用户名: 密码: 验证码:
硫硒交互对水稻幼苗镉累积和毒害的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd)是一种对生物体有较强的毒性重金属,目前农产品的Cd污染情况已引起人们的广泛关注。硫(S)与硒(Se)在一定程度上均能够缓解Cd毒性。且S与Se同为氧族元素,在植物体内的吸收,同化方面会相互竞争,同时添加对Cd的解毒作用存在相互影响。因此本试验以淮稻6号为实验材料,通过根部添加S和Cd,叶面施加Se,曝毒12d,每3d取一次样,观察水稻幼苗生长状况,抗氧化系统及巯基物质的响应,S、Se与Cd在水稻幼苗体内的累积,三者的亚细胞分布以及在水稻幼苗体内的空间分布情况,以期说明在不同浓度S、Se交互作用下,对Cd毒害的影响机理。主要研究结果如下:
     在水稻幼苗的生长方面,随着时间的增加,升高Cd浓度对水稻幼苗生物量的抑制更加显著,并导致叶绿素含量和根系活力的下降。叶面施Se和供S均显著缓解了Cd对水稻幼苗生长的抑制,促进了叶绿素的合成和根系活力的升高。高S情况下,叶面施Se对水稻幼苗Cd毒害并无显著的抑制,说明此时S与Se相互竞争,从而未产生进一步的协同作用。
     在抗氧化系统酶和巯基物质的响应方面,Cd浓度越高,水稻幼苗体内丙二醛(MDA)含量越高,抗氧化酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的响应程度越高。诱导合成谷胱甘肽(GSH)、植物螯合肽(PCs)和金属硫蛋白(MT)等巯基化合物越多,从而能够缓解Cd对水稻幼苗的毒害。无S时叶面施Se以及单独供S均降低了MDA含量,降低了抗氧化酶活性。无S条件下,相对于未施Se,叶面施Se显著促进了GSH、PCs和MT的合成,说明在无S时,Se对Cd的解毒机制是Se代替S主要是Se替代了S形成了Se-代半胱氨酸,从而合成了相关螯合物。而在高S情况下,叶面施Se并未进一步促进巯基物质的合成,主要是因为S抑制了Se的吸收,使得此时S起到对Cd的解毒作用。同时表明了S与Se对Cd的解毒机制并非提高抗氧化酶的响应,而是促进了巯基物质的合成。
     在水稻幼苗体内的Cd、Se累积方面,叶面施Se显著降低了Cd在水稻幼苗根部和地上部的含量。而Cd浓度越高,越发促进了水稻幼苗对Se的吸收,这也是水稻幼苗自我保护的一种方式。单独施S时,随着供S浓度的增加,Cd在水稻幼苗根部的累积量下降,而茎部的Cd含量增加,说明S抑制了水稻根部对Cd的吸收,促进了Cd向茎部转移,主要机制是S促进了PCs等螯合蛋白的合成,能够在水稻幼苗体内进行长距离运输。高S条件下,施Se抑制了Cd向茎部的运输。而不同S浓度下水稻幼苗体内Se含量则显示,高S浓度对Se的吸收有最为显著的抑制作用,因此高S条件下,对Cd毒害起主要作用的是S。
     在水稻幼苗体内的亚细胞分布和化学形态方面,细胞壁组分所占比例均为Cd10>Cdl(Cd10代表浓度为10mg/L的Cd,下同)。随着S的增加以及叶面施Se可溶性组分中Cd的比例有所升高,表明S与Se的供应能促进Cd向液泡转移。氯化钠提取态所占比例趋势为S720>S48>S0、Se500>Se0,而乙醇和去离子水等活性较高的提取态所占比例有所下降,说明S的添加以及叶面施Se能够促使Cd向活性较低的提取态转移。然而相对于无S,在高浓度S情况下,施Se并未显著增加Cd在液泡中以及FNaCl提取态的比例,推测S与Se之间相互竞争,从而未产生进一步的协同作用。且在S与Se的亚细胞分布情况可以看出,高S时,S促进Cd向液泡中转移以降低其毒害。
     利用SRXRF对S、Se、Cd在水稻幼苗根部与叶片的空间扫描可以看出,在无S条件下,Se对Cd毒性的缓解主要通过促进蛋白的合成,从而络合Cd离子,达到减轻Cd毒害的目的。在高S条件下,S与Se相互竞争,S与Cd的分布趋于一致,说明在此时S起到缓解Cd毒害的主要作用。
     此外,在不同Se、Cd处理下,对比无S与6d后添加高S两组处理,考察延时加S对水稻幼苗吸收Se、Cd的和MT含量的影响。实验结果显示,无添加S组,Se、Cd交互作用对水稻生物量的影响较大,第6d加入S则缓解了这一现象。高浓度Cd对水稻的毒害作用较低浓度Cd更加明显,Se、Cd在水稻幼苗的累积随时间而增加,而S的添加使Cd毒害减轻,并抑制了Se、Cd在水稻幼苗体内的累积。S的添加使得水稻幼苗体内MT含量较无S条件增加,且由于在无S条件下,MT也可产生,推测Se的存在会代替S合成MT。
     综上所述,S、Se交互对水稻幼苗Cd毒害的主要机制是,形成巯基物质(GSH、 PCs以及MT),以螯合Cd离子,从而减轻Cd的自由移动,缓解Cd毒害。此外,S与Se促进Cd向液泡转移,以隔离Cd离子,减轻其对水稻幼苗的毒害。无S时,Se也可促进巯基物质的形成,以降低Cd毒害;而高S时,由于S和Se的相互竞争,S对Se的抑制较为显著,因此S起到缓解Cd毒害的主要作用。
Cadmium (Cd) has strong toxicity to organisms, and has been widely followed. Sulfur (S) and selenium (Se) are able to alleviate Cd toxicity. S and Se belong to the same groups, therefore their absorption and assimilation in plants are similar with each other, moreover will compete with each other. Therefore, the experiments were carried on by using NO6Huaidao as material, by adding S and Cd in root, foliar applied Se, exposure for12d, sampled every3d to observe the rice seedling growth, antioxidant system response and thiol compounds substances, S、Se and Cd accumulation in rice seedlings, subcellular distribution and three in the space distribution of rice seedlings in order to illustrate the different concentrations of S, Se detoxification mechanism of Cd. The main results are as follows:
     In the growth of rice seedlings, as time increases, increasing Cd concentration on the inhibition of rice seedlings biomass is more significant and lead to decreased chlorophyll content and root activity. Foliar applied for Se and S supply were significantly alleviated Cd toxicity on rice seedlings, and promote the synthesis of chlorophyll and root activity. In high S treatment, foliar applied Se has no significant inhibition on Cd toxicity, indicating that competition at S and Se, which did not produce further synergies.
     In the antioxidant enzyme system response and sulfhydryl compounds respects, the higher Cd concentration, the higher malondialdehyde (MDA) content and antioxidant enzyme superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activitys in rice seedlings. And Induce the synthesis of glutathione (GSH), phytochelatins (PCs) and metallothionein (MT), more thiol compounds synthesized, which can alleviate Cd toxicity on rice seedlings. Foliar applied Se without and S supply decreased the MDA content and the activity of antioxidant enzymes. with the no S conditions, compared with no Se, foliar applied Se significantly promote the synthesis of GSH, PCs and MT, indicating that in the absence of S, Se detoxification mechanism on Cd is replaced S to mainly form substituting Se-cysteine, which was synthesized correlation chelate thiol compound. In the treatment of high S, Se can not further promote the synthesis of thiod compounds, because Se absorptionhas been restrained by S, thereby S played the key role on Cd detoxification. Moreover, Also showed that the S and Se detoxification mechanism on Cd is not to improve the response of antioxidant enzymes, but to promote the synthesis of thiol compound substances.
     In the Cd, Se accumulation, the foliar applied Se significantly reduced the Cd content in the roots and shoots of rice seedlings. The higher the concentration of Cd, more rice seedlings to promote the absorption of Se, which is a way of self-protection of rice seedlings. When S applied alone, with the increase of S concentration, Cd accumulation in seedling in rice roots decreased, while increased, indicating that S inhibits the absorption of Cd in rice roots, and promote Cd transfer to shoot, the main mechanisms to promote the synthesis of PCs and other S chelating proteins can be transported over long distances in rice seedlings. Under conditions of high S, Se inhibited Cd transport facilities to the shoot.
     In the subcellular distribution and chemical forms of Cd using hydroponic condition containing Cd and/or S, when spraying Se on the overground part. And we used differential centrifugal technology and chemical reagent step-by-step extraction method to get different part of cell and different chemical forms. The results showed that proportion of Cd in cell wall fraction under Cd10treatment is larger than Cdl. And with the increase of S and spraying Se on the overground part, the proportion of Cd in soluble fraction increased while decreased in cell wall indicating that the supply of S and Se could promote Cd to translocate to the vacuole. Also with the supply of S and Se, the percentage of NaCl-extraction Cd form followed the rule: S720>S48>S0, Se500>Se0, while the proportion of ethanol-extraction Cd form decreased illustrating that the existence of S and Se could promote Cd to transfer to the less active forms. However, compared to the treatment without S, Se supply did not significantly increase the proportion of Cd in the vacuole and NaCl-extraction under high S concentration indicating that S and Se competed with each other, and can not emerge synergism. Hence, from the subcellular distribution of S and Se, illustrated that in high S condition, S promote Cd transfer to the vacuole to reduce its toxicity.
     Using SRXRF for spatial distrbution of S, Se, Cd in rice seedlings. In the conditions without S, Se mitigated Cd toxicity mainly by promoting protein synthesis, to complex Cd ions, to reduce Cd toxicity. Under conditions of high S, S and Se compete with each other, the distribution of S and Cd are similar, indicating S played the major role to alleviate Cd toxicity.
     In addition, Under hydroponic conditions, rice "NO.6" were used to observe the effect of metallothionein in rice seedling and adsorption of selenium(Se) and cadmium(Cd) under the interaction of Se and Cd with deferred sulfur(S) addition (without and deferred S addition). The results showed that rice seedling without S got more pernicious effect under the interaction of Se and Cd compared to S addition on day6. The toxicity on rice with10mg/L of Cd was higher than1mg/L of Cd. Accumulation of Se and Cd increased as time went. However, the addition of S mitigated Cd toxicity and restrained the accumulation of Se and Cd in rice seedlings. The results also confirmed that S addition led to the significantly increase of metallothionein(MT) in rice seedling, moreover MT could be produced without S, speculating that the existence of Se can substitute S to synthesize MT.
     In summary, the main mechanism of S, Se interactive on Cd detoxification in rice seedlings is forming sulfhydryls (GSH, PCs and MT), to chelate Cd ions, thereby reducing the free movement of Cd, and alleviate Cd toxicity. In addition, S and Se could promote Cd transfer to vacuole, Cd ions has been in isolation, then its toxicity be reduced. Without S, Se also promote the formation of thiol substances; while high S, due to the competition between S and Se, S restrained Se absorption, thus S plays the major role in alleviating Cd toxicity.
引文
[1]Da Rosa Correa A X, Rorig L R, Verdinelli M A, et al. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers[J]. Science of Total Environment, 2006,357(1-3):120-127.
    [2]Di Toppi L S, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999,41(2):105-130.
    [3]Ikemoto T, Kunito T, Tanaka H, et al. Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver[J]. Archives of Environmental Contamination and Toxicology, 2004,47(3):402-413.
    [4]Dziubinska H, Filek M, Krol E, et al. Slow vacuolar channels in vacuoles from winter and spring varieties of rape (Brassica napus)[J]. Journal of Plant Physiology, 2008,165(14): 1511-1518.
    [5]Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science,2001,161(6):1135-1144.
    [6]Hassan M J, Wang Z, Zhang G. Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice[J]. Journal of Plant Nutrition, 2005,28(10): 1785-1800.
    [7]Khan N A, Singh S, Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (triticum aestivum) cultivars differing in yield potential under cadmium stress[J]. Journal of Agronomy and Crop Science, 2007, 193(6):435-444.
    [8]李会合,胡绵好,李延强,等.硫对超积累植物东南景天生长和镉累积的影响[J].水土保持学报,2008,22(6):71-74.
    [9]何俊瑜,任艳芳,严玉萍,等.镉胁迫对水稻幼苗生长和根尖细胞分裂的影响[J].土壤学报,2010,47(1):138-144.
    [10]周彦锋,吴伟,尤洋,等.重金属镉锌联合胁迫下鲫鱼组织中金属硫蛋白的动态变化[J].生态与农村环境学报,2010,26(1):63-67.
    [11]秦建桥,赵华荣,赵鹏.镉胁迫下不同生态型五节芒的膜脂过氧化水平及抗氧化能力比较[J].安徽农业科学,2011,39(12):7418-7421.
    [12]黄秋蝉,黎晓峰,李耀燕.镉对水稻的毒害效应及耐性机制的研究进展[J].安徽农业科学,2007,35(7):1971-1974.
    [13]Liu Y, Wang X, Zeng G, et al. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud[J]. Chemosphere, 2007,69(1): 99-107.
    [14]倪才英,李华,骆永明,等.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境科学学报,2004,24(2):343-348.
    [15]李丹丹,汪鹏,李连帧,等.不同阳离子影响下小麦根吸收镉的动力学过程[J].生态毒理学报,2010,5(4):580-586.
    [16]李丹丹,周东美,汪鹏,等.镉和温度预暴露对小麦吸收镉的影响[J].生态毒理学报,2010,5(3):439-445.
    [17]周建民,党志,陈能场,等.NTA对玉米体内Cu、Zn的积累及化学形态的影响[J].农业环境科学学报, 2007,26(2):453-457.
    [18]Lavoie M, Le Faucheur S, Fortin C, et al. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules[J]. Aquatic Toxicology, 2009,92(2):65-75.
    [19]曾晓雯.锌镉胁迫下圆锥南芥的抗氧化防御和差异蛋白质组的响应.博士,广东:中山大学,2009.
    [20]Chen Y, Huerta A J. Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings[J]. Journal of Plant Nutrition, 1997,20(7-8):845-856.
    [21]汪晓丽,盛海君,刘杨,等.镉对水稻幼苗根系细胞膜电位和膜透性的影响[J].农业环境科学学报,2010,29(4):630-635.
    [22]徐勤松,施国新,杜开和.镉胁迫对水车前叶片抗氧化酶系统和亚显微结构的影响田.农村生态环境,2001,17(2):30-34.
    [23]杨志敏,郑绍建,胡霭堂.植物体内磷与重金属元素锌镉交互作用的研究进展[J].植物营养与肥料学报,1999,5(4):366-376.
    [24]李大辉.铅污染对菱幼苗SOD、POD及叶细胞亚显微结构的影响[J].中国环境科学,2009,29(2):136-141.
    [25]Wu F, Zhang G, Yu J. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes [J]. Communications in Soil Science and Plant Analysis, 2003,34(13-14):2003-2020.
    [26]陈英旭,等著.土壤重金属的植物污染化学[M].北京:科学出版社,2008.
    [27]王海鸣,钟广蓉,徐海洋,等.S元素对水稻耐重金属Cu毒性的影响[J].农业环境科学学报,2008,27(6):2319-2324.
    [28]王立新,郁建峰,张海芸,等.硒对镉胁迫下豌豆幼苗生长发育的影响[J].安徽农业科学,2009,37(24):11502-11504.
    [29]张杰,黄永杰,刘雪云.镧对镉胁迫下水稻幼苗生长及生理特性的影响[J].生态环境,2007,16(3):835-841.
    [30]邓金川.东南景天和鸭跖草的遗传多样性研究及镉耐性基因克隆.博士,广东:中山大学,2006.
    [31]Wang X, Liu Y, Zeng G, et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud[J]. Environmental and Experimental Botany, 2008,62(3): 389-395.
    [32]Steen R E, Van C K, Bervoets L, et al. Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity[J]. Environmental Pollution, 2007,148(1):166-175.
    [33]Wu Y, Wang W X. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton[J]. Environmental Pollution, 2011, 159(10):3097-3105.
    [34]Battin E E, Brumaghim J L. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms[J]. Cell Biochemistry and Biophysics, 2009,55(1):1-23.
    [35]Jihenel H, Imed M, Fatima H, et al. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: histology and Cd accumulation[J]. Food and Chemical Toxicology, 2008,46(11):3522-3527.
    [36]Newairy A A, El-Sharaky A S, Badreldeen M M, et al. The hepatoprotective effects of selenium against cadmium toxicity in rats[J]. Toxicology, 2007,242(1-3):23-30.
    [37]Said L, Banni M, Kerkeni A, et al. Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat[J]. Food and Chemical Toxicology,2010,48(10):2759-2765.
    [38]Arteel G E, Sies H. The biochemistry of selenium and the glutathione system[J]. Environmental Toxicology and Pharmacology, 2001,10(4):153-158.
    [39]孙雪梅,杨志敏.植物的硫同化及其相关酶活性在镉胁迫下的调节[J].植物生理与分子生物学学报,2006,32(1):9-16.
    [40]Harada E, Yamaguchi Y, Koizumi N, et al. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis[J]. Journal of Plant Physiology, 2002,159(4):445-448.
    [41]蔡悦.水稻耐镉的基因型差异及外源GSH缓解镉毒的机理研究.硕士,浙江:浙江大学,2010.
    [42]蔡保松,雷梅,陈同斌,等.植物螯合肽及其在抗重金属胁迫中的作用[J].生态学 报,2003,23(10):2125-2132.
    [43]Cobbett C, Goldsbrough P B. Phytochelatins and metallo-thioneins:roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, (53): 159-182.
    [44]Peroza E A, Schmucki R, Gtintert P, et al, The pE-do-main of wheat Ec-1 metallothionein:a metal-binding do-main with a distinctive structure[J]. Molecular and Cellular Biology, 2009, (387):207-218.
    [45]Blindauer C A, Harrison M D, Parkinson J A, et al. Ametallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity[J]. Proceedings of the National Academy of Sciences USA, 2001,98(17):9593-9598.
    [46]Wan X Q, Freisinger E. The plant metallothionein 2 from Cicer arietinum forms a single metal-thiolate cluster[J]. Metallomics, 2009,1:489-500.
    [47]Domenech J, Tinti A, Capdevila M, et al. Structural studyof the zinc and cadmium complexes of a type 2 plant(Quercus suber)metallothionein:insight by vibrational spectroscopy[J]. Biopolymers, 2007,86(3):240-248.
    [48]Ramos I, Esterban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction [J]. Plant science, 2002,162(1):761-767.
    [49]Wallace W G, Lee B G, Luoma S N. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)[J]. Marine Ecology-Progress Series, 2003,249:183-197.
    [50]翁南燕,周东美,汪鹏,等.铜镉复合胁迫下硫素对小麦幼苗铜镉吸收、亚细胞分布及毒性的影响[J].生态毒理学报,2011,6(1):87-93.
    [51]Allan D L, Jarrell W M. Proton and copper absorption to maize and soybean root cell walls[J]. Plant Physiology, 1989,89(3):823-832.
    [52]Gardea-Torresdey J L, Tiemann K J, Armendariz V, et al. Characterization of chromium (VI) binding and reduction to chromium (Ⅲ) by the agricultural byproduct of Avena monida (oat) biomass[J]. Journal of Hazardous Materials,2000,80(1):175-188.
    [53]Ernst W H O, Verkleij J A C, Schat. Metal tolerance in plant[J]. Acta Botanica Neerlandica, 1992,41:229-248.
    [54]Kuzuhara Y, Isobe A, Awazuhara M, et al. Glutathione levels in phloem sap of rice plants under sulfur deficient conditions[J]. Soil Science and Plant Nutrition, 2000,46(1): 265-270.
    [55]Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants[J]. FEMS Microbiol Reviews,2005,29(4):653-671.
    [56]Resurreccion A P, Makino A, Bennett J, et al. Effects of sulfur nutrition on the growth and photosynthesis of rice[J]. Soil Science and Plant Nutrition, 2001,47(3):611-620
    [57]孙新,杨志敏,徐朗莱.镉诱导油菜叶片氧化胁迫及硫化物的络合作用[J].西北植物学报,2003,23(9):1506-1511.
    [58]张华,史红文,邱喜阳,等.镉-硫-硒复合作用下硒在土壤-蔬菜系统中的迁移分配研究[J].湖南科技大学学报(自然科学版),2009,24(2):112-115.
    [59]王云,张海军,唐为忠,等.硫对镉胁迫下小麦幼苗生长和一些生理特性的影响[J].农业环境科学学报,2008,27(3):1029-1032.
    [60]吴秀峰,陈平.硒对水稻幼苗生长和生理特性的影响[J].农业与技术,2004,24(5):76-79.
    [61]雷红灵,路海波,蔡金洲,等.硒对藤茶抗氧化酶活性及有效成分的影响[J].华中农业大学学报,2010,29(3):321-325.
    [62]Badiello R, Feroci G, Fini A. Interaction Between Trace Elements: Selenium and Cadmium Ions[J]. Journal of Trace Elements in Medicine and Biology, 1996,10(3): 156-162.
    [63]Zhang L H, Shi W M, Wang X C. Difference in Selenium Accumulation in Shoots of Two Rice Cultivars[J]. Pedosphere, 2006,16(5):646-653.
    [64]Zhu Y G, Pilon-Smits E A, Zhao F J, et al. Selenium in higher plants:understanding mechanisms for biofortification and phytoremediation[J]. Trends Plant Science, 2009, 14(8):436-442.
    [65]彭诚.硒对镉协迫下白菜幼苗生理特性的影响[J].湖北民族学院学报(自然科学版),2008,26(1):97-99.
    [66]王立新,张海芸,郁建锋,等.硒对汞、镉复合污染下豌豆幼苗生长的影响[J].常熟理工学院学报(自然科学,2009,23(4):71-74.
    [67]Stobart A K, GriffithsW T, Ameen-BukhariI, et al. The effect of Cd2+ on the biosynthesis chlorophyll in leaves of barley[J]. Plant Physiology, 1985,63:293-298.
    [68]谷巍,施国新,杜开和,等.汞、镉复合污染对轮叶狐尾藻的毒害影响[J].南京师大学报(自然科学版),2001,24(3):75-79.
    [69]Filek M, Koscielniak J, Labanowska M, et al. Selenium-induced protection of photosynthesis activity in rape (Brassica napus) seedlings subjected to cadmium stress. Fluorescence and EPR measurements[J]. Photosynthesis Research, 2010,105(1):27-37.
    [70]Zembala M, Filek M, Walas S, et al. Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress[J]. Plant and Soil,2009,329(1-2):457-468.
    [71]陈平,余土元,陈惠阳,等.硒对镉胁迫下水稻幼苗生长及生理特性的影响[J].广西植物,2002,22(3):5-9.
    [72]张海英,韩涛,田磊,等.草莓叶面施硒对其重金属镉和铅积累的影响[J].园艺学报,2011,38(3):409-416.
    [73]吴志刚,陈学敏,刘四海,等.硒对镉引发氧自由基的清除作用研究[J].中国公共卫生,2001,17(6):507-508.
    [74]吴建新,丁小余,罗玉明.黄丝草镉污染毒害及硒的缓解作用[J].中国环境科学,2003,23(2):180-183.
    [75]Liu Y, Zhang S P, Cai Y Q. Cytoprotective effects of selenium on cadmium-induced LLC-PK1 cells apoptosis by activating JNK pathway[J]. Toxicology In Vitro, 2007, 21(4):677-684.
    [76]Rana S V. Protective effects of GSH, VitaminE and selenium on lipid peroxidation in cadmium-fed rats[J]. Biological Trace Element Research, 1996,51:161-168.
    [77]Pezzarossa B, Piccotino D, Shennan C, et al. Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supply[J]. Journal of Plant Nutrition, 1999,22(10):1613-1635.
    [78]王庆仁,林葆,李继云.含硫、硒化合物在油菜中的积累及其对硫甙水平的影响[J].生态学报,1999,19(4):546-550.
    [79]Reese R N, White C A, Winge D R. Long-distance transport of reduced sulphur in spruce (Picea abies L.)[J]. Journal of Experimental Botany, 1992,43:1243-1250.
    [80]黄峙,郑文杰,向军俭,等.硒硫比值对钝顶螺旋藻有机化硒的影响及藻体中硒的形态、价态构成[J].海洋科学,2002,26(5):60-62.
    [81]马友华,丁瑞兴,张继榛,等.植物体内硒和硫的相互作用[J].植物生理学通讯,2001,37(2):161-166.
    [82]李登超,朱祝军,徐志豪.不同硫水平下硒对小白菜生长及养分含量的影响[J].浙江大学学报(农业与生命科学版),2003,29(4):402-406.
    [83]冯人伟.植物对砷、硒、锑的富集及抗性机理研究.博士,武汉:华中农业大学,2009.
    [84]White P J, Bowen H C, Parmaguru P, et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2004,55(404): 1927-1937.
    [85]王昌全,李冰,李焕荣.硒硫配合喷施对大蒜营养品质的影响[J].园艺学报,2004,31(4):461-466.
    [86]高家合,李梅云,晋艳.叶面喷施硒肥对烤烟的影响[J].中国农业科技导报,2007,9(2):61-65.
    [87]池忠志,郑家国,姜心禄,等.硒肥喷施时期对水稻产量的影响及其经济效益分析[J].中国稻米,2010,16(1):11-12.
    [88]冯两蕊,杜慧玲,王日鑫.叶面喷施硒对生菜富硒量及产量与品质的影响[J].山西农业大学学报,2007,27(3):291-294.
    [89]李静,夏建国,巩发永,等.外源硒肥对茶叶硒含量及化学品质的影响研究[J].水土保持学报,2005,19(4):104-106,126.
    [90]李向阳,刘立军,胡一鸿.叶面喷施硒对水稻幼苗生长及抗氧化酶活性的影响[J].安徽农业科学,2009,37(20):9414-9415.
    [91]刘世亮,马闯,介晓磊,等.喷施亚硒酸钠对紫花苜蓿干草产量和品质的影响[J].草业科学,2008,25(8):73-78.
    [92]吕选忠,官象雷,唐勇..叶面喷施锌或硒对生菜吸收镉的拮抗作用研究[J].土壤学报,2006,43(5):868-870.
    [93]宋家永,李敬光,王永华,等.喷施硒肥对小麦生理特性、子粒硒含量的影响[J].河南农业大学学报,2005,39(2):139-142.
    [94]王淑珍,赵喜茹,王喜枝.叶面喷施亚硒酸钠对大蒜光合作用及产量品质的影响[J].中国农学通报,2008,24(4):294-297.
    [95]张艳玲,潘根兴,胡秋辉,等.叶面喷施硒肥对低硒土壤中大豆不同蛋白组成及其硒分布的影响[J].南京农业大学学报,2003,26(1):37-40.
    [96]赵学杏.水稻叶面喷硒效应试验初报[J].安徽农学通报,2008,14(16):28-30.
    [97]周鑫斌,施卫明,杨林章.叶面喷硒对水稻籽粒硒富集及分布的影响[J].土壤学报,2007,44(1):73-78.
    [98]Zhu, J. M.; Zhang, B.S. Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei Province, China[J]. Applied Geochem, 2001,16:1333-1344.
    [99]姚林波,高振敏,杨竹森,等.渔塘坝硒矿床富硒硅质岩的成因[J].中国科学(D辑),2002,32(1):54-63.
    [100]张光弟,葛晓立,张绮玲,等.湖北恩施硒中毒区土壤硒的分布及其控制因素[J].中国地质,2001,28(9):37-41.
    [101]Lin, K.F.; Xiang, Y.L. Metallic Elements in Hair as a Biomarker of Human Exposure to Environmental Pollution[J]. Critical Reviews in Plant Science,2003,18(3):417-428.
    [102]林匡飞,徐小清.As污染区农民头发中As含量与环境中As含量的关系[J].中国环境科学,2001,21(5):440-444.
    [103]林匡飞.硒和锗在土壤-植物系统中的生态毒理效应研究,中国科学院博士学位研 究生学位论文,2003,191-212.
    [104]吴志刚,李郧,陈学敏.硒镉联合注射染毒法的方法学研究[J].中国公共卫生,2002,18(5):531-532.
    [105]Sasakara C, Kazuo T S. Biological interaction between transition metals(Ag, Cd, and Hg), selenide/sulfide and selenoprotein P[J]. Journal of Inorganic Biochemistry, 1998, 71:159-162.
    [106]Magos L, Webb M. The interaction of Selenium with Cadmium and Mercury[J]. Critical Reviews in Toxicology, 1980,8:1-42.
    [107]Nishiyama S, Nakamura K, Konish Y. Effect of Selenium on blood pressure, urinary sodium excretion and plasma aldosterone in cadmium treated male rats[J]. Journal Toxicology, 1987,59:365-370.
    [108]彭双清,虞昊,刘世杰.硒对镉致脂质过氧化与金属硫化蛋白诱导合成的影响[J].卫生毒理学杂志,2003,17(3):155-158.
    [109]王爱国,陈学敏,鲁文清,等.低硒高镉对大鼠组织中谷胱甘肽过氧化酶活性影响的动态观察[J].中国地方病学杂志,1995,14(6):337-340.
    [110]王宗元,王捍东,史德浩,等.镉中毒解毒机理的研究-硒化合物的预防和治疗作用初探[J].畜牧兽医学报,1993,24(4):366-373.
    [111]胡莹,朱永官,黄易宗.钒镉复合污染对水稻吸收积累镉、钒和磷的影响[J].环境科学学报,2005,25(2):198-202.
    [112]戎红.水稻抗镉胁迫响应的差异蛋白组学研究.硕士,福州:福建农林大学,2009.
    [113]Liu X, Zhang S, Shan X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination[J]. Ecotoxicology and Environmental Safety, 2007,68(2):305-313.
    [114]张保林,盛湘蓉,刘兴军,等.金属硫蛋白测定方法-银饱和分析法[J].药物生物技术,1996,3(1):31-33.
    [115]周慧.关于用硫酸钡比浊法测定叶片中硫化物的探讨[J].生物技术世界,2013,04:104.
    [116]Vogeli-Lange R, Wagner G J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides[J]. Plant Physiology, 1990,92(4):1086-1093.
    [117]Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980,65(3):480-482.
    [118]Wu F B, Dong J, Qian Q Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere, 2005,60(10): 1437-1446.
    [119]陈志德,仲维功,王军,等.镉胁迫对水稻种子萌发和幼苗生长的影响[J].江苏农业学报,2009,25(1):19-23.
    [120]吴秀峰,陈平.硒对水稻幼苗生长和生理特性的影响[J].农业与技术,2004,24(5):8-11.
    [121]Howarth J R, Fourcroy P, Davidian J C, et al. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae[J]. Planta, 2003,218:58-64.
    [122]Du Y X, Li Y N, Chen D Q. Progress in Selenium Metabolism and Accumulation and Key Enzymes in Plants[J]. Journal of Tropicaland Subtropical Botany, 2007,15: 269-276.
    [123]Filek M, Zembala M, Dudek A, et al. Electric and structural studies of hormone interaction with chloroplast envelope membranes isolated from vegetative and generative rape[J]. Journal of Plant Physiology, 2007,164(7):861-867.
    [124]Filek M, Gzyl-Malcher B, Zembala M, et al. Effect of selenium on characteristics of rape chloroplasts modified by cadmium[J]. Journal of Plant Physiology, 2010,167: 28-33.
    [125]谷巍,施国新,杜开和,等.汞、镉复合污染对轮叶狐尾藻的毒害影响[J].南京师大学报(自然科学版),2001,24(3):75-79.
    [126]Massonneau A, Cathala N, Grlgnon C. Effect of sulphate defidency on the plasma memhrance polypeptide composition of Brassica napus[J]. Journal of Experimental Botany, 1997,48:93-100.
    [127]Yu H J, Fang R y, Cheng Z, et al. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa)[J]. Rice Science, 2008,15(4):91-97.
    [128]Liu M C, Li H F, Xia L J, et al. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties[J]. Acta Ecologica Sinica, 2001,21(4):598-602.
    [129]Liu W J, Zhang X K, Zhang F S.. Effects of iron oxides and root exudat es on cadmium uptake by rice[J].1999,36(4):463-469.
    [130]Mikkelsen, R L, Wan, H L. The effect of selenium on sulfur uptake by barley and rice[J]. Plant and soil, 1990,12(4):151-153.
    [131]Feroci G, Fini A. Study of the Antioxidant Effect of Several Selenium and Sulphur Compounds[J]. Journal of Trace Elements in Medicine and Biology, 1998,12(2): 96-100.
    [132]陈平,余土元.硒对镉胁迫下水稻幼苗生长及生理特性的影响[J].广西植物,2002,22(3):277-282.
    [133]Christensen M J, Hancock A L,Ford A H. Modifying effects of supplemental selenium and sulfur on cadmium toxicity in rats[J]. Archives of Environmental Contamination and Toxicology, 1987,16(6):717-722.
    [134]杜慧玲,冯两蕊,牛志峰,等.硒对生菜抗氧化酶活性及光合作用的影响[J].中国农学通报,2007,23(5):226-229.
    [135]冯倩,台培东,付莎莎,等.巯基化合物在万寿菊镉解毒中的作用[J].环境工程学报,2010,4(1):214-218.
    [136]Cao Z H, Wang X C, Yao D H, et al. Selenium geochemistry of paddy soils in Yangtze River delta[J]. Environment International,2001,26(5-6):335-339.
    [137]Baranski B. Effect of maternal cadmium exposure on postnatal development and tissue cadmium, copper and zinc concentrations in rats[J]. Archives of Toxicology, 1986,58: 255-260.
    [138]Rauser W E. Phytochelatins and related peptides[J]. Plant Physiology, 1995,109: 1141-1149.
    [139]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulat ion in Indian Mustard[J]. Plant Physiology, 1995,109:1427-1443.
    [140]苏玲,章永松,林咸永,等.维管植物的镉毒和耐性机制[J].植物营养与肥料学报,2000,6(1):106-112.
    [141]Grill E, Winnacker E L, Zenk M H. Phytochelatins:the principal heavy-metal complexing peptides of higher plants[J]. Science, 1985,230:674-676.
    [142]Grill E, Winnacker E L, Zenk M H. Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells[J]. FEBS Letter, 1986,197:115-120.
    [143]Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy-metal binding peptides from plants, are functionally analogous to metallothioneins[J]. Proceedings of the National Academy of Sciences USA, 1987,84:439-443.
    [144]Grill E, Thumann J, Winnacker E L, Zenk M H. Introduction of heavy-metal binding phytochelatins by inoculation of cell cutures in standard media[J]. Plant Cell Reports, 1988,7:375-378.
    [145]Grill E, Loffler S, Winnacker E L, Zenk M H. Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatins synthase)[J]. Proceedings of the National Academy of Sciences USA, 1989,86:6838-6842.
    [146]Zhu Y L, Elizabeth A H, Pilon S, et al. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance [J]. Plant Physiology, 1999,119:73-80.
    [147]Klapheck S, Fliegner W, Zimmer I. Hydroxymethyl-phytochelatins [(g-glutamylcysteine)n-serine]aremetal-induced peptides of the Poaceae[J]. Plant Physiology, 1994,104:1325-1332.
    [148]雍政,何冰,徐卓立,等.利用蛋白质指纹图谱技术检测硒诱导金属硫蛋白实现大鼠肝纤维化防护作用[J].武警医学院学报,2007,16(1):12-15.
    [149]徐卓立,郭军华,刘颖,等.硒对金属硫蛋白的诱导作用及硒代金属硫蛋白的生成[J].解放军药学学报,2004,20(1):11-14.
    [150]Chow C M. Nigen S N, McConnell W B. Biosynthesis of Se-methyh-selenocy steine and S methycysteine in astragulus bisulcatus[J]. Phytochemistry, 1971,10:2693-3698.
    [151]David G. Mendoza C, Emerald B, et al. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus:A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation[J]. The Plant Journal,2008,54(2):249-259.
    [152]Fan J L, Hu Z Y, Ziadi N, et al. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.)[J]. Environmental. Pollution, 2010,158:409-415.
    [153]Sors T G, Ellis D R, Na G N, et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium[J]. Plant Journal, 2005,42(6):785-797.
    [154]Fu X, Dou C, Chen Y, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L[J]. Journal of Hazard Material,2011,186(1):103-107.
    [155]Luis E H, Esther L R, Agustin G. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings [J]. Plant Science,1998,132:139-150.
    [156]翁南燕,周东美,汪鹏,等.铜镉复合胁迫下硫素对小麦幼苗铜镉吸收,亚细胞分布及毒性的影响[J].生态毒理学报,2011,6(1):87-93.
    [157]李会合,杨肖娥.硫对超积累东南景天镉累积,亚细胞分布和化学形态的影响[J].植物营养与肥料学报,2009,15(2):395-402.
    [158]Da-Rosa-Correa A X, Rorig L R, Verdinelli M A, et al. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers[J]. Science of Total Environment, 2006,357(1-3):120-127.
    [159]He J, Zhu C, Ren Y, et al. Uptake, subcellular distribution, and chemical forms of cadmium in wild-type and mutant rice[J]. Pedosphere, 2008,18(3):371-377.
    [160]王芳,丁杉,张春华,等.不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布[J].农业环境科学学报,2010,29(4):625-629.
    [161]王芳,杨勇,张燕,等.不同蔬菜对镉的吸收累积及亚细胞分布[J].农业环境科学学报,2009,28(1):44-48.
    [162]WAN M, ZHOU W, LIN Bao. Subcellular and molecular distribution of cadmium in two genotypes differing in shoot/root Cd partitioning[J]. Scientia Agricultura Sinica, 2003,36(6):671-675.
    [163]Li D D, Zhou D M, Wang P, et al. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots [J]. Ecotoxicology and Environmental Safety, 2011,74(4):874-881.
    [164]Chen C, Zhang P, Hou X, et al. Subcellular distribution of selenium and Se-containing proteins in human liver[J]. Biochimica et Biophysica Acta, 1999,1427(2):205-215.
    [165]Jacob C, Giles G I, Giles N M, et al. Sulfur and selenium: the role of oxidation state in protein structure and function[J]. Angewandte Chemie (International ed. in English), 2003,42(39):4742-4758.
    [166]Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants[J]. FEMS Microbiology Review, 2005,29(4):653-671.
    [167]周小勇,仇荣亮,胡鹏杰,等.镉和铅对长柔毛委陵菜体内锌的亚细胞分布和化学形态的影响[J].环境科学,2008,29(7):2028-2037.
    [168]周小勇,仇荣亮,李清飞.锌对长柔毛委陵菜中铅的分布和化学形态的影响[J].环境科学学报,2008,28(10):2065-2075.
    [169]Zembala M, Filek M, Walas S, et al. Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress[J]. Plant and Soil,2009,329(1-2):457-468.
    [170]Badiello R G, Feroci, Fini A. Interaction between trace elements: selenium and cadmium ions[J]. Journal of Trace Elements in Medicine and Biology, 1996,10(3): 156-162.
    [171]Feroci G, Fini A. Study of the antioxidant effect of several selenium and sulfur compounds[J]. Journal of Trace Elements in Medicine and Biology, 1998,12(2): 96-100.
    [172]He J Y, Ren Y F, Zhu C, et al. Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa) [J]. Rice Science, 2008,15(4): 319-325.
    [173]Arteel G E, Sies H. The biochemistry of selenium and the glutathione system[J]. Environmental Toxicology and Pharmacology, 2001,10(4):153-158.
    [174]Wu L, Guo X, Banuelos G S. Selenium and sulfur accumulation and soil selenium dissipation in planting of four herbaceous plant species in soil contaminated with drainage sediment rich in both selenium and sulfur [J]. International Journal of Phytoremediation, 2003,5(1):25-40.
    [175]Weng B S, Xie X Y, Weiss D J, et al. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium:Sub-cellular distribution, chemical forms and thiol pools[J]. Marine Pollutution Bulletin, 2012,64:2453-2460.
    [176]Astolfi S, Zuchi S, Passera C. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves[J]. Journal of Plant Physiology, 2004,161:795-802.
    [177]Gong J M, Lee D A, Schroeder J I. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis[J]. Proceedings of the National Academy of Sciences USA,2003,100:10118-10123.
    [178]Marschner H. Mineral Nutrition of Higher Plants[M]. Academic Press, London. 1995.
    [179]Jazen H H, Bettary J R. Sulfur nutrition of rapeseed influence of fertilizer nitrogen and sulfur rates[J]. Soil Science Society of America Journal, 1984,48:100-107.
    [180]茹炳根,潘爱华,黄秉乾,等.金属硫蛋白[J].生物化学与生物物理进展,1991,18(4):254-259.
    [181]全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382.
    [182]王立新,张海芸,郁建锋,等.硒对汞、镉复合污染下豌豆幼苗生长的影响[J].常熟理工学院学报(自然科学),2009,23(4):71-74.
    [183]Krupa Z, Oquist G, Huner N P A. The effects of cadmium on photosynthesis of Phaseolus vulgaris-a fluorescence analysis[J]. Plant Physiology, 1993,88:626-630.
    [184]Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions [J]. Acta Physiologiae Plantarum,1995,171:77-90.
    [185]Ouzounidou G, Moustakas M, Eleftheriou E P. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L) leaves [J]. Archives of Environment Contamination and Toxicology, 1997,32:54-60.
    [186]Shukla U C, Singh J, Joshi P C, et al. Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis, and macromolecules of wheat seedlings[J]. Biological Trace Element Research, 2003,92: 257-273.
    [187]Baszynski T, Wajda L, Krol M, et al. Photosynthetic activities of cadmium-treated tomato plants[J]. Plant Physiology, 1980,48:365-370.
    [188]Barcelo J, Vazquez M, Poschenriender C. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.)[J]. New Phytologist, 1988, 108:37-49.
    [189]李登超,朱祝军,徐志豪,等.不同硫水平下硒对小白菜生长及养分含量的影响[J].浙江大学学报.2003,29(4):402-406.
    [190]Mikkelsen R L, Wan H F. The Effect of Selenium on Sulfur Uptake by Barley and Rice[J]. Plant and Soil, 1990,121:151-153.
    [191]马友华,丁瑞兴,等.植物体内硒和硫的相互作用[J].植物生理学通讯,2001,37(2):161-166.
    [192]梁程,林匡飞,张雯,等.不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J].农业环境科学学报,2012,31(5):857-866.
    [193]Garcia-Hernandez M et al. Plant cellular and molecular response to Arabidopsis thaliana[J]. Plant Physiology, 1998,118 (4):387-397.
    [194]Anderson J W, Scarf A R. Selenium and plant metabolism. In Metals and micronutrients: Uptake and utilization by plants[J]. New York: Academic Press, 1983, 241-275.
    [195]Brown T A, Shrift A. Selenium: toxicity and tolerance in higher plants[J]. Biological Reviews,1982,57:59-84.
    [196]Shrift A, Ulrich J M. Transport of selenate and selenite into Astragalus roots[J]. Plant Physiology, 1969,44:893-896.
    [197]Asher C J, Butler G M, Peterson P J. Selenium transport in root systems of tomato[J]. Journal of Experimental Botany, 1977,28:279-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700