用户名: 密码: 验证码:
导截流工程中的几个随机性问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以随机性为大的研究背景和研究主题,针对施工导截流过程中的三个由随机性所引发的工程问题,在分析了各问题自身特点的基础上,分别应用了三种不同的随机性分析方法,使各问题从与以往不同的角度得到了新的认识和一定程度上的解决。具体地,本文所分析的三个随机性问题分别为:A.受水文和水力随机性共同影响时的导流风险分析问题;B.由水流脉动随机性以及块体在床面所处位置随机性所产生的,截流块体的随机性起动问题;C.在脉动水压作用下的闸门的随机振动问题。对以上三个问题的研究,分别构成了本论文的第三、四、五章。
     1)对于随机性问题A,本文应用了一种概率密度演化的方法,以达到“既能对受多重随机因素影响时的风险演化过程进行分析,又能获取最终的导流风险率”的研究目的。
     鉴于上游围堰的堰前水位能综合地体现出水文和水力随机性的共同影响,因此,本文以堰前水位作为导流风险的载体,试图采用概率密度演化方法对堰前水位分布在各时刻的概率密度进行求解,以期能据此对导流风险的演化过程进行分析。为此,在第三章中,基于概率密度演化方法的研究思路,首先根据水库蓄量平衡关系,为该方法的应用提供了一个关于堰前水位的状态方程。然后,在分析了水文和水力不确定性的基础上,通过对各随机参数进行以设计值为均值的正态分布假设,向状态方程中引入了水文和水力随机性。根据此状态方程,本章随后建立了针对堰前水位的广义概率密度演化方程,并介绍了基于此方程的对堰前水位分布的概率密度进行求解的计算流程。同时,通过在该计算流程中添加吸收壁边界条件,提出了导流风险率的计算方法。本章最后,以某水电工程为例,通过数值求解带有7个随机变量的广义概率密度演化方程,成功地获取了3个典型流量水平下的堰前水位分布在计算时段内各时刻的概率密度,并对各流量水平下的导流风险率进行了计算,为了对比验证,该风险率还与由Monte-Carlo法所得到的风险率进行了比较。
     通过以上对实例的分析,可以发现,应用概率密度演化方法能够方便地获取由传统方法所不易得到的堰前水位分布的概率密度及其随时间的变化情况,可以直观、实时地从蕴含有丰富概率信息的该变化过程中,对导流风险进行分析与判断。另外,通过与Monte-Carlo法的计算结果进行对比,说明了基于概率密度演化方法还可以对导流风险率进行有效的求取。
     2)对于随机性问题B,本文根据对块体随机性起动现象的一种描述,应用Monte-Carlo法,对处于多种情况下的截流块体的起动概率进行了计算。
     具体地,在第四章中,首先仅以瞬时流速作为随机参数,对处于无阻挡无遮掩这一简单情况下的截流块体的起动概率用Monte-Carlo法进行了计算,并通过与该情况下的理论解进行对比,说明了Monte-Carlo法在计算块体起动概率方面的可行性。然后,对块体处于更复杂、受更多随机性因素影响下的情况,仍用Monte-Carlo法计算了其起动概率。此处,这些情况包括:有阻挡无遮掩以及有阻挡有遮掩的情况。另外,为能更加合理地反映出截流块体的实际起动情况,本章还首次应用Monte-Carlo法对块体在三维空间内的起动概率进行了计算,得到了块体在该情况下的一些起动规律,并与在二维情况下的相同计算进行了比较。
     通过以上的一系列计算,显示了Monte-Carlo法可以方便且有效地求取受多重随机性因素影响的截流块体的起动概率,使截流块体在动水作用下的起动难度(或稳定性)可以从概率的层面上进行量化,为截流块体的选取及其带来的相关的风险估计提供了依据。
     3)对于随机性问题C,本文应用正交展开的方法,使脉动水压从频域内的随机过程转化为时域内的随机过程,从而为由脉动水压所引起的闸门振动问题建立了激励模型。通过与目标随机过程在均值、方差以及功率谱层面的比较,验证了该激励模型的准确性。进一步地,本章以一个简单的平板结构作为闸门受力体,将由激励模型所生成的252条激励样本作用于该结构,并通过概率密度演化方法对该结构进行了动力响应分析,得到了结构任意位置处的振动位移量在计算时段内任意时刻的概率分布情况,为闸门振动研究提供了一种“频域到时域的激励建模——概率密度演化方法的响应分析”的研究模式。
Taking the randomness as the main research background and the main research topic, three kinds of problems induced by randomness were studied after analyzing the characteristics of each kind of problem. To study these problems, three different methods of stochastic analysis were respectively used due to the characteristics of them. By using these methods, the knowledge of each problem had been deepened from an angle differ from the past, and each problem was somehow resolved. Specifically, the three kinds of problems concerned in this paper are:A. The diversion risk analysis problem when considering the effects of both hydrologic randomness as well as hydraulic randomness; B. The stochastic start problem of the closure block which is synthetically affected by the randomness of the flow fluctuation and the randomness of the river bed location where the block lies; C. The random vibration problem of the sluice gate which is vibrated by fluctuating pressure of flow. Researches on these kinds of problems respectively constitute the chapter3, the chapter4and the chapter5in this paper.
     1) For the A-kind of problem, a probability density evolution (PDF) method was used so that the research goal of "analyzing the changing process of the diversion risk while obtaining the final risk ratio when considering multiple randomness" can be achieved.
     In view of that the cofferdam's upstream level (CUL) can synthetically reflect the effects of both hydrologic and hydraulic randomness, the CUL was taken as the diversion risk carrier, and the probability distribution of CUL at each moment was to be acquired by using the probability density evolution method hoping that the changing process of the diversion risk can be analyzed according to it. Therefore, in chapter3, in accordance with the ideas of PDF method, a state equation about the CUL was offered in the first step based on the rule of reservoir's storage balance. And then, after analyzing the uncertainties of both hydrology and hydraulic, the random factors were imported by assuming that each stochastic parameter follow Gaussian distributions. According to the state equation, a generalized density evolution equation about CUL as well as the computation procedure of it had then been built and introduced. Meanwhile, by adding absorbing boundary condition, a method to calculate the diversion risk ratio was put forward. At the end of this chapter, certain water-power engineering was taken as a case. By numerically solving the generalized density evolution equation about CUL which contains7random variables, the probability density of CUL under3typical flow levels as well as each diversion risk ratio was successfully acquired. For validation, the ratio was compared with the ratio obtained by using Monte-Carlo method.
     Through case analysis above, it is found that the probability density of CUL's distribution as well as its evolution pattern, which is hard to acquire by traditional methods, can be obtained easily by using PDF method. Therefore, by using this method, abundant probabilistic information can be acquired intuitively and in real time, so that the diversion risk analysis based on it can be made. Besides, the validity of calculating the diversion risk ratio by this method was approved by comparing with the result got from Monte-Carlo method.
     2) For the B-kind of problem, according to a description of blocks'random start phenomenon, the starting probability of a block in many conditions was calculated by using the Monte-Carlo (MC) method.
     Specifically, the starting probability of a block in a non-obstruct and non-cover circumstance was calculated by applying the MC method at the beginning of chapter4. The only random variable in this case is the instantaneous velocity. In this case, the starting probability calculated by using the MC method was compared with the analytical solution, therefore, the validity of calculating the starting probability by using MC method was approved. And then, the MC method was applied to many other cases in which there were more random variables, and which therefore were more complicated. The cases calculated in this paper included:"obstruct and non-cover" caseN "obstruct and cover" case. Besides, in order to reflect the real circumstance of block's start, the starting probability was first calculated by using MC method when putting a block in a three-dimensional space, and some characteristics under this computational circumstance were also concluded.
     Through the calculating above, it can be found that the starting probability of a block which is affected by multiple randomness can be easily and effectively obtained by using Monte-Carlo method. Therefore, the stability of a closure block can be analyzed and judged from the aspect of starting probability, which is to provide basis for related risk analysis.
     3) For the C-kind of problem, an orthogonal expansion method was used for the stochastic process of water-flow's fluctuating pressure, by which the stochastic process in frequency domain was transformed into the time domain, and therefore established an excitation model for the research of gate vibration. The validity of the model is tested from the aspect of second order statistics such as sampling ensemble power spectrum and sample mean square error. Furthermore, taking a simple flat plate construction as the force body of gate,252fluctuating load samples generated by the excitation model were loaded on the construction, and its dynamic responses were analyzed by the method of PDF. By using the PDF method, the probability density of displacement at any position of the structure at any time was acquired, and thus a kind of research model named"excitation modeling from time domain to frequency domain-response anlyzing by PDF method"was given.
引文
[1]肖焕雄.论施工导流标准[J].水力发电学报,1987,(3):90-98.
    [2]Ben Chie Yen.Risks in Hydrologic Design of Engineering Projects[J]. Journal of the Hydraulics Division,1970,96(4):959-966.
    [3]Ben Chie Yen.Closure of "Risks in Hydrologic Design of Engineering Projects" [J].Journal of the Hydraulics Division,1971,97(9):1525-1526.
    [4]肖焕雄.施工导截流与围堰工程研究[M].北京:中国电力出版社,2002.
    [5]徐宗学,叶守泽.洪水风险率CSPPC模型及其应用[J].水利学报,1988,(9):1-9.
    [6]邓永录,徐宗学.洪水风险率分析的更新过程模型及其应用[J].水电能源科学,1989,7(3):226-232.
    [7]徐宗学,肖焕雄.洪水风险率CSPPN模型初步应用研究[J]水利学报,(1):28-34.
    [8]肖焕雄,韩采燕.施工导流系统超标洪水风险率模型研究[J].水利学报,1993(11):76-83.
    [9]徐宗学,邓永录.洪水风险率HSPPB模型及其应用[J].水力发电学报,1989,(1):46-55.
    [10]Benjamin,J.R.Probability:Statistics and Decision for Civil Engineers[M],Mcgraw-Hill, New York,1970.
    [11]Vujica Yevjevich.Analysis of Risk and Uncertainties in flood control [CA].Floods and Drought, Proceedings of the Second International Symposium inHydrology,Sept.1972.
    [12]Wood. Eric F, et al.A Bayesian Approach to Analyzing Uncertainty Among Flood Frequency Models[J]. Water Resources Research,1975,11(6):839-843.
    [13]Byron Dodo, et al. Model uncertainty in flood frequency analysis and frequency-based design [J]. Water Resources Research,1976,12(6):1109-1117.
    [14]Donald R.Davis, et al. Uncertainty in the Return Period of Maximum Hydrologic Events:A Bayesian Approach [J] Journal of Hydrology,1976,31(1-2):81-95.
    [15]Jery R. Stedinger. Design Events with Specified Flood Risk [J]. Water Resources Research, 1983,19(2):511-522.
    [16]石明华,钟登华.施工导流超标洪水风险率估计的水文模拟法[J].水利学报,1998,(3):30-33.
    [17]Ouarda,et al. Bayesian inference of non-stationary flood frequency models[CA].World Environmental and Water Resources Congress 2008:Ahupua'a Proceedings of the World Environmental and Water Resources Congress 2008, v 316
    [18]Strupczewski, W.G Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation [J]. Journal of Hydrology,2001,248(1-4):123-142.
    [19]Reddy, M.Janga. Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas[J]. Water Resources Management,2012,26(14):3995-4018.
    [20]唐晓阳,肖焕雄.施工导流系统设计风险率模型研究[J].武汉水利电力大学学报,1996,29(1):25-31.
    [21]金明.水力不确定性及其在防洪泄洪系统风险分析中的影响[J].河海大学学报,1990,19(1):40-45.
    [22]姜树海.水库调洪演算的随机数学模型[J].水科学进展,1993,4(4):294-300.
    [23]姜树海,随机微分方程在泄洪风险分析中的运用[J].水利学报,1994,(4):1-9.
    [24]胡志根,刘全,贺昌海,等.基于Monte-Carlo方法的土石围堰挡水导流风险分析[J].水科学进展,2002,13(5):634-638.
    [25]徐森泉,胡志根,刘全,等.基于多重不确定性因素的施工导流风险分析[J].水电能源科学2004,22(4):78-81.
    [26]范锡蛾,胡志根,靳鹏.基于Monte-Carlo方法的施工导流系统综合风险分析[J].水科学进展,2007,18(4):604-608.
    [27]钟登华,黄伟,张发瑜.基于系统仿真的施工导流不确定性分析[J].天津大学学报,2006,39(12):1441-1445.
    [28]张超,胡志根,刘全.梯级施工导流系统整体风险分析[J].水科学进展,2012,23(3):396-402.
    [29]张超,胡志根,刘全.上游水电站控泄条件下施工导流风险分析[J].水利学报,2012,43(11):1328-1333.
    [30]张超,胡志根,刘全.基于Copula-Monte Carlo方法的串联施工导流系统风险分析[J].水力发电学报,2013,32(4):46-50.
    [31]薛进平,胡志根,刘全.梯级水电站建设施工导流风险分析[J].四川大学学报(工程科学版),2014,46(1):75-80.
    [32]刘全,胡志根,任金明,等.梯级建设环境下水电工程施工导流风险分析[J].水力发电学报,2014,33(1):147-153.
    [33]窦国仁.论泥沙起动流速[J].水利学报,1960,(4):44-60.
    [34]唐存本.泥沙起动规律[J].水利学报,1963,(2):1-12.
    [35]张瑞瑾,谢鉴衡,陈文彪.河流动力学[M].武汉:武汉大学出版社,2007.
    [36]沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965.
    [37]韩其为,何明民.泥沙起动规律及起动流速[M].北京:科学出版社,1999.
    [38]张红武.泥沙起动流速的统一公式[J].水利学报,2012,43(12):1387-1396.
    [39]万兆惠,宋天成,等.水压力对细颗粒泥沙起动流速影响的试验研究[J].泥沙研究,1990(4):62-69.
    [40]Gilbert. The transportation of debris by running water, U.S.GeoL.Surbey.Prof. pap.86,1914.
    [41]Kramer. Sand mixture and movement in fluvial models. Proc.Am.Soc.Civ.Eng.60(4),1934.
    [42]伊兹巴斯.河道截流水力学[M].北京:中国工业出版社,1964
    [43]肖焕雄,左兼金,谢兴保.立堵进占截流中抛投混凝土四面体串及大块石串的稳定性研究[J].水利学报,1985,(7):24-33.
    [44]肖焕雄.施工水力学[M].北京:水利电力出版社,1992.
    [45]肖焕雄,唐晓阳.江河截流中混合粒径群体抛投石料稳定性研究[J].水利学报,(3):10-18.
    [46]肖焕雄.立堵截流抛石粒径计算研究[J].水电站设计,2000,16(1):1-7.
    [47]瞿凌锋.山区河流散抛石坝防冲毁措施研究[D].南京:河海大学,2001.
    [48]李继革,肖焕雄.河道立堵截流抛投粒径研究[J].水电能源科学,2001,19(3):79-81.
    [49]黄国兵,李学海,程子兵,等.截流块体稳定影响因素及实用计算公式[J].长江科学院院报,2013,30(8):25-30.
    [50]汪定扬.立堵截流实用水力学计算[J].水利学报,1983,(9):11-19.
    [51]Einstein H.A. Formulas for the transportation of bed load[J].Trans AmerSoc Civil Engineers,1942,117:561-597.
    [52]Paintal A.S. A stochastic model of bed load transport[J].Jounal of Hydraulic Research IAHR,1971,9(4):527-553.
    [53]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,2003.
    [54]孙志林,谢鉴衡,等.非均匀沙分级起动规律研究[J].水利学报,1997,(10):25-32.
    [55]刘兴年,曹叔尤,等.粗细化过程中的非均匀沙起动流速[J].泥沙研究,2000,(4):10-13.
    [56]何文社,方铎,等.泥沙起动流速研究[J].水利学报,2002,(10):51-56.
    [57]钟亮,许光祥,等.河湾坡岸非均匀沙起动流速公式探讨[J].泥沙研究,2009,(4):58-62.
    [58]韩其为,吴岩,等.弯道凹岸边壁上的泥沙起动[J].水利学报,2013,(2):1-8.
    [59]长江科学院,长委水文处.川江卵石调查,1961.
    [60]韩其为,何明民,等.卵石起动流速研究[J].长江科学院院报,1996,13(2):17-22.
    [61]李学海.深厚覆盖层河床截流若干关键技术问题研究[D].武汉:武汉大学,2010.
    [62]周代鑫,黄希敏.截流人工块体稳定性分析[J].人民珠江.1995,(2):18-24.
    [63]蔡启龙,严毅,等.关于混凝土四面体截流材料的探讨[J].水利水电科技进展,2006(12):62-68.
    [64]刘大明,汪定扬,等.葛洲坝工程大江截流若干水力学问题的试验研究和基本结论[J].中国科学A辑.1982,(10):951-962.
    [65]Wiberg, Patricia L. CALCULATIONS OF THE CRITICAL SHEAR STRESS FOR MOTION OF UNIFORM AND HETEROGENEOUS SEDIMENTS[J].Water Resources Research,1987,23(S):1471-1480.
    [66]Otsubo, Kuninori. Critical shear stress of cohesive bottom sediments[J] Journal of Hydraulic Engineering,1988,114(10):1241-1256.
    [67]Hrissanthou, V. Measurements of critical shear stress in sewers[J].Water Research,1992,32 (7):2035-2040.
    [68]Wilcock, Peter R. Critical shear stress of natural sediments[J] Journal of Hydraulic Engineering,1993,119(4):491-505.
    [69]Reddi, Lakshmi N. Particle mobilization in sand-clay mixtures and facilitation of contaminant removal critical shear stress concept[J].Geotechnical Special Publication, 1995,2(46):1222-1236.
    [70]Buffington.J.M. The legend of A.F.Shields[J] Journal of Hydraulic Engineering, ASCE, 1999,125(4):376-387.
    [71]Shvidchenko, A.B. Critical shear stress for incipient motion of sand/gravel streambeds[J]. Water Resources Research,2001,37(8):2273-2283.
    [72]何文社,曹叔尤,等.泥沙起动临界切应力研究[J].力学学报,2003,35(3):326-331.
    [73]CHAN, WY. Critical Shear Stress for Deposition of Cohesive Sediments in Mai Po[J]. Journal of Hydwdynamics,2006,18(3):300-305.
    [74]Sarmiento, Oscar A. Critical bed shear stress for unisize sediment[J]. Journal of Hydraulic Engineeringg.2006,132(2):172-179.
    [75]de Linares, Matthieu. Critical shear stress of bimodal sediment in sand-gravel rivers[J]. Journal of Hydraulic Engineering.007,133(5):555-559.
    [76]庞启秀,白玉川,等.淤泥质浅滩泥沙临界起动切应力剖面确定[J].水科学进展,2012,23(2):249-255.
    [77]Henry, Pierre-Yves. Probability of exceeding the critical shear stress for sand motion in specific wave and current conditions[CA]. Coastal Engineering Conference,2012, Proceedings of the 33rd International Conference on Coastal Engineering 2012.
    [78]Einstein H.A. Bed Load Transport as a Probability Problem in Sedimentation, ed. by Shen H.W,1972(译自1937德语版).
    [79]Einstein H.A.Hydrodynamic forces on a rough wall[J].Reviews of Modern Physics, 1949,21 (3):520-524.
    [80]Einstein H.A. The Bed Load Function for Sediment Transportation in Open Channel Flows. Washington D.C, US:Department Agriculture Technical Bulletin, No.1026,1950.
    [81]邵学军,王兴奎.河流动力学概论[M].北京:清华大学出版社,2005.
    [82]J. William Lavelle, Harold O. Mofjeld-Mofjeld H. Do Critical Stresses for Incipient Motion and Erosion Really Exist?[J]. Journal of Hydraulic Engineering,1987,113(3):370-385.
    [83]J. William Lavelle, Harold O. Closure to "Do Critical Stresses for Incipient Motion and Erosion Really Exist?" by J. William Lavelle and Harold O. Mofjeld (March,1987, Vol.113, No. 3)[J]. Journal of Hydraulic Engineering,1988,114(8):962-963.
    [84]Hubbell D.W, Sayre W.W. Sand Transport Studies with Radioactive Tracers[J]. J. Hyd. Div., Proc, ASCE, Vol.90, NO.HY3,1964, PP39-68.
    [85]Yang C.T. Sand Dispersion in a Laboratory Flume[D].Ph.D dissertation, Colorado State University,1968.
    [86]Grigg N.S. Motion of Single Particle in Alluvial Channels[J]. J. Hyd. Div., Proc, ASCE, VoL 96, NO.HY12,1970, PP2501-2518.
    [87]Einstein H.A(著),钱宁(译).明渠水流的挟沙能力[M].水利出版社,1956.
    [88]Gessler J. The Beginning of Bed Load Movement of Mixtures Investigated as Natural Armoring in Channels. W.M. Keck Lab. of Hydraulics and Water Resources, California Inst. of Technology, Pasadena.
    [89]韩其为.泥沙起动规律及起动流速[J].泥沙研究,1982,(2):11-26.
    [90]黄才安.考虑起动概率的无粘性均匀沙起动条件[J].水科学进展,1998,9(4):378-383.
    [91]王智娟,刘兴年.水流流速与泥沙起动概率关系研究[J].东北水利水电,2004,22(239):1-4.
    [92]孙志林,黄赛花,等.黏性非均匀沙的起动概率[J].浙江大学学报(工学版),2007,41(1):18-22.
    [93]杨奉广,曹叔尤,等.非均匀沙分级起动流速研究[J].四川大学学报(工学版),2008,40 (5):51-57.
    [94]李军华,江恩惠.泥沙起动流速的随机分析[J].泥沙研究,2012,(3):15-20.
    [95]钟登华,毛寨汉.床面起伏影响下截流抛石稳定研究[J].水力发电学报,2003,(1):83-88.
    [96]毛寨汉.施工导流方案决策原理与方法研究[D].天津:天津大学,2003.
    [97]林炳尧.泥沙起动流速随机特征的初步分析[J].泥沙研究,2000,(1):46-49.
    [98]章继光,王克成,贾新斌.我国低水头弧门事调查及原因初探[J].陕西水力发电,1987年第2期.
    [99]黄廷璞,危玢.我国低水头弧形闸门失事调查和初步分析[J].金属结构,1986(2):18-26.
    [100]Mueller O.Schwingungsuntersuchungen an unterstroemten wehren[M]. Berlin:Mitt Preuss, Versuchung sanstalt fuer Wasserbau,1933:38-52.
    [101]郑哲敏.平板在流体作用下的振动[J].力学学报,1958,2(1):11-16.
    [102]谢省宗.闸门振动的流体弹性理论[J].水利学报,1962,(4):35-49.
    [103]谢省宗.闸门振动的流体弹性理论[J].水利学报,1963,(5):64-67.
    [104]宋或浙,宋鹏飞.深水平面闸门振动的某些问题[J].大连工学院学刊,1963:45-63.
    [105]倪汉根.平板闸门振动中的二个问题[J].大连工学院学刊,1964:37-53.
    [106]Hardwick J D. Flow-induced vibration of vertical-lift gate[J]. Hydr Div,ASCE,1974, 100(5):631-644.
    [107]Kolkman P A, Vrijer A. Gate edge suction as a cause of self-exciting vertical vibrations[C]. Proc 17th IAHR Congress,1977.
    [108]Vrijer A. Stability of vertically movable gates[C]. Sym on Practical Experiences with Flow-Induced Vibration,198:428-435.
    [109]Petrirat K.Seal vibration[C].Sym on Practical Experiences with Flow-induced vibrations, 1980:476-497.
    [110]Thang N D,Naudascher E.Vortex-excited vibrations of underflow gates[J]. J Hydr Res, 1986,24(2):133-151.
    [111]Thang N D,Naudascher E. Self-excited vibrations of vertical-lift gates[J].J Hydr Res, 1986,24(5):391-404.
    [112]肖天铎.隧洞进口平板门边缘漏水激振的研究-Naudascher振动模型[J].中国科学A辑,1986(2):214-224.
    [113]Kanne S,Naudascher E,Wang Y. On the mechanism of self-excited vertical vibration of underflow gates[CA]. Int Confon Flow-Induced Vibration,1991:405-410.
    [114]Thang N D,Lin Q H,Naudascher E. Flexural streamwise vibration of gate plates under vortex action[CA]. Proc Int on Flow-Induced Vibrations 1987:171-181.
    [115]Jongeling T H G. Flow-induced self-excited in flow vibrations of gate plates[J] Journal of Fluids and Structures,1988,2:541-566.
    [116]Thang N D. Gate vibrations due to unstable flow separation[J] Journal of Hydraulic Engineering,ASCE,1990,116(3):342-361.
    [117]Ishii N. Flow-Induced vibration of long-span gates. Part I:Model development[J].Jounal of Fluids and Structures,1992,6:539-562.
    [118]姜文潭,邵龙潭,等.高拱坝泄洪中孔弧形闸门振动试验研究[J].大连理工大学学报,1994,34(1):68-74.
    [119]吴杰芳,曹晓丽,等.闸门流激振动水弹性模型材料研制及其应用[J].长江科学院院报,2002,19(2):38-43.
    [120]顾云,严根华,赵建平.上卧式闸门水弹性振动试验研究[J].振动、测试与诊断,2009,29(3):333-339.
    [121]Mirimand.N, Billaud.J.F et al. Identification of structural modal parameters by dynamic tests at a single points[J]. Shock and Vibration Bulletin, Volume 46, Part 5,1976:197-212.
    [122]阎诗武.应用实验模态分析技术识别弧形闸门的模态参数[J].水利学报,1987:46-51.
    [123]严根华,阎诗武.水工弧形闸门的水弹性耦合自振特性研究[J].水利学报,1990,(7):49-55.
    [124]阎诗武,严根华,等.二滩拱坝泄水中孔工作弧门流激振动问题研究[J].水力发电学报,1990,(4):32-46.
    [125]路观平.随机脉动水压力作用下的结构响应[J].水利学报,1993,(12):70-75.
    [126]严根华,阎诗武,等.高水头大尺寸闸门流激振动原型观测研究[J].水力发电学报.2001,(4):65-74.
    [127]严根华,陈发展,等.表孔弧形闸门流激振动原型观测研究[J].水力发电学报.2006,25(4):45-50.
    [128]李火坤,练继建.水工弧形闸门流激振动特性物模-数模联合预测与安全分析[J].水力发电学报.2007,26(3):69-76.
    [129]洪镝,牛争鸣,等.公伯峡水电站旋流泄洪洞不同闸门开度运行与原型水力特性观测[J].应用基础与工程科学学报.2010,18(3):442-451.
    [130]严根华,陈发展等.曹娥江大闸工作闸门流激振动及抗振优化研究[J].固体力学学报.2011,32(专辑):439-450.
    [131]黄红,高振海等.大型上翻式拱形钢闸门流固耦合静动力特性分析研究[J].固体力学学报.2011,32(专辑):376-381.
    [132]辛华荣,王建,严根华,等.大型平面有轨对拉式弧形闸门流激振动特性及抗振措施[J].水利水运工程学报,2012,(6):87-94.
    [133]严根华,陈发展.溢流坝表孔弧形闸门流激振动原型观测研究[J].水力发电学报.2012,31(2):140-145.
    [134]K. Anami, N. Ishii,et al.Added mass and wave radiation damping for flow-induced rotational vibrations of skinplates of hydraulic gates[J]. Journal of Fluids and Structures,,2012, 35(11):213-228.
    [135]Erdbrink C. D. Krzhizhanovskaya V. V. Free-surface flow simulations for discharge-based operation of hydraulic structure gates[J]. Journal ofFluids and Structures,2014,16(1):189-206.
    [136]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001.
    [137]陈建兵,李杰.混凝土结构非线性随机损伤状态的演化分析[J].东南大学学报(自然科学版),2002,32(5):756-759.
    [138]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-442.
    [139]李杰,陈建兵.随机结构非线性动力反应的概率密度演化分析[J].力学学报,2003,35(6):716-722.
    [140]Li J, Chen J B. Probability density evolution method for dynamics response analysis of structures with uncertain parameters[J]. Computational Mechanics,2004,34:400-409.
    [141]Li J, Chen J B. Dynamic response and reliability analysis of structures with uncertain parameters[J].International Journal for Numerical Methods in Engineering,2005,62(1):289-315.
    [142]Li J, Chen J B. Dynamic response and reliability analysis of non-linear stochastic structures[J]. Probabilistic Engineering Mechanics,2005,20(1):33-44.
    [143]李杰,陈建兵.随机系统分析中的广义密度演化方程[J].自然科学进展,2006,16(6):712-719.
    [144]Li J, Chen J B. The probability density evolution method for dynamic response analysis of non-linear stochastic structures[J]. International Journal for Numerical Methods in Engineering, 2006,65(6):882-903.
    [145]Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation[J].Structural Safety,2008,30:65-77.
    [146]Chen J B, Li J. A note on the principle of preservation of probability and probability density evolution equation[J]. Probabilistic Engineering Mechanics,2009,24(1):51-59.
    [147]刘章军,陈建兵,李杰.结构非线性随机地震反应的概率密度演化方法[J].固体力学学报,2009,5(30):489-495.
    [148]刘章军,李杰.基于概率密度演化理论的结构抗震可靠性分析[J].振动与冲击,2009,9(28):1-7.
    [149]李杰,陈建兵.随机动力系统中的概率密度演化方程及其研究进展[J].力学进展,2010,2(40):170-188.
    [150]Sichani, M.T, et al.Failure analysis of wind turbines by probability density evolution method[J] Key Engineering Materials,,2013, v 569-570, p 579-586.
    [151]陈建兵,张圣涵.非均布随机参数结构非线性响应的概率密度演化[J].力学学报,2014,46(1):136-144.
    [152]Shinozuka M,Jan C M.Digital simulation of random processes and its applications [J].Journal of Sound and Vibration,1912,25:111-128.
    [153]Kleiber M,Hien T D.The Stochastic Finite Element Method[M]. ChishcesterJohn Wiley & Sons,1992.
    [154]Ghanem R,Spanos P D. Stochastic Finite Elements:A Spectral; Approach. Berlin:Springer-Verlag,1991.
    [155]Liu W K,Bestefield Qet al.Transient probabilistic systems[J].Methods Appl. MechEng., 1988,67:27-54.
    [156]Au S K,Beck J L.First excursion probabilities for linear systems by very efficient importance sampling[J].Probabilstic Engineering Mechanics,2001,16:193-207.
    [157]陈建兵,李杰.密度演化方法在概率分布估计中的应用研究[J].同济大学学报(自然科学版),2006,34(4):433-437.
    [158]陈建兵,李杰.随机结构动力可靠度分析的极值概率密度方法[J].地震工程与工程振动,2004,24(6):39-44.
    [159]李杰,陈建兵.结构动力非线性随机反应的联合概率分布[J].力学学报,2006,38(5):652-659.
    [160]范文亮,李正良,张培.风向风速的联合概率结构建模[J].土木工程学报,2012,45(4): 81-90.
    [161]John D. Anderson计算流体力学基础及其应用[M].北京:机械工业出版社,2007.
    [162]华罗庚,王元.数论在近似分析中的应用[M].北京:科学出版社,1978.
    [163]方开泰,王元.数论方法在统计中的应用[M].北京:科学出版社,1996.
    [164]陈建兵.随机结构非线性反应概率密度演化分析[M].上海:同济大学出版社,2007.
    [165]刘章军,陈建兵.结构动力学[M].北京:中国水利水电出版社,2012.
    [166]随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,17(2):121-125.
    [167]Frank M White.Fluid Mechanics [M].New York:McGraw-Hill Book Companie,1994.
    [168]梁润.河道截流的抛石抗冲稳定流速及稳定移距[J].武汉水利电力学院学报,1978,(1):41-50.
    [169]杨奉广,刘兴年,等.唐家山堰塞湖下游河床泥沙起动流速研究[J].四川大学学报(工程科学版),2009,41(3):84-89.
    [170]韩其为,何明民.泥沙运动统计理论[M].北京:科学出版社,1984.
    [171]李杰.随机结构系统——分析与建模[M].北京:科学出版社,1996.
    [172]李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283.
    [173]刘章军,万勇,曾波.脉动风速过程模拟的正交展开——随机函数方法[M].振动与冲击,2014,33(8):120-124.
    [174]刘章军,万勇,镇斌.平稳地震动过程的正交展开——随机函数模型[J].应用基础与工程科学学报,2014,22(2):199-208.
    [175]孙小鹏.脉动压力的随机数学模拟[J].水利学报,1991,(5):52-56.
    [176]阎诗武.水流压力脉动的谱分析及谱特征[J].水利水运科学研究,1981,(3):17-33.
    [177]SingiresuS.Rao机械振动[M].北京:清华大学出版社,2009.
    [178]崔莉.溢流塔泄流脉动压力的谱分析[J].大连工学院学报,1982,21(3):149-155.
    [179]练继建,崔广涛,林继镛.高拱坝泄洪振动的计算分析与验证[J].水利学报,1999,(12):23-32.
    [180]杨敏,崔广涛.水工结构流激振动的综合集成探讨[J].水力发电学报,2008,27(1):102-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700