用户名: 密码: 验证码:
北京土壤肥力及其关键要素空间变异与尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京为研究区域,通过引入粗糙集理论,探讨了土壤肥力评价过程中指标权重的确定方法,并运用传统统计学和地统计学分析了土壤综合肥力及有机碳(SOC)的空间变异规律和驱动因素,初步探讨了SOC的空间变异随采样密度变化的响应,研究结果为区域土壤肥力评价和养分资源管理提供理论基础。主要研究结果与结论如下:
     (1)粗糙集在土壤肥力评价中的赋权步骤为数据的离散化、土壤肥力综合等级的初步确定、属性值约简、等价类划分、属性重要度的计算和指标权重计算等。通过实例产量数据验证,特尔斐法权重的评价结果与产量显著线性相关,R2为0.77,均方根误差(RMSE)为1.25thm-2;而粗糙集理论权重的评价结果与产量也显著线性相关,R2达0.83,RMSE为1.09thm-2,RMSE相对精度提高值达12.80%。因此,粗糙集理论相对于特尔斐法确定的权重更为合理、准确。
     (2)在常规养分指标的基础上引入微量元素养分指标,采用粗糙集理论赋权法、隶属度函数和地统计学方法对北京延庆盆地土壤养分综合状况及其空间变异的研究表明,研究区土壤常规养分和微量元素养分的肥力贡献率分别为0.66和0.34。菜地土壤单一有效微量元素指标的肥力水平和养分综合水平总体上均要高于果园和粮田。土壤综合肥力指数的空间异质性同时受随机部分和结构性部分的共同作用;空间分布总体上主要受有机质和全氮的作用,但局部地区分布还受有效铜、有效锌等微量元素养分的影响。因此,将土壤常规养分和微量元素养分同时纳入土壤养分评价指标体系是必要的,并较好地揭示了土壤养分的空间变异规律。
     (3)对北京1985年和2009年时隔25年的SOC的时空变异及其影响因素分析表明,1985年和2009年SOC平均含量分别为9.97g kg-1和10.46g kg-1,均在东—西向呈现全局性的二阶趋势效应;空间分布总体研究区的西部高于东部,北部高于南部;期间,大部分地区SOC含量有所增加,增幅最大的区域主要为房山和门头沟西南部,降幅最大的区域主要分布在怀柔和密云。长期定位监测数据表明,1987-2009年期间北京SOC随时间的动态变化总体处于先增加后下降再增加趋势。地形、土壤质地、土壤类型、成土母质和土地利用类型显著影响SOC含量的空间分布。而土地利用变化直接影响SOC的动态平衡,与维持原利用类型相比,其它用地转旱地的SOC相对下降,转果园的则有所增加;早地转其它用地,SOC相对增加;而果园转其它用地,SOC相对下降。这与早地耕作的粗放管理,果园的较高水肥投入有关。
     (4)对四种不同采样密度下SOC的空间变异的结构变化以及空间预测的不确定性方面的初步探讨表明,SOC关于地形因子的趋势属于宏观趋势,以低采样密度的趋势拟合效果最优;随着采样密度的增加,SOC及其去趋势后残差的系统内部随机变异逐渐增强,结构变异逐渐减弱,变异函数的分布也越平稳,空间预测的不确定性也逐渐减小,另外,变异函数的变程可能也影响空间预测的不确定性;增加采样密度和引入地形因子辅助的回归克里格法均可以提高北京SOC的预测精度;在预测精度不降低的情况下,引入地形因子辅助一定程度上可以减少采样的数量。
This paper took Beijing as a research area, rough set theory were introduced to to investigate the weight determination method in soil fertility evaluation. Traditional statistics and geostatistical method were used to analyze spatial variation and driving factors of soil fertility and soil organic carbon (SOC) and to discuss preliminarily the spatial variability response of SOC to sampling scale changes. The results can provide a theoretical basis for soil fertility quality assessment and nutrient management. The main results and conclusions are as follows:
     (1) The determination of weight using rough set theory for soil fertility evaluation involve several steps:data discretization, preliminary determination of soil fertility grade, attribute value reduction, equivalence partitioning, attribute significance calculation, and index weights calculation. Through the analysis of actual case, there was a significant linear correlation between crop yield and soil integrated fertility index (IFI) obtained by Delphi weighting method. The determination coefficient R1was0.77and root mean square error (RMSE) was1.25t hm-2. Again, a significant linear correlation between IFI (obtained by rough set theory weighting method) and crop yield was observed. The later method has higher accuracy, as indicated by higher values of R2(0.83) and lower value of RMSE (1.06t hm-2). Therefore, results of this study indicates that it is feasible to adopt rough set theory for determining the index weights of soil fertility.
     (2) Based on introducing soil microelements as soil evaluation indexes as well as soil macroelements, rough set weighting method and membership function were used for assessing soil fertility and its spatial variability was analyzed by using geostatistics method. The results showed that the contribution rates for integrated nutrient of soil conventional nutrient indexes and microelement indexes were0.66and0.34, respectively. The semi-variance analysis of the residuals showed medium degree of spatial autocorrelation. The overall spatial distribution trends of soil integrated nutrient in Yanqing Basin was mainly affected by organic matter and total N. But in the local area, the micronutrients such as available Cu and available Zn played a leading role. Both fertility levels for single available microelement and soil integrated nutrient of vegetable fields were higher than orchards and grain crop fields. Therefore, bringing microelement indexes into evaluation index system as same as conventional nutrient indexes is practicable and necessary, which can reveal satisfactorily the spatial variation pattern of soil fertility.
     (3) Spatial variation of SOC from1985to2009and its influencing factors were analysed. The results showed that the SOC contents in1985and2009were9.97g kg-1and10.46g kg-1, respectively. The long-term monitoring data showed the variation tendency of SOC was " increasing, decreasing and increasing". In both two periods, the SOC contents presented a2nd-order global trend from east to west and their spatial distribution was higher in north lower in south and higher in west lower in east. During 25years, the SOC of most area has increased with the largest increase for Fangshan and southwestern Mentougou area and the largest drop for Huairou and Miyun District. The terrain, soil textures, soil types, parent materials and land use were the significant influence factors for the spatial distribution of SOC. However, the land use changes directly affected the dynamic balance of SOC. Compared with maintained land, the SOC of the other lands transformed to dry lands was relatively small and to orchards was relatively increase. The SOC of dry lands transformed to other lands was relatively increase while orchards transformed to other lands was relatively decrease. This reason was extensive management for dry lands and high water and fertilizer inputs for orchards.
     (4) We designed four different sampling densities to investigate preliminarily the structural changes of the variogram and uncertainty of spatial prediction with the study scale changes. The results showed that the SOC was macroscopically related to terrain factor and low sampling density data were the most optimal for use in fitting the trend value. As sampling density increasing, the distribution of variogram of SOC and its residuals flattened out gradually, the random variation were growing strongly, and structural variation and uncertainty of spatial prediction decreased gradually. In addition, range of variogram may also affect the uncertainty of spatial prediction. Increasing sampling density and regression kiging method aided by terrain factors can improve prediction accuracy of SOC. Therefore, soil monitoring and management introducing auxiliary variable can to some extent cut the number of sampling points without reducing prediction accuracy.
引文
Altieri M A, Nicholls C I. Soil fertility management and insect pests:harmonizing soil and plant health in agroecosystems [J]. Soil and Tillage Research,2003,72(2):203-211.
    Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework [J]. Soil Science Society of America Journal,2004,68(6):1945-1962.
    Andrews S S, Karlen D L, Mitchell J P. A comparison of soil quality indexing methods for vegetable production systems in Northern California [J]. Agriculture, ecosystems & environment,2002,90(1): 25-45.
    Barrios E, Buresh R J, Sprent J I. Organic matter in soil particle size and density fractions from maize and legume cropping systems [J]. Soil Biology and Biochemistry,1996,28(2):185-193.
    Bloschl, G, Sivapalan, M. Scale issues in hydrological modelling:a review [J]. Hydrological processes, 1995,9(3-4):251-290.
    Bourennane H, King D, Couturier A, et al. Uncertainty assessment of soil water content spatial patterns using geostatistical simulations:an empirical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information [J]. Ecological Modelling,2007, 205(3):323-335.
    Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties. Journal of Soil Science,1980,31(2):333-341.
    Cambardella C A, Moorman T B, Parkin T B, et al. Field—scale variability of soil properties in central Iowa soils [J]. Soil Science Society of America Journal,1994,58(5):1501-1511.
    Chai X, Shen C, Yuan X, et al. Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP [J]. Geoderma,2008,148 (2):159-166.
    Davy M C, Koen T B. Variations in soil organic carbon for two soil types and six land uses in the Murray Catchment, New South Wales, Australia [J]. Soil Research,2013,51(8):631-644.
    de Lima A C R, Hoogmoed W, Brussaard L. Soil quality assessment in rice production systems: establishing a minimum data set [J]. Journal of environmental quality,2008,37(2):623-630.
    Duffera M, White J G, Weisz R. Spatial variability of Southeastern US Coastal Plain soil physical properties:Implications for site—specific management [J]. Geoderma,2007,137(3):327-339.
    Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS—based approach to identify heavy metal sources in soils [J]. Environmental pollution,2001,114(3):313-324.
    FAO. A framework for land evaluation[M]. ILRI,1976.
    Gallardo A, Parama R. Spatial variability of soil elements in two plant communities of NW Spain [J]. Geoderma,2007,139(1):199-208.
    Gau H S, Hsieh C Y, Liu C W. Application of grey correlation method to evaluate potential groundwater recharge sites [J]. Stochastic environmental research and risk assessment,2006,20(6): 407-421.
    Goovaerts P. Geostatistical modelling of uncertainty in soil science [J]. Geoderma,2001,103(1):3-26.
    Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands [J]. Science,2010, 327(5968):1008-1010.
    He Y, Chen D, Li B G, et al. Sequential indicator simulation and indicator kriging estimation of 3-dimensional soil textures [J]. Soil Research,2009a,47(6):622-631.
    He Y, Hu K L, Chen D L, et al. Three dimensional spatial distribution modeling of soil texture under agricultural systems using a sequence indicator simulation algorithm [J]. Computers and Electronics in Agriculture,2010,71:S24-S31.
    He Y, Hu K, Li B, et al. Comparison of sequential indicator simulation and transition probability indicator simulation used to model clay content in microscale surface soil [J]. Soil science,2009b, 174(7):395-402.
    Hengl T, Heuvelink G, Rossiter D G. About regression—kriging:from equations to case studies [J]. Computers & Geosciences,2007,33(10):1301-1315.
    Hu K, Li H, Li B, et al. Spatial and temporal patterns of soil organic matter in the urban—rural transition zone of Beijing [J]. Geoderma,2007,141(3-4):302-310.
    Hu K, Zhang F, Li H, et al. Spatial patterns of soil heavy metals in urban—rural transition zone of Beijing [J]. Pedosphere,2006,16(6):690-698.
    Hu, K, Wang, S, Li, H, et al. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing [J]. Geoderma,2014,226-227:54-63.
    Huang B, Sun W, Zhao Y, et al. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices [J]. Geoderma,2007,139(3): 336-345.
    Iqbal J, Thomasson J A, Jenkins J N, et al. Spatial variability analysis of soil physical properties of alluvial soils [J]. Soil Science Society of America Journal,2005,69(4):1338-1350.
    Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004, 304(5677):1623-1627.
    Larson W E, Pierce F J. Conservation and enhancement of soil quality:Evaluation for sustainable land management in the developing world:proceedings of the International Workshop on Evaluation for Sustainable Land Management in the Developing World, Chiang Rai, Thailand,15-21 September 1991,1991[C]. Bangkok, Thailand:International Board for Soil Research and Management,1991.
    Lascano R J, Hatfield J L. Spatial variability of evaporation along two transects of a bare soil [J]. Soil Science Society of America Journal,1992,56(2):341-346.
    Lindstrom M. Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes [J]. Water, Air,& Soil Pollution,2001,126(3):363-383.
    Ma J, Fan Z, Huang L. A subjective and objective integrated approach to determine attribute weights [J]. European Journal of Operational Research,1999,112(2):397-404.
    Maeder P, Fliessbach A, Dubois D, et al. Soil Fertility and Biodiversity in Organic Farming [J]. Science, 2002,296(5573):1694-1697.
    McBratney A B, Odeh I O. Application of fuzzy sets in soil science:fuzzy logic, fuzzy measurements and fuzzy decisions [J]. Geoderma,1997,77(2):85-113.
    Minasny B, McBratney A B. The Matern function as a general model for soil variograms [J]. Geoderma, 2005,128(3):192-207.
    Mohanty M, Painuli D K, Misra A K, et al. Soil quality effects of tillage and residue under rice-wheat cropping on a Vertisol in India [J]. Soil and Tillage Research,2007,92(1):243-250.
    Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales [J]. The Science of the Total Environment,2003,311(1—3):205-219.
    Nortcliff S. Standardisation of soil quality attributes [J]. Agriculture, ecosystems & environment,2002, 88(2):161-168.
    Odeh I O, McBratney A B, Chittleborough D J. Further results on prediction of soil properties from terrain attributes:heterotopic cokriging and regression—kriging [J]. Geoderma,1995,67(3):215-226.
    Pan G, Xu X, Smith P, et al. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring [J]. Agriculture, ecosystems & environment,2010,136(1—2): 133-138.
    Pawlak Z. Rough sets [J]. InternationalJournal ofParallel Programming,1982,11(5):341-356.
    Puglisi E, Del Re A, Rao M A, et al. Development and validation of numerical indexes integrating enzyme activities of soils [J]. Soil Biology and Biochemistry,2006,38(7):1673-1681.
    Puglisi E, Nicelli M, Capri E, et al. A soil alteration index based on phospholipid fatty acids [J]. Chemosphere,2005,61(11):1548-1557.
    Qiang F, Yonggang X, Zimin W. Application of projection pursuit evaluation model based on real— coded accelerating genetic algorithm in evaluating wetland soil quality variations in the Sanjiang Plain,China [J]. Pedosphere,2003,13(3):249-256.
    Rao R V, Patel B K. A subjective and objective integrated multiple attribute decision making method for material selection [J]. Materials & Design,2010,31(10):4738-4747.
    Robertson G P, Gross K L. Assessing the heterogeneity of belowground resources:quantifying pattern and scale. In "Exploitation of environmental heterogeneity by plants (Caldwell M M and Pearcy R W, eds.)"[M]. New York:Academic Press,1994.
    Rodriguez—Murillo J C. Organic carbon content under different types of land use and soil in peninsular Spain [J]. Biology and Fertility of Soils,2001,33(1):53-61.
    Ronn R, Griffiths B S, Ekelund F, et al. Spatial distribution and successional pattern of microbial activity and micro—faunal populations on decomposing barley roots [J]. Journal of Applied Ecology,1996:662-672.
    Sahrawat, K L, Rego, T J, Wani, S P, et al. Stretching soil sampling to watershed:evaluation of soil-test parameters in a semi-arid tropical watershed [J]. Communications in soil science and plant analysis,2008,39(19—20):2950-2960.
    Schulp C, Verburg P H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region [J]. Agriculture, Ecosystems & Environment,2009,133(1): 86-97.
    Smettem K R J. Characterization of water entry into a soil with a contrasting textural class:spatial variability of infiltration parameters and influence of macroporosity [J]. Soil science,1987,144(3): 167-174.
    Smith P, Fang C. Carbon cycle:A warm response by soils [J]. Nature,2010,464(7288):499-500.
    Stacey K F, Lark R M, Whitmore A P, et al. Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil [J]. Geoderma,2006,135:107-117.
    Stoyan H, De—olli H, Bohm S, et al. Spatial heterogeneity of soil respiration and related properties at the plant scale [J]. Plant and Soil,2000,222(1—2):203-214.
    Sun B, Zhou S, Zhao Q. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China [J]. Geoderma,2003,115(1):85-99.
    Tabor J A, Warrick A W, Myers D E, et al. Spatial variability of nitrate in irrigated cotton:Ⅱ. Soil nitrate and correlated variables [J]. Soil Science Society of America Journal,1985,49(2):390-394.
    Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility [J]. Nature, 1994,371(6500):783-785.
    Wachinger G, Fiedler S, Zepp K, et al. Variability of soil methane production on the micro—scale: spatial association with hot spots of organic material and Archaeal populations [J]. Soil Biology and Biochemistry,2000,32(8):1121-1130.
    Wander M M, Bollero G A. Soil quality assessment of tillage impacts in Illinois [J]. Soil Science Society of America Journal,1999,63(4):961-971.
    Wang J, LU X, Jiang M, et al. Fuzzy synthetic evaluation of wetland soil quality degradation:A case study on the Sanjiang Plain, Northeast China [J]. Pedosphere,2009,19(6):756-764.
    Wang T, Lee H. Developing a fuzzy TOPSIS approach based on subjective weights and objective weights [J]. Expert Systems with Applications,2009,36(5):8980-8985.
    Webster, R. Quantitative spatial analysis of soil in the field//Advances in soil science [M]. New York: Springer,1985:1-70.
    Wu J, Jelinski D E, Luck M, Tueller P T. Multiscale analysis of landscape heterogeneity:scale variance and pattern metrics [J]. Geographic Information Sciences,2000,6(1):6-19.
    Yanai J, Mishima A, Funakawa S, et al. Spatial variability of organic matter dynamics in the semi-arid croplands of Northern Kazakhstan [J]. Soil Science & Plant Nutrition,2005,51(2):261-269.
    Yang H S. Resource management, soil fertility and sustainable crop production:experiences of China [J]. Agriculture, Ecosystems and Environment,2006,116(1—2):27-33.
    Yemefack M, Rossiter D G, Njomgang R. Multi—scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon [J]. Geoderma,2005,125(1):117-143.
    Ying X, Zeng G, Chen G, et al. Combining AHP with GIS in synthetic evaluation of eco—environment quality—A case study of Hunan Province, China [J]. Ecological Modelling,2007,209(2):97-109.
    Zhang B, Zhang Y, Chen D, et al. A quantitative evaluation system of soil productivity for intensive agriculture in China [J]. Geoderma,2004,123(3):319-331.
    Zhang H, Gao R, Hhuang Y, et al. Spatial variability of organochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region of Beijing, China [J]. Journal of Environmental Sciences, 2007,19(2):194-199.
    Zhang S, Huang Y, Shen C, et al. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information [J]. Geoderma,2012,171:35-43.
    Zou Z H, Yun Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment [J]. Journal of Environmental Sciences,2006, 18(5):1020-1023.
    白雪,王文杰,王维,等.浙江省宁波市土壤有机质的时空变异特征[J].环境科学研究,2010,23(2):191-197.
    白由路,金继运,杨俐苹,等.农田土壤养分变异与施肥推荐[J].植物营养与肥料学报,2001,7(2):129-133.
    白由路,李保国,胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究[J].土壤肥料,1999,3:22-26.
    蔡崇法,丁树文,史志华,等.GIS支持下乡镇域土壤肥力评价与分析[J].土壤与环境,2000,9(2):99-102.
    曹建华,周莉,杨慧,等.桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J].第四纪研究,2011,31(3):431-437.
    柴旭荣,黄元仿,苑小勇.用高程辅助提高土壤属性的空间预测精度[J].中国农业科学,2007,40(12):2766-2773.
    柴旭荣,黄元仿,苑小勇,等.利用高程辅助进行土壤有机质的随机模拟[J].农业工程学报,2008,24(12):210-214.
    柴旭荣.土壤属性空间预测精度与不确定性分析——有限最大似然法和高程辅助变量的应用[博 士论文].北京:中国农业大学,2008.
    陈朝,吕昌河,范兰,等.土地利用变化对土壤有机碳的影响研究进展[J].生态学报,2011,31(18):5358-5371.
    陈海生,刘国顺,刘大双,等.GIS支持下的河南省烟草生态适宜性综合评价[J].中国农业科学,2009,42(7):2425-2433.
    陈睿山,蔡运龙.土地变化科学中的尺度问题与解决途径[J].地理研究,2010,29(07):1244-1256.
    陈涛,常庆瑞,刘钊,等.耕地土壤有机质与全氮空间变异性对粒度的响应研究[J].农业机械学报,2013,44(10):122-129.
    崔潇潇,高原,吕贻忠.北京市大兴区土壤肥力的空间变异[J].农业工程学报,2010,26(9):327-333.
    方兆登,张益农.浙北嘉兴平原几种稻田土壤肥力的评估[J].土壤,1990,22(1):12-16.
    付湘,谈广鸣,胡铁松.土壤空间变异下田间降雨入渗率的分布特性[J].水利学报,2010,7:9.
    高峻,黄元仿,李保国,等.农田土壤颗粒组成及其剖面分层的空间变异分析[J].植物营养与肥料学报,2003,9(2):151.
    郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析[J].地理学报,2000,55(5):555-566.
    胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417-421.
    胡克林,李保国,林启美,等.农田土壤养分的空间变异性特征[J].农业工程学报,1999a,15(3):33-38.
    胡克林,余艳,张凤荣,等.北京郊区土壤有机质含量的时空变异及其影响因素[J].中国农业科学,2006,39(4):764-771.
    胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报(自然科学版),2001,29(4):39-42.
    黄定轩,武振业,宗蕴璋.基于属性重要性的多属性客观权重分配方法[J].系统工程理论方法应用,2004,13(3):203-207.
    黄绍文,金继运,杨俐苹,等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40(1):79-88.
    黄元仿,周志宇,苑小勇,等.干旱荒漠区土壤有机质空间变异特征[J].生态学报,2004,24(12):2776-2781.
    霍霄妮,李红,张微微,等.北京耕作土壤重金属多尺度空间结构[J].农业工程学报,2009,25(3):223-229.
    霍亚贞.北京自然地理[M].北京:北京师范学院出版社,1989.
    解文艳,樊贵盛,周怀平,等.太原市污灌区土壤重金属污染现状评价[J].农业环境科学学报,2011,(08):1553-1560.
    孔祥斌,张凤荣,王茹,等.城乡交错带土地利用变化对土壤养分的影响——以北京市大兴区为例[J].地理研究,2005,24(2):213-221.
    雷志栋,杨诗秀,许志荣.土壤特性空间变异性初步研究[J].水利学报,1985,9(9):10-21.
    李桂林,陈杰,檀满枝,等.基于土地利用变化建立土壤质量评价最小数据集[J].土壤学报,2008,45(1):16-25.
    李梅,张学雷.基于GIS的农田土壤肥力评价及其与土体构型的关系[J].应用生态学报,2011,22(1):129-136.
    李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    李双异,刘慧屿,张旭东,等.东北黑土地区主要土壤肥力质量指标的空间变异性[J].土壤通报,2006,37(2):2220-2225.
    李振高,俞慎,潘映华,等.水稻根际硝化-反硝化作用生态因子的水平空间变异[J].土壤学报,1999,36(1):111-117.
    李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报,2000,5(5):59-66.
    廖桂堂,李廷轩,王永东,等.基于GIS和地统计学的低山茶园土壤肥力质量评价[J].生态学报,2007,27(5):1978-1986.
    刘东海,梁国庆,周卫,等.基于神经网络的土壤肥力综合评价[J].中国土壤与肥料,2011,(5):12-19.
    刘继龙,马孝义,张振华.不同土层土壤水分特征曲线的空间变异及其影响因素[J].农业机械学报,2010,41(1):46-52.
    刘建新.苹果与小麦间作对土壤养分状况及生物活性的影响[J].土壤肥料,2004,(1):34-36.
    刘庆,孙景宽,陈印平,等.不同采样尺度下土壤重金属的空间变异特征[J].土壤通报,2009,40(6):1406-1410.
    刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境,2003a,12(5):422-426.
    刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143.
    刘世梁,傅伯杰,吕一河,等.坡面土地利用方式与景观位置对土壤质量的影响[J].生态学报,2003b,23(3):414-420.
    柳云龙,章立佳,韩晓非,等.上海城市样带土壤重金属空间变异特征及污染评价[J].环境科学,2012,33(2):599-605.
    楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型[J].中国管理科学,2002,10(1):79-83.
    骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.
    吕巧灵,付巧玲,吴克宁,等.郑州市郊区土壤综合肥力评价及空间分布研究[J].中国农学通报,2006,22(1):166-168.
    吕晓男,陆允甫.土壤肥力综合评价初步研究[J].浙江大学学报:农业与生命科学版,1999,25(4):378-382.
    吕晓男.土壤肥力综合评价和作物施肥咨询系统研制与应用[博士学位论文].杭州:浙江大学,2000.
    马永红,周荣喜,李振光.基于离差最大化的决策者权重的确定方法[J].北京化工大学学报(自然科学版),2007,34(2):177-180.
    孟月华,李付国,贾小红,等.平谷桃园养分管理现状及其问题分析[J].中国土壤与肥料,2006,(6):54-56,61.
    牛佳,周小奇,蒋娜,等.若尔盖高寒湿地干湿土壤条件下微生物群落结构特征[J].生态学报,2011,31(2):474-482.
    潘峰,梁川,付强.基于层次分析法的物元模型在土壤质量评价中的应用[J].农业现代化研究,2002,23(2):93-97.
    庞夙,李廷轩,王永东,等.县域农田土壤铜、锌、铬含量空间变异特征及其影响因子分析[J].中国农业科学,2010,43(4):737-743.
    秦静,孔祥斌,姜广辉,等.北京典型边缘区25年来土壤有机质的时空变异特征[J].农业工程学报,2008,24(3):124-129.
    沈宏,徐志红,曹志洪.用土壤生物和养分指标表征土壤肥力的可持续性[J].土壤与环境,1999,8(1):31-35.
    盛建东,肖华,武红旗,等.不同取样尺度农田土壤速效养分空间变异特征初步研究[J].干旱地区农业研究,2005,23(2):63-67.
    史利江,郑丽波,梅雪英,等.上海市不同土地利用方式下的土壤碳氮特征[J].应用生态学报,2010,21(9):2279-2287.
    宋苏苏,黄林,陈勇.基于粗糙集的土壤肥力组合评价研究[J].农机化研究,2011,33(12):10-13.
    孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-369.
    汤建东,叶细养,饶国良,等.耕作改制对土壤肥力的影响[J].生态环境,2000,9(3):257-258.
    陶菊春,吴建民.综合加权评分法的综合权重确定新探[J].系统工程理论与实践,2001,21(8):43-48.
    王灿,王德建,孙瑞娟,等.长期不同施肥方式下土壤酶活性与肥力因素的相关性[J].生态环境,2008,17(2):688-692.
    王丹丹,岳书平,林芬芳,等.东北地区早地土壤全氮空间变异性对幅度拓展的响应[J].土壤学报,2012,49(4):625-635.
    王广月,崔海丽,李倩.基于粗糙集理论的边坡稳定性评价中因素权重确定方法的研究[J].岩土力学,2009,30(8):2418-2422.
    王军艳,张凤荣,王茹,等.应用指数和法对潮土农田土壤肥力变化的评价研究[J].农村生态环境,2001,17(3):13-16,20.
    王克孟,马玉军.淮阴市高产土壤肥力指标的研究[J].土壤,1992,24(5):239-243.
    王圣伟,冯娟,刘刚,等.多嵌套空间尺度农田土壤重金属空间变异研究[J].农业机械学报,2013, 44(6):128-135.
    王胜涛,宗静,贾小红.北京市测土配方项目实施区县土壤养分状况分析与评价[J].北京农业,2007,(10):113-120.
    王淑芳,王效科,欧阳志云.密云水库上游地区农田土壤有机碳储量及变化模拟[J].生态环境学报,2009,18(5):1923-1928.
    王淑英,于同泉,王建立,等.北京市平谷区土壤有效微量元素含量的空间变异特性初步研究[J].中国农业科学,2008,41(1):129-137.
    王树涛,李新旺,门明新,等.基于改进灰色关联度法的河北省粮食波动影响因素研究[J].中国农业科学,2011,44(1):176-184.
    王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    巫振富,赵彦锋,齐力,等.复杂景观区土壤有机质预测模型的尺度效应[J].土壤学报,2013,50(1):68-77.
    吴玉红,田霄鸿,侯永辉,等.基于田块尺度的土壤肥力模糊评价研究[J].自然资源学报,2009,24(8):1422-1431.
    吴玉红,田霄鸿,同延安,等.基于主成分分析的土壤肥力综合指数评价[J].生态学杂志,2010,29(1):173-180.
    徐建明,张甘霖,谢正苗,等.土壤质量指标与评价[M].科学出版社,2010.
    徐英,陈亚新,史海滨,等.土壤水盐空间变异尺度效应的研究[J].农业工程学报,2004,20(2):1-5.
    徐宗学,张玲,阮本清.北京降水量时空分布规律分析[J].干旱区地理,2006,29(2):186-192.
    严世光,廖铁军,王珂,等.土壤质量及其时空变异[J].安徽农业科学,2010,(3):1362-1365.
    杨金,马振江,张增旺.复混肥对秋白菜产量及土壤肥力的影响[J].土壤通报,1996,27(5):236-238.
    杨奇勇,杨劲松,刘广明.土壤速效养分空间变异的尺度效应[J].应用生态学报,2011,22(2):431-436.
    杨奇勇,杨劲松,姚荣江,等.基于GIS和改进灰色关联模型的土壤肥力评价[J].农业工程学报,2010,26(4):100-105.
    杨奇勇,杨劲松.不同尺度下耕地土壤有机质和全氮的空间变异特征[J].水土保持学报,2010,24(3):100-104.
    杨秀虹,李适宇,Bengtsson G. O. Ran,等.木焦油污染土壤中微生物特性的空间变异性研究[J].应用生态学报,2005,16(5):939-944.
    杨长明,欧阳竹,杨林章,等.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,2006,26(12):4148-4155.
    姚荣江,杨劲松,刘广明,等.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].农业工程学报,2006,22(6):61-66.
    姚荣江,杨劲松,陈小兵,等.苏北海涂围垦区土壤质量模糊综合评价[J].中国农业科学,2008, 42(6):2019-2027.
    姚荣江,杨劲松,赵秀芳,等.沿海滩涂土壤盐分空间分布的三维随机模拟与不确定性评价[J].农业工程学报,2010,26(11):91-97.
    于寒青,徐明岗,吕家珑,等.长期施肥下红壤地区土壤熟化肥力评价[J].应用生态学报,2010,21(7):1772-1778.
    于婧,周勇,聂艳,等.江汉平原耕地土壤氮素空间尺度套合与变异规律研究[J].中国农业科学,2007,40(6):1297-1302.
    余存祖,刘耀宗,彭琳,等.黄土区土壤肥力形成过程与肥力指标分析[J].土壤通报,1990,21(5):197-201.
    苑小勇,黄元仿,高如泰,等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,2008,24(2):70-76.
    苑小勇.基于北京市数字土壤数据库的农田土壤属性时空变异分析及水氮循环联合模拟[博士论文].北京:中国农业大学,2009.
    张大克,王玉杰,叶海江.水稻土肥力水平分类中主要土壤肥力因素指标的筛选模型[J].农业工程学报,1997,13(2):91-95.
    张昊,陶然,李志勇,等.判断矩阵法在网页恶意脚本检测中的应用[J].兵工学报,2008,29(4):469-473.
    张华,张甘霖.热带低丘地区农场尺度土壤质量指标的空间变异[J].土壤通报,2003,34(4):241-245.
    张建辉,川江流域防护林区土壤质量评价方法[J].山地研究,1992,(02):109-115.
    张娜.生态学中的尺度问题:内涵与分析方法[J].生态学报,2006,26(7):2340-2355.
    张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报,2003,34(6):493-497.
    张世熔,黄元仿,李保国.冲积平原区土壤颗粒组成的趋势效应与异向性特征[J].农业工程学报,2004,20(1):56-60.
    张世熔,孙波,赵其国,等.南方丘陵区不同尺度下土壤氮素含量的分布特征[J].土壤学报,2007,44(5):885-895.
    张世文,王胜涛,刘娜,等.土壤质地空间预测方法比较[J].农业工程学报,2011,27(1):332-339.
    张世文,叶回春,胡友彪,等.多时空尺度的土壤质量评价最小数据集的建立[J].安徽农业科学,2013a,41(17):7487-7492.
    张世文,张立平,叶回春,等.县域土壤质量数字制图方法比较[J].农业工程学报,2013b,29(15):254-262.
    张桃林,王兴祥.土壤退化研究的进展与趋向[J].自然资源学报,2000,15(3):280-284.
    张心昱,陈利顶,傅伯杰,等.不同农业土地利用方式和管理对土壤有机碳的影响——以北京市延庆盆地为例[J].生态学报,2006,26(10):3198-3204.
    张学雷,张甘霖,龚子同.SOTER数据库支持下的土壤质量综合评价——以海南岛为例[J].山地 学报,2001,19(4):377-380.
    赵杰,秦明周,郑纯辉.城乡结合部土壤质量及其动态研究——以开封为例[J].资源科学,2001,23(3):42-46.
    赵小勇,付强,邢贞相.投影寻踪等级评价模型在土壤质量变化综合评价中的应用[J].土壤学报,2007,44(1):164-168.
    赵永存,黄标,孙维侠,等.张家港土壤表层铜含量空间预测的不确定性评价研究[J].土壤学报,2007,44(6):974-981.
    赵云,陈伟,李春鸣,等.东祁连山不同退化程度高寒草甸土壤有机质含量及其与主要养分的关系[J].草业科学,2009,26(5):20-25.
    郑袁明,宋波,陈同斌,等.北京市不同土地利用方式下土壤锌的积累及其污染风险[J].自然资源学报,2006,21(1):64-72.
    钟波,肖智.组合预测中基于粗糙集理论的权值确定方法[J].重庆大学学报:自然科学版,2002,25(7):127-130.
    周献中,黄兵,李华雄,等.不完备信息系统知识获取的粗糙集理论与方法[M].南京:南京大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700