用户名: 密码: 验证码:
新型人工智能技术研究及其在锅炉燃烧优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工智能技术是人们从生物进化机理和一些自然现象中受到启发而提出的一类新方法,因其能很好的解决复杂系统的建模和优化问题,故受到各领域的广泛关注和应用。针对极其复杂的物理化学变化的电站锅炉燃烧过程,传统方法很难描述出燃烧特性模型,不易实现锅炉燃烧优化。因此,本文针对人工智能领域中的启发式优化算法、神经网络等重点问题进行了专题研究,并将它们应用于锅炉燃烧过程中,以便于实现电站锅炉的高效低污染燃烧。本文的研究内容具有理论意义和实用价值,其主要内容描述如下:
     首先,本文针对人工蜂群算法(Artificial Bee Colony,ABC)的不足,提出了两类改进策略:为了提高ABC的收敛精度和运行稳定性,同时降低ABC的收敛迭代次数,本文提出了一种改进的人工蜂群算法(ImprovedArtificial Bee Colony, I-ABC),在该算法中引入了三个全新的变量——当前最优解、惯性权值和加速系数,另外还提出了一种具有预测选择能力的混合人工蜂群算法(Artificial Bee Colony with the abilities ofPrediction and Selection, PS-ABC),其兼具ABC、I-ABC和Gbest-guided ABC(GABC)三种算法的优化性能。在尽量保证或尽可能提高PS-ABC算法精度的同时降低PS-ABC的运行时间和收敛迭代时间的前提下,本文还提出了另一种改进的方法,称之为PS-ABCⅡ,该算法与PS-ABC主要不同在于:1)种群初始化不同;2)候选解的选择方式不同;3)雇佣蜂变成侦查蜂的模式不同。为了验证上述改进算法的有效性,本文通过23个基准优化问题对其进行测试,仿真结果说明了改进算法具有很好的全局搜索能力和收敛速度。
     其次,本文提出了一种具有快速学习功能的新型人工神经网络——快速学习网(Fast Learning Network, FLN)。它是一种双并联型前馈神经网络,其不仅接收来自隐层神经元的信息,而且还可以直接从输入层接收相关信息。本文采用了9个经典的回归数据集验证了快速学习网的学习能力和测试反应能力。另外本文针对快速学习网的不足,给出了两种改进型的学习算法:优化型快速学习网和最小二乘快速学习网(Least Square Fast Learning Network, LSFLN),并将这两种算法应用到了两台煤粉炉(吉林某300MW和江苏某330MW)的燃烧系统的特性建模之中,结果表明其具有很好的辨识性能和普适性。
     为了使快速学习网具有在线学习能力,本文给出了两种在线学习算法——在线快速学习网(Online Fast Learning Network, OFLN)和在线最小二乘快速学习网(OnlineLeast Square Fast Learning Network, OLSFLN),并将其应用到了300MW煤粉炉燃烧热效率的在线模拟建模过程中,仿真实验证明OLSFLN能准确地预测出热效率,同时也说明了其具有很好的在线学习能力、泛化能力、稳定性和可重复性。
     另外,本文还提出了一种离线型的组合建模方法,其主要是由主模型和补偿模型两部分组合而成。随后将其应用到了吉林某300MW煤粉炉的热效率建模过程中,仿真实验证明该组合方法能高精度的预测锅炉热效率,同时具有良好的泛化能力。
     最后,本文在所建立的两台电站锅炉的离线和在线模型的基础上,首先针对从300MW和330MW煤粉炉所采集数据特点,确定各自的优化目标函数。然后采用改进的人工蜂群算法对两台电站锅炉的可调运行参数进行优化,寻找最佳锅炉运行参数组合,使煤粉炉在最佳参数下运行,从而达到燃烧优化的目的。
Artificial intelligence consists of methods inspired by the mechanisms of biologicalevolution and some natural phenomena, which could solve complex systems’ modelingand optimization. Therefore, it could attract more and more attentions of specialist andscholar. For the extremely complex physical and chemical changes of boilers’ combustionprocess in power plant, it is very difficult to set up models of combustion process and toachieve the combustion optimization objective. Therefore, a great deal of research wouldbe done on heuristic optimization methods and neural networks that would be applied tothe combustion process in order to make a boiler combust at high efficiency and lowpollution.
     Firstly, for the shortage of Artificial Bee Colony (ABC), this paper proposes twoimproved strategies: To improve the convergence precision and stability and reduce theconvergence iterations of ABC, this paper propose two improved methods, an ImprovedArtificial Bee Colony(I-ABC) in which the best-so-far solution, inertia weight andacceleration coefficients are introduced, and an Artificial Bee Colony with the abilities ofPrediction and Selection(PS-ABC) which inherits the bright sides of ABC, I-ABC andGbest-guided ABC(GABC); To reduce the runtime and the convergence time andsimultaneously guarantee or improve the optimization accuracy of PS-ABC, this paperproposes another improved method called PS-ABCⅡwhich has three major differencesfrom PS-ABC:1) population initialization;2) the technique that chooses candidatesolutions;3) the mode that employed bees become scouts. In order to test the validity ofimproved methods, they are applied to23benchmark optimization problems. Experimentsshow they have very good global search ability and convergence speed.
     Secondly, this paper presents a novel artificial neural network with a fast learningability called Fast Learning Network (FLN). The FLN is a Double Parallel ForwardNeural Network, whose output nodes not only receive the recodification of the externalinformation through the hidden nodes, but also receive the external information itselfdirectly through the input nodes. This paper adopts9classical regression data sets to validate its learning and generalization abilities. In addition, for the shortage of FLN, thispaper also presents two improved learning methods: Optimized Fast Learning Network;Least Square Fast Learning Network (LSFLN), which are employed to set up models ofthe combustion processes of two pulverized coal fired boilers (a300MW and a330MW).Experimental results show that they have very good training precision, stability andgeneralization performances.
     In order to make FLN have online learning ability, this paper presents two onlinelearning algorithms: Online Fast Learning Network (OFLN) and Online Least Square FastLearning Network (OLSFLN), and adopts them to set up the online model of thecombustion thermal efficiency of the300MW coal-fired boiler. Simulation results showthat OLSFLN could accurately predict the thermal efficiency, and simultaneously stateOLSFLN has very good online learning, generalization abilities, stability and repeatability.
     Thirdly, this paper presents an offline combination modeling method, which iscomposed of a global model and a compensation model, to model the thermal efficiencyof the300MW pulverized coal boiler. Experimental results show that this combinationmodel could predict the thermal efficiency at a high-precision level, and have very goodstability and generalization performances.
     Finally, based on the offline and online models of two coal-fired boilers, this paperdetermines their optimization objective functions according to the respectivecharacteristics of the300MW and the330MW coal-fired boilers. Then improved artificialbee colony algorithms are employed to optimize the adjustable operational parameters ofthe two boilers, and search the optimum boiler operational parameter combination.Provided the pulverized coal boilers could combust at the optimum parameters, they couldachieve aims of the combustion optimization.
引文
[1]2012年1-12月电力行业运行分析. http://www.chinacir.com.cn/2013_fzyc/346939.shtml
    [2]徐书德.火电厂锅炉燃烧优化关键技术研究[D].浙江:浙江大学硕士论文,2006:1-3.
    [3]赵俊.基于遗传算法的锅炉燃烧优化设计与实现[D].苏州:苏州大学硕士学位论文.2009:3-7.
    [4] McCulloch W S, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J],Bulletin of Mathematical Biophysics,1943,5:115-133.
    [5] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization inthe brain[J]. Psychological Reviews,1958,65(6):386-408.
    [6] Widrow B, Hoff M. Adaptive switching circuit[C]. IRE WESCON convertion reeord: part4.Computers: Man-machine Systems,1960:96-104.
    [7] Minsky M, Papert S. Perceptrons[M]. Cambridge, MA: MIT Press,1969:10-12.
    [8] Hopfield J., Neural networks and physical systems with emergent collective computationalabilities[J], Proceedings of the National Academy of Sciences,1982,79(8):2554-2558.
    [9] Hopfield J. Neurons with graded response have collective computational properties like those oftwo-stage neurons[J]. Proceedings of the National Academy of Sciences,1984,81(10):3088-3092.
    [10] Rumelhart D.E., McClelland J.L. Parallel Distributed Processing[M]. Cambridge, MA: MITPress,1986:52-63.
    [11] Elman J.L. Finding structure in time[J]. Cognitive Science,1990,14:179-211.
    [12] Elman J.L. Distributed representations, simple recurrent networks, and grammatical structure[J].Machine Learning,1991,7:195-225.
    [13] Secht D.F. Probabilistic Neural Networks[J]. Neural Networks,1990,3:109-118.
    [14] Kohonen T. Learning vector quantization[M]. The Handbook of Brain Theory and NeuralNetworks, MIT Press, Cambridge, MA,1995,537-540.
    [15] Zhang Q., Benveniste.A. Wavelet networks[J]. IEEE Transactions on Neural Networks,1992,3(6):889-898.
    [16] Jang J.S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference Systems[J]. IEEE Transaction onSystems, Man, and Cybernetics,1993,23(3):665-685.
    [17]叶成荫,井元伟. TCP网络的自适应神经滑模控制[J].电机与控制学报,2012,16(11):99-103.
    [18]徐庆宏,戴先中.基于在线学习RBF神经网络的汽门开度自适应补偿控制方法[J].电机与控制学报,2010,14(2):13-19.
    [19]张金龙,徐慧,刘京南,等.基于模糊神经网络的精密角度定位PID控制[J].仪器仪表学报,2012,33(3):549-554.
    [20]张昀,张志涌.复数离散Hopfield网络盲检测64QAM信号[J].电子与信息学报,2011,33(2):315-320.
    [21]张昀,张志涌.基于连续Hopfield型神经网络的QAM信号盲检测[J].电子与信息学报,2011,33(7):1600-1605.
    [22] Zhou M., Fan R. Study on the extraction algorithm of digital watermarking based on neuralnetwork[J]. International Journal of Digital Content Technology and its Applications,2013,7(1):460-468.
    [23] Karthikeyan C., Ramadoss B., Baskar S. Segmentation algorithm for CT images usingmorphological operation and artificial neural network.International Journal of SignalProcessing[J], Image Processing and Pattern Recognition,2012,5(2):115-122.
    [24] Xu R., Chen G., Zhao L., Mingguang Yu. Study on image processing methods of print qualitydetection system[J]. Journal of Computational Information Systems,2012,8(18):7799-7806.
    [25] Ayhan E., Kansu O. Analysis of image classification methods for remote sensing[J].Experimental Techniques,2012,36(1):18-25.
    [26] Han M., Zhu X., Yao W. Remote sensing image classification based on neural network ensemblealgorithm[J]. Neurocomputing,2012,78(1):133-138.
    [27] Sahin M. Modelling of air temperature using remote sensing and artificial neural network inTurkey[J]. Advances in Space Research,2012,50(7):973-985.
    [28] Jaeger H, Haas H. Harnessing nonlinearity Predicting chaotic systems and saving energy inwireless communication[J]. Science,2004,304(5667):78-80.
    [29] Huang G.B., Zhu Q.Y., Siew C.K. Extreme Learning Machine: A New Learning Scheme ofFeedforward Neural Networks[C]. Proceedings of IEEE International Joint Conference onNeural Networks,2004,2:985-990.
    [30] Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: Theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
    [31] Venayagamoorthy G.K., Shishir B. Effects of spectral radius and settling time in theperformance of echo state networks[J]. Neural Networks,2009,22(7):861-863.
    [32]罗熊,黎江,孙增圻.回声状态网络的研究进展[J].北京科技大学学报,2012,34(2):217-222.
    [33] Holzmann G., Hauser H. Echo state networks with filter neurons and a delay&sum readout[J].Neural Networks,2010,23(2):244-256.
    [34] Xia Y., Jelfs B., Van Hulle Marc M., et al. An augmented echo state network for nonlinearadaptive filtering of complex noncircular signals[J]. IEEE Transactions on Neural Networks,2011,22(1):74-83.
    [35]彭宇,王建民,彭喜元.基于回声状态网络的时间序列预测方法研究[J].电子学报,2010,38(2A):148-154.
    [36]史志伟,韩敏. ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-251.
    [37]史志伟.混沌时间序列预测与储备池机器学习方法研究[D].大连:大连理工大学博士学位论文,2008:72-86.
    [38]韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50.
    [39]胡明江,杨师斌.应用回声状态网络的EGR阀电路在线诊断[J].震动测试与决策,2012,32(2):271-275.
    [40] Tong Matthew H., Bickett Adam D., Christiansen Eric M., et al. Learning grammatical structurewith Echo State Networks[J]. Neural Networks,2007,20(3):424-432.
    [41]时飞飞.基于改进ESN的高炉煤气系统预测方法的研究[D],大连:大连理工大学硕士学位论文,2009:43-56.
    [42] Niu D., Ji L., Xing M., et al. Multi-variable echo state network optimized by Bayesian regulationfor daily peak load forecasting[J]. Journal of Networks,2012,7(11):1790-1795.
    [43] Rodan A., Tino P. Minimum complexity echo state network[J]. IEEE Transactions on NeuralNetworks,2011,22(1):131-144.
    [44] Boccato L., Lopes A., Attux R., et al. An extended echo state network using Volterra filteringand principal component analysis[J]. Neural Networks,2012,32,292-302.
    [45] Sotirios P. Chatzis, Yiannis Demiris. The copula echo state network[J]. Pattern Recognition,2012,45(1):570-577.
    [46]韩敏,穆大芸.基于Adaboost算法的回声状态网络预报器[J].控制理论与应用,2011,28(4):601-604.
    [47]唐晓亮.基于神经网络的半监督学习方法研究[D].大连:大连理工大学博士论文,2009,66-81.
    [48] Li L., Liu D., Ouyang J. A new regularization classification method based on extreme learningmachine in network data[J]. Journal of Information and Computational Science,2012,9(12):3351-3363.
    [49] Karpagachelvi S., Arthanari M., Sivakumar M. Classification of electrocardiogram signals withsupport vector machines and extreme learning machine[J]. Neural Computing and Applications,2012,21(6):1331-1339.
    [50] Lan Y., Soh Y.C., Huang G.B. Two-Stage Extreme Learning Machine for Regression[J].Neurocomputing,2010,73(16-18):3028-3038.
    [51] Tang X., Han M. Partial Lanczos extreme learning machine for single-output regressionproblems[J]. Neurocomputing,2009,72(13-15):3066-3076.
    [52]韩飞.基于先验信息编码的约束学习算法研究[D].合肥:中国科学技术大学博士论文,2006,51-63.
    [53]朱志华,韩飞,郑春厚,等.极端学习机与支撑向量机在早期非小细胞肺癌预后预测的比较研究[J].模式识别与人工智能,2005,18(5):636-640.
    [54] Zong W.. Huang G.B. Face recognition based on extreme learning machine[J]. Neurocomputing,2011,74(16):2541-2551.
    [55] Pan C., Park D.S., Yang Y., et al. Leukocyte image segmentation by visual attention and extremelearning machine[J]. Neural Computing and Applications,2012,21(6):1217-1227.
    [56] Wu S., Wang Y., Cheng S. Extreme learning machine based wind speed estimation andsensorless control for wind turbine power generation system[J]. Neurocomputing,2013,102:163-175.
    [57] Wong W.K., Guo Z.X. A hybrid intelligent model for medium-term sales forecasting in fashionretail supply chains using extreme learning machine and harmony search algorithm[J].International Journal of Production Economics,2010,128(2):614-624.
    [58] Kim J., Lee W., Oh K.J., et al. Advanced extreme learning machine modeling using radial basisfunction network and context clustering[J]. International Journal of Smart Home,2012,6(3):49-56.
    [59] Lu B., Wang G., Yuan Y., et al. Semantic concept detection for video based on extreme learningmachine[J]. Neurocomputing,2013,102:176-183.
    [60] Olatunji S.O., Selamat A., Raheem A.A.A. Extreme learning machines based model forpredicting permeability of carbonate reservoir[J]. International Journal of Digital ContentTechnology and its Applications,2013,7(1):450-459.
    [61] Lin S.J., Chang C., Hsu M.F. Multiple extreme learning machines for a two-class imbalancecorporate life cycle prediction[J]. Knowledge-Based Systems,2013,39:214-223.
    [62] Zhu Q.Y., Qin A.K., Suganthan P.N., et al. Evolutionary extreme learning machine[J]. PatternRecognition,2005,38(10):1759-1763.
    [63] Soria-Olivas E., Gómez-Sanchis J., Martín J.D., et al. BELM: Bayesian extreme learningmachine[J]. IEEE Transactions on Neural Networks,2011,22(3):505-509.
    [64] Horata P., Chiewchanwattana S., Sunat K. Robust extreme learning machine[J].Neurocomputing,2013,102(15):31-34.
    [65] Rong H.J., Ong Y.S., Tan A.H., et al. A fast pruned-extreme learning machine for classificationproblem[J]. Neurocomputing,2008,72(1-3):359-366.
    [66] Wu X. An improved extreme learning machine for classification problem based on affinitypropagation clustering[J]. International Journal of Advancements in Computing Technology,2012,4(10):274-280.
    [67] Savitha R., Suresh S., Sundararajan N. Fast learning Circular Complex-valued Extreme LearningMachine (CC-ELM) for real-valued classification problems[J]. Information Sciences,2012,187(1):277-290.
    [68] Cao J., Lin Z., Huang G.B. Self-adaptive evolutionary extreme learning machine[J]. NeuralProcessing Letters,2012,36(3):285-305.
    [69] Zhao J., Park D.S., Lee J., et al. Generalized extreme learning machine acting on a metricspace[J]. Soft Computing,2012,16(9):1503-1514.
    [70] Goldberg D.E. Genetic Algorithms in Search Optimization and Machine Learning.Addison-Wesley[M], Boston: Addison-Wesley Longman Publishing,1989:12-20.
    [71] Holland J.H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University ofMichigan Press,1975:1-15.
    [72] Dorigo M., Maniezzo V., Colorni A. The ant system: optimization by a colony of cooperatingagents[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,1996,26(1):29-41.
    [73] Kennedy J., Eberhart R.C. Particle swarm optimization[C], Proceedings of IEEE InternationalConference on Neural Networks, Washington,1995,4:1942-1948.
    [74] Geem Z.W., Kim J.H., Loganathan G.V. A New Heuristic Optimization Algorithm: HarmonySearch[J]. Simulation,2001,76(2):60-68.
    [75] Eusuff M., Lansey K. Optimization of Water Distribution Network Design Using the ShuffledFrog Leaping Algorithm[J]. Journal of Water Resources Planning and Management,2003,129(3):210-225.
    [76] Rashedi E., Nezamabadi-pour H., Saryazdi S. GSA: A Gravitational Search Algorithm[J].Information Sciences,2009,179(13):2232-2248.
    [77] Simon D. Biogeography-Based Optimization[J]. IEEE Transactions on EvolutionaryComputation,2008,12(6):702-713.
    [78] Ahrari A., Atai A.A. Grenade Explosion Method-A novel tool for optimization of multimodalfunctions[J]. Applied Soft Computing,2010,10(4):1132-1140.
    [79] Rao R.V., Savsani V.J., Vakharia D.P. Teaching-learning-based optimization: A novel method forconstrained mechanical design optimization problems[J]. Computer-Aided Design,2011,43(3):303-315.
    [80] Rao R.V., Savsani V.J., Vakharia D.P. Teaching-learning-based optimization: A noveloptimization method for continuous non-linear large scale problems[J]. Information Sciences,2012,183(1):1-15.
    [81] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. ErciyesUniversity, Kayseri, Turkey, Technical Report-TR06,2005,1-10.
    [82] Karaboga D., Akay B. A comparative study of artificial bee bolony algorithm[J]. AppliedMathematics and Computation,2009,214(1):108-132.
    [83] Karaboga D., Ozturk C. Neural networks training by artificial bee colony algorithm on patternclassification[J]. Neural Network World,2009,19(3):279-292.
    [84] Rao R.S., Narasimham S.V.L., Ramalingaraju M. Optimization of distribution networkconfiguration for loss reduction using artificial bee colony algorithm[J]. International Journal ofElectrical Power&Energy Systems,2008,1(2):116-122.
    [85] de Oliveira I.M.S., Schirru R., de Medeiros J.A.C.C. On the performance of an artificial beecolony optimization algorithm applied to the accident diagnosis in a pwr nuclear power plant[C].International nuclear Atlantic conference (INAC),2009,1-11.
    [86] Lalitha M.P., Reddy V.C.V., Reddy N.S. Application of fuzzy and abc algorithm for dgplacement for minimum loss in radial distribution system. Iranian Journal of Electrical andElectronic Engineering[J].2010,6(4):248-256.
    [87] Samanta S., Chakraborty S. Parametric optimization of some non-traditional machiningprocesses using artificial bee colony algorithm[J]. Engineering Applications of ArtificialIntelligence,2011,24(6):946-957.
    [88] Sridhar D.V.P.R., Babu M.S.P., Parimala M., Rao N.T. Implementation of web-based chilliexpert advisorysystem using abc optimization algorithm[J]. International Journal on ComputerScience&Engineering,2010,2(6):2141-2144.
    [89] Mini S., Udgata S., Sabat S. Artificial bee colony based sensor deployment algorithm for targetcoverage problem in3-d terrain[C]. Proceeding ICDCIT'11Proceedings of the7th internationalconference on Distributed computing and internet technology,2011:313-324.
    [90] Karaboga D., Ozturk C. Fuzzy clustering with artificial bee colony algorithm[J]. ScientificResearch and Essays,2010,5(14):1899-1902.
    [91] Benala T.R., Jampala S.D., Villa S.H., et al. A novel approach to image edge enhancement usingartificial bee colony optimization algorithm for hybridized smoothening filters[C]. Worldcongress on nature&biologically inspired computing (NABIC),2009:1070-1075.
    [92] Ziarati K., Akbari R., Zeighami V. On the performance of bee algorithms forresource-constrained project scheduling problem[J]. Applied Soft Computing,2011,11(4):3720-3733.
    [93] Kockanat S., Koza T., Karaboga N. Cancellation of noise on mitral valve doppler signal usingIIR filters designed with artificial bee colony algorithm[J]. Current Opinion in Biotechnology,2011,22(Suppl1(0)): S57.
    [94] TSai P.W., Pan J.S., Liao B.Y., et al. Enhanced Artificial Bee Colony Optimization.International Journal of Innovative Computing[J], Information and Control.2009,5(12):1-ISII08-247.
    [95] Xiang W.L., An M.Q. An efficient and robust artificial bee colony algorithm for numericaloptimization[J]. Computers&Operations Research,2013,40(5):1256-1265.
    [96] Babayigit B., Gorkemli B. A quick artificial bee colony-qABC-algorithm for optimizationproblems[C]. International Symposium on Innovations in Intelligent Systems and Applications(INISTA),2012,1-5.
    [97] Li B. BE-ABC: Hybrid artificial bee colony algorithm with balancing evolution strategy[C].Third International Conference on Intelligent Control and Information Processing (ICICIP),2012,217-222.
    [98] Gao F., Fei F.X., Xu Q., et al. A novel artificial bee colony algorithm with space contraction forunknown parameters identification and time-delays of chaotic systems[J]. Applied Mathematicsand Computation,2012,219(2):552-568.
    [99] Sharma T.K. Improved Local Search in Artificial Bee Colony using Golden Section Search[J].Journal of Engineering,2012,1(1):14-19.
    [100] Banharnsakun A., Achalakul T., Sirinaovakul B. The best-so-far selection in Artificial BeeColony algorithm[J]. Applied Soft Computing,2011,11(2):2888-2901.
    [101] Zhu G., Kwong S. Gbest-guided artificial bee colony algorithm for numerical functionoptimization[J]. Applied Mathematics and Computation,2010,217(7):3166-3173.
    [102]赵征.基于信息融合的锅炉燃烧状态参数检测技术研究[D].保定:华北电力大学博士学位论文,2007:1-2.
    [103]杨光军.电站锅炉燃烧状态监测与优化策略研究[D].北京:华北电力大学博士学位论文,2007:4-5.
    [104] Havlena V., Findejs J., Pachner D. Combustion optimization with inferential sensing[C].Proceeding of the2002American Control Conference,2002,5:3890-3895.
    [105] Havlena V., Findejs J. Application of model predictive control to advanced combustioncontrol[J]. Control Engineering Practice,2005,13(6):671-680.
    [106] Booth R.C., Roland W.B. Neural network-based combustion optimizationreduces NOxemissions while improving performance[C]. IEEE Industry Applications Dynamic ModelingControl Applications Industry Workshop,1998:1-6.
    [107] Büche D., Stoll P., Dornberger R., et al. Multiobjectiveevolutionary algorithm for theoptimization of noisy combustion processes[J]. IEEE Transactions on Systems, Man, andCybernetics-Part C: Applications and Reviews,2002,32(4):460-473.
    [108] Cass R., Radl B. Adaptive process optimization using functional link networks and evolutionaryoptimization. Control Engineering Practice,1997,4(11):1579-1584.
    [109] Ogilvie T., Swidenbank E., Hogg B.W. Use of data mining techniquesin the performancemonitoring and optimization of a thermal power plant[C]. IEE Colloquium on KnowledgeDiscovery Data Mining,1998:7/1-7/4.
    [110] Burns A., Kusiak A., Letsche T. Mining transformed data sets[J]. Knowledge-Based IntelligentInformation and Engineering Systems, Lecture Notes in Computer Science,2004,3213:148-154.
    [111] Miyayama T., Tanaka S., Miyatake T., et al. A combustion control support expert systemfor acoal-fired boiler[C]. International Conference on Industrial Electronics, Control andInstrumentation,1991,2:1513-1516.
    [112] Chong A.Z.S., Wilcox S.J., Ward J. Neural network models ofthe combustion derivativesemanating from a chain grate stoker firedboiler plant[C]. IEE Seminar Advanced Sensors andInstrumentation Systems for Combustion Processes,2000:6/1-6/4.
    [113] Kusiak A., Song Z. Combustion Efficiency Optimization and Virtual Testing: A Data-MiningApproach[J]. IEEE Transactions on Industrial Informatics,2006,2(3):176-184.
    [114] Song Z, Kusia A. Constraint-Based Control of Boiler Efficiency: A Data-Mining Approach[J].IEEE Transactions on Industrial Informatics,2007,3(1):73-83.
    [115] ojba i., Stephan V., Gross H.M., et al. Intelligent control of complex combustionprocesses[J]. Mechanical Engineering,2003,1(10):1393-1406.
    [116] Kalogirou S.A. Artificial intelligence for the modeling and control of combustion processes: areview[J]. Progress in Energy and Combustion Science,2003,29(6):515-566.
    [117]肖兴军.电站燃煤锅炉燃烧优化算法的应用研究[D].秦皇岛:燕山大学硕士论文,2012.
    [118]周吴,朱洪波,曾庭华,等.基于遗传算法的燃煤锅炉热效率优化[J].中国电机工程学报,2002,22(7):125-128.
    [119]王子杰,李健,孙万云.基于神经网络和遗传算法的锅炉燃烧优化方法[J].华北电力学报.2008,35(1):14-17.
    [120]周霞,沈炯,沈剑贤,等.一种新的免疫多目标优化算法及其在锅炉燃烧优化中的应用[J].东南大学学报(英文版),2010,26(4):563-568.
    [121]顾燕萍,赵文杰,吴占松.采用最优MVs决策模型的电站锅炉燃烧优化[J].中国电机工程学报,2006,26(4):46-50.
    [122]顾燕萍,赵文杰,吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[J].中国电机工程学报,2010,30(17):91-97.
    [123]许昌,吕剑虹,郑源,等.以效率和低NOx排放为目标的锅炉燃烧整体优化[J].中国电机工程学报,2006,26(4):46-50.
    [124]许昌,吕剑虹,郑源.基于效率与NOx排放的锅炉燃烧优化试验及分析[J].锅炉技术,2006,37(5):69-74.
    [125]刘建军.加入炉膛温度信息电站锅炉的燃烧优化[D].武汉:华中科技大学硕士论文,2011:31-65.
    [126]罗自学,梁培露,周怀春,等.引入辐射能信号的锅炉氧量寻优控制研究[J].中国电机工程学报,2006,26(23):100-103.
    [127]王淅分.基于炉内温度场可视化的燃烧优化控制方法研究[D].武汉:华中科技大学博士论文,2005,45-108.
    [128]李建强,刘吉臻,张栾英,等.基于数据挖掘的电站运行优化应用研究[J].中国电机工程学报,2006,26(20):118-123.
    [129]王新超.基于模糊神经网络的电站锅炉燃烧优化系统建模[D].保定:华北电力大学硕士论文,2012,20-26.
    [130]沈利.燃煤电站锅炉的燃烧优化技术及其相关算法应用研究[D].杭州:浙江大学博士论文,2011,34-60.
    [131]赵敏,颜文俊,郑军.基于广义动态模糊神经网络的电厂锅炉燃烧优化建模[J].热力发电,2010,39(3):19-22.
    [132]许昌.锅炉典型非线性过程的神经网络建模和控制研究[D].南京:东南大学博士论文,2005,50-53.
    [133] Zhou H., Zheng L., Cen K. Computational intelligence approach for NOx emissionsminimization in a coal-fired utility boiler[J]. Energy Conversion and Management,2010,51(3):580-586.
    [134] Zheng L.G., Zhou H., Cen K.F., et al. A comparative study of optimization algorithms for lowNOx combustion modification at a coal-fired utility boiler[J]. Expert Systems with Applications,2009,36(2):2780-2793.
    [135] Zhou H., Cen K., Fan J. Modeling and optimization of the NOx emission characteristics of atangentially firedboiler with artificial neural networks[J]. Energy,2004,29(1):167-183.
    [136] Li S., Xu T., Hui S., et al. NOx emission and thermal efficiency of a300MWe utility boilerretrofitted by air staging[J]. Applied Energy,2009,86(9):1797-1803.
    [137] Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Opposition-Based Differential Evolution (ODE)with Variable Jumping Rate[C]. Proceedings of the2007IEEE Symposium on Foundations ofComputational Intelligence,2007,81-88.
    [138] Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Opposition-based differential evolution[J].IEEE Transaction on Evolutionary Computation,2008,12(1):64-79.
    [139] Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Opposition versus randomness in softcomputing techniques[J]. Applied Soft Computing,2008,8(2):906-918.
    [140]数据集. http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html.
    [141]国家环境保护总局,国家质量监督检验检疫总局发.火电厂大气污染物排放标准[M].北京:中国环境科学出版社,2004:2-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700