境科学,2004.25(2):134~139
    中国环境统计年鉴2005-2011.北京:中国统计出版社.
    周立祥,沈其荣,陈同斌等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报,2000,20(3):269-274.
    周少奇,李端.污泥发酵过程中氮素损失机理及保氮技术.土壤,2003,35(6):481-484,499.
    住房和城乡建设部,国家发展和改革委员会.城镇污水处理厂污泥处理处置技术指南(试行).2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700