用户名: 密码: 验证码:
感热平衡原理测定土壤水分蒸发的改进及分解农田蒸散的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸散由土壤水分蒸发和植物蒸腾组成,研究蒸散中蒸发蒸腾的比例对提高作物的水分利用效率具有重要意义。然而,目前蒸散分解研究中缺乏原位动态测定土壤水分蒸发的方法。近年来,基于感热平衡原理,三针热脉冲传感器被用于测定土壤水分蒸发,但多个三针热脉冲传感器安装的空间位置偏差会对测定结果带来较大误差,且不能得到4mm以上的土壤蒸发部分。本研究的主要目的是通过改进三针热脉冲传感器设计及减小热脉冲技术测量田间土壤热特性的误差,进一步提高感热平衡原理确定土壤水分蒸发的准确性并用于农田蒸散分解的研究中。
     第一部分描述了改进的多针热脉冲传感器设计及其用于测定土壤水分蒸发的结果。多针热脉冲传感器由7个温度针和4个加热针组成,相当于4个三针热脉冲传感器的组合,并且增加了1和2mm处温度的测量。多针热脉冲传感器能够准确地测定土壤温度动态,包括表层1和2mm的温度变化,能够得到土壤热特性并进一步根据土壤感热平衡原理计算土壤水分蒸发。与三针热脉冲传感器相比,多针热脉冲传感器减小了仪器安装过程带来的误差,将土壤蒸发的不可监测区域由0-4mm缩小至0-1.5mm。
     第二部分改进了热脉冲技术测定时土壤表层热特性的计算方法。田间土壤表层热特性的测定会受到土壤背景温度日变化的影响,土壤背景温度的增加(降低)会造成热特性的低估(高估)。2012年第258天11:00时,土壤背景温度增加造成6-12mm土层的容积热容量(C)和热导率(λ)分别被低估8%和13%。基于Jury and Bellantuoni (1976)方法,利用热脉冲发射前的土壤背景温度,线性外推得到热脉冲测定过程中土壤背景温度的变化,从而修正了土壤背景温度对热脉冲热特性的影响,但0-6mm土层的热特性在白天某些时间(如258天11:00-15:00)仍无法校准。与de Vries模型计算的热特性相比,校准土壤背景温度影响后的热脉冲热特性在6mm以下土层平均偏差较小,C的平均偏差在0.30MJ m-3℃-1以内,λ的平均偏差在0.22Wm-1℃-1以内。而6mm以上土层的热脉冲热特性仍存在较大误差,这是因为热脉冲技术测量6mm以上土层热特性时受到了土壤-大气界面的影响。利用脉冲无限线性热源-绝热边界条件模型代替脉冲无限线性热源模型来计算土壤热特性能够校准土壤-大气界面的影响,校准后的热脉冲热特性误差明显降低:0-6mm土层C和λ的平均偏差分别由0.46MJ m-3℃-1和0.54Wm-1℃-1降低至0.32MJ m-3℃-1和0.12Wm-1℃-1。
     第三部分利用感热平衡原理测定土壤水分蒸发,与茎流计和蒸渗仪方法结合对农田蒸散进行了分解。2012年8月1日至9月25日,行间位置的土壤累积蒸发比行内位置的土壤累积蒸发大10mm。因此,有必要考虑农田土壤蒸发的空间变异性。与蒸渗仪蒸散相比,感热平衡法和茎流计茎秆能量平衡法得到的蒸散明显偏高,日蒸散量为蒸渗仪蒸散量的1-1.5倍。
     感热平衡原理不需要土壤水热耦合运移参数或水力特性便可得到土壤水分蒸发速率和蒸发位置,有助于深入了解近地表蒸发和水汽传输过程,对提高农田水分利用率具有重要的理论意义和应用价值。
The individual components of evapotranspiration include soil water evaporation and plant transpiration. Research on the proportion of evaporation and transpiration in evapotranspiration is important in order to increase water use efficiency. However, in the present study of evapotranspiration partitioning, few methods can monitor soil water evaporation in situ and continuously. Based on the sensible heat balance theory, three-needle heat-pulse sensors could be used to measure soil water evaporation, while, the positional deviation of three-needle heat-pulse sensors would cause great error and the evaporation above4-mm depth could not be determined. In view of the above problems, the main objective of this study was:improving the design of three-needle heat-pulse sensor and reducing the error of field soil thermal property measured by heat-pulse technique in order to increase the measurement accuracy of soil water evaporation by sensible heat balace theory and further applied to the evapotranspiration partitioning research.
     The first part described design of the improved multi-needle heat-pulse sensor and showed its field performance. The multi-needle heat-pulse sensor was constructed by seven temperature needles and four heater needles, equivalent of four three-needle heat-pulse sensors and with two more temperature needles at1and2mm depths. The multi-needle heat-pulse sensor can capture soil temperature dynamic, even at the top1and2mm depths. It can measure the soil thermal property and further determine evaporation rate based on the sensible heat balance theory. Compared with the three-needle heat-pulse sensor, the multi-needle heat-pulse sensor could decrease the errors caused by sensor installation and the undetectable zone was reduced from0-4mm layer to0-1.5mm layer.
     The second part improved the surface soil thermal property calculations during the heat-pulse measurements. When the heat-pulse technique was used to measure surface soil thermal property in the field, the results would be influenced by the diurnal changes of soil ambient temperature. The heat-pulse thermal properties would be underestimated (overestimated) when the ambient temperature increased (decreased). At11:00when the ambient temperature was increasing on Day258in the year of2012, the volumetric heat capacity (C) and thermal conductivity (λ) in the6-12mm soil layer were underestimatied by8%and13%, respectively. Following Jury and Bellantuoni (1976), the change of ambient temperature during heat-pulse measurements could be extrapolated linearly from the ambient temperature dynamic befor heat-pulse measurement, and used to calibrate the influence of ambient temperature changes. But thermal property couldn't be calibrated at some daytime (e.g.11:00to15:00on Day258). Compared to thermal properties estimated by the de Vries model, the average deviation of heat-pulse thermal properties below6mm depth were small after calibrating the ambient temperature effect. The average deviation were within0.30MJ m-3℃-1for C and within0.22W m-1℃-1for λ, While, the thermal property errors were larger above6mm depth, because it was also influenced by the soil-air interface. The soil-air interface effect could be calibrated by using the Pulse Infinite Line Source-Adiabatic Boundry Condition (PILS-ABC) modle to calculate thermal properties instead of the Pulse Infinite Line Source (PILS) model. After calibrating by the PILS-ABC model, the average deviation was reduced from0.46to0.32MJ m-3℃-1for C and from0.54to0.12W m-1℃-1for μ in the0-6mm soil layer.
     The third part examined the field evapotranspiration partitioning using the sensible heat balance theory for soil water evaporation. From Aug.1th to Sep.25th in the year of2012, the cumulative evaporation at interrow location was10mm larger than the cumulative evaporation at within row location. Therfore, the spatial variability of evaporation in the corn field could be considered. Compared with the daily evapotranspiration by lysimeter, the daily evapotranspiration determined by heat-pulse technique and sap flow stem heat balance was obvious larger and most values were between1to1.5times of the lysimeter evapotranspiration.
     The sensible heat balace theory can determine soil water evaporation rate and location without known the soil water and heat transport parameters and hydraulic properties. It has potential to improve the understanding of evaporation and vapor movement in the shallow subsurface soil and increase the field water use efficiency.
引文
Aboukhaled, A., Alfaro, A., and Smith, M. Lysimeters. FAO Irrigation and Drainage Paper No.39, 1982, pp 69.
    Allen, R.G., Howell, T.A., and Pruitt, W.O., et al. (Eds.), Lysimeters for evapotranspiration and environmental measurements. Proceedings of the International Symposium on Lysimetry, July, 23-25,1991, Honolulu, HI, ASCE Publication,1991, pp 444.
    Allen, R.G., Jensen, M.E., and Wright, J.L. Operational estimates of reference evapotranspiration. Agron.J.,1989,81:650-662.
    Ashktorab, H., Pruitt, W.O., and Pawu, K.T., et al. Energy balance determi-nations close to the soil surface using a micro-Bowen ratio system. Agric. For.Meteorol.,1989,46:259-274.
    Ashktorab, H., Pruitt, W.O., and Paw, K.T. Partitioning of evapotranspiration usinglysimeter and micro-Bowen-ratio system. J. Irrig. Drain. Eng.,1994,120:450-464.
    Bristow, K.L., Campebll, G.S., and Calissendorff, K. Test of a heat-pulse probe for measuring changes in soil water content. Soil Sci. Soc. Am. J.,1993,57:930-934.
    Bristow, K.L., Kluitenberg, G.J., and Horton, R. Measurement of soil thermal-properties with a dual-probe heat-pulse technique. Soil Sci. Soc. Am. J.,1994,58:1288-1294.
    Brutsaert, W.H. Evaporation into Atmosphere:Theory, History and Applications. D. Reidel, Dordrecht, 1982, pp 299.
    Bowen I.S. The ratio of heat losses by conductions and by evaporation from any water surface. Physical Reviews,1926,27(6):779-787.
    Bausch, W.C., and Bernard, T.M. Spatial averaging Bowen ratio system:description and lysimeter comparison. Trans. ASAE 1992,35 (1):121-128.
    Boast, C.W., and Robertson, T.M. A micro-lysimeter method for determining evap-oration from bare soil:description and laboratory evaluation. Soil Sci. Soc. Am.J.,1982,46:689-696.
    Baldocchi, D.D., and Meyers, P.T. Trace gas exchange above the floor of a decidiousforest 1. Evaporation and CO2efflux. J. Geophys. Res.,1991,96:7271-7285.
    Burgess, S.S., Adams, M.A., and Turner, et al. An improved heat pulse method to measure low and reverse ratesof sap flow in woody plants. Tree Physiol.,2001,21:589-598.
    Campbell, G.S., Calissendorff, K., and Williams, J.H. Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J.,1991,55:291-293.
    Campbell, G.S. Soil physics with BASIC:Transport models for soil-plant system. Elsevier, Amsterdam. 1985.
    Campbell, G. S., Jungbauer, J.D., and W.R. Bidlake, et al. Predicting the effect of temperature on soil thermal conductivity. Soil Sci.,1994,158:307-313.
    Cote, J., and Konrad, J.-M. A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J.,2005,42:443-458.
    Cellier, P., and Olioso, A. A simple system for automated long-term Bowen ratio measurement. Agric. For. Meteorol.,1993,66:81-92.
    Cohen, Y., Fuchs, M., and Green, G.C. Improvement of the heat pulse method fordetermining sap flow in trees. Plant Cell Environ.,1981,4:391-397.
    Cermak, J., Kucer, J., and Nadezhdina, N. Sap flow measurements with some ther-modynamic methods, flow integration within trees and scaling up from sampletrees to entire forest stands. Trees, 2004,18:529-546.
    Deol, P., Heitman, J., and Horton, R., et al. Inception and magnitude of subsurface evaporation in a bare field. Soil Sci. Soc. Am. J.,2014, in review.
    de Vries, DA. Simultaneous transfer of heat and moisture in porous media. Trans. Am. Geophys. Union.,1958,35:909-916.
    de Vries, D.A. Thermal properties of soils. In W.R. van Wijk(ed.), Physics of plant environment. North-Holland Publishing Company, Amsterdam.1963, pp 210-235.
    Drexler, J.Z., Snyder, R.L., and Spano, D., et al. A review of models and micrometeorological methods used to estimate wetland evapotranspiration, Hydrol. Processes,2004,18(11):2071-2101.
    Dugas, W.A., Fritschen, L.J., and Gay, L.W., et al. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and laten flux over irrigated spring wheat. Agric. For. Meteorol.1991,56: 1-20.
    Denmead, O.T., Dunin, F.X., and Leuning, R., et al. Measuring and mod-elling soil evaporation in wheat crops. Phys. Chem. Earth,1996,21:97-100.
    Denmead, O.T., Dunin, F.X., and Wong, S.C. Measuring wateruse efficiency of Eucalypt trees with chambers and micrometeorological tech-niques. J. Hydrol.,1993,150:649-664.
    De Wit, C.T. Transpiration and Crop Yield. Versl. Landbouwk. Onderz.64.6. Inst. of Biol. and Chem. Res. on Field Crops and Herbage, Wageningen, TheNetherlands.1958.
    Deol, P., Heitman, J., and Amoozegar, A., et al. Quantifying nonisothermal surface soil water evaporation. Water Resour. Res.,2012,48:W11503.
    de Vries, D.A. A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci., 1952,73:83-89. doi:10.1097/00010694195202000-00001.
    Evett, S.R., and Steiner, J.L. Precision of neutron probe scattering and capacitance type soil water content gauges from field calibration. Soil Sci. Soc. Am. J.,1995,59:961-968.
    FAO. State of food and agriculture. Part Ⅲ. Water policies and agriculture. Food and Agricultural Organization, Rome,1994, pp 126.
    Fuchs, M, and Tanner, C.B. Error analysis of Bowen ratios measured by differential psychrometry. Agric. Meteorol.1970,7:329-334.
    Guo, Z. and Dirmeyer, P.A. Evaluation of the Second Global Soil Wetness Project soil moisture simulation:1. Intermodel comparison. J. Geophys. Res.,2006,111:10.1029/2006JD007233.
    Gardner, H.R., and Hanks, R.J. Evaluation of the evaporation zone in soil by measurement of heat flux. Soil Sci. Soc. Amer. Proc.,1966,30:425-428.
    Grant, D.R. Comparison of evaporation measurements using different methods. Q. J. Roy. Meteorol. Soc.1975,101:543-551.
    Grime, V.L., and Sinclair, F.L. Sources of error in stem heat balance sap flow mea-surements. Agric. For. Meteorol.,1999,94:103-121.
    Green, S., Clothier, B., and Jardine, B. Theory and practical application of heat pulseto measure sap flow. Agron. J.,2003,95:1371-1379.
    Granier, A. Une nouvelle methode pour la mesure du flux de seve brute dansle tronc des arbres (A new method of sap flow measurement in tree stems). Ann. For. Sci.,1985,42:193-200.
    Heitman, J.L., Horton, R., and Sauer T.J., et al. Latent heat in soil heat flux measurements. Agric. For. Meteorol.,2010,150:1147-1153.
    Heitman, J.L., Horton, R., and Sauer T. J., et al. Sensible heat observations reveal soil-water evaporation dynamics. J. Hydrometeorol.,2008a,9(2):165-171.
    Heitman, J.L., Xiao, X., and Horton, R. Sensible heat measurement indicating depth and magnitude of subsurface soil water evaporation. Water Resour. Res.,2008b,44, W00D05.
    Hu, Z., Yu, G., and Zhou Y., et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems:application of a two-source model. Agric. For. Meteor.,2009,149:1410-1420.
    Holland, S., Heitman, J.L., and Howard, A., et al. Micro-Bowen ratio system for measuring evapotranspirationin a vineyard interrow. Agric. For. Meteorol.,2013,177:93-100.
    Heitman, J.L., Basinger, J.M., and Kluitenberg, G.J., et al. Field evaluation of the dual-probe heat-pulse method for measuring soil water content. Vadose Zone J.,2003,2:552-560.
    Idso, S.B., Reginato, R.J., and Jackson, R.D., et al. The three stages of drying of a field soil. Soil Sci. Soc. Am. Proc,1974,38:831-837.
    Johansen, O. Thermal conductivity of soils.1975, PhD. diss. Norwegian Univ. of Science and Technol., Trondheim (CRREL draft transl.637,1977).
    Jensen, M.E., Burman, R.D., and Allen, R.G. (Eds), Evapotranspiration and irrigation water requirements. ASCE Manuals No.70,1990, pp 332.
    Jury, W.A., and Bellantuoni B. A background temperature correction for thermal conductivity probes. Soil Sci. Soc. Am. J.,1976,40:608-610.
    Kurc, S.A., and Small, E.E. Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res.,2004,40: 1-15.
    Kite, G. Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation. J. Hydrol.,2000,229:59-69.
    Kondo, J., Saigusa, N., and Sato, T. A parameterization of evaporation from bare soil surfaces. J. Appl. Meteor.,1990,29:385-389.
    Kluitenberg, G.J., Bristow, K.L., and Das, B.S. Error analysis of heat pulse method for measuring soil heat capacity, diffusivity, and conductivity. Soil Sci. Soc. Am. J.,1995,59:719-726.
    Kluitenberg, G.J., Ham, J.M., and Bristow, K.L. Error analysis of the heat pulse method for measuring volumetric heat capacity of soil. Soil Sci. Soc. Am. J.,1993,57:1444-1451.
    Knight, J.H., and Kluitenberg, G.J. Simplified computational approach for the dual-probe heat-pulse method. Soil Sci. Soc. Am. J.,2004,68:447-449.
    Kersten, M.S. Laboratory research for the determination of the thermal properties of soils. ACFEL Tech. Rep.23. Univ. of Minnesota, Minneapolis.1949.
    Kool D., Agam, N., and Lazarovitch, N., et al. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol.,2014,184:56-70.
    Kluitenberg, G.J., Kamai, T., and Vrugtcd, J.A. et al. Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements. Soil Sci. Soc. Am. J.,2010,74:1537-1540.
    Lawrence, D.M., Thornton, P.E., and Oleson, K.W., et. al. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM:impacts on land-atmosphere interaction. J. Hydrometeorol.,2007,8:862-880.
    Lehmann, P., Assouline, S., and Or, D. Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E,2008,77,056309, doi:10.1103/PhysRevE.77.056309.
    Liu, X., Ren, T., and Horton, R. Determination of soil bulk density with thermo-time domain reflectometry sensors. Soil Sci. Soc. Am. J.,2008,72:1000-1005.
    Liu, G., Zhao, L., and Wen, M., et al. An adiabatic boundary condition solution for improved accuracy of heat-pulse measurement analysis near the soil-atmosphere interface. Soil Sci. Soc. Am. J.,2013, 77:422-426.
    Lu, S., Ren, T., and Gong, Y., et al. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J.,2007,71:8-14.
    Mahfouf, J.F. and Noilhan, J. Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteor.,1991,30:1354-1365.
    Milly, P.C.D. Potential evaporation and soil moisture in general circulation models. J. Climate,1992,5: 209-226.
    Mayocchi, C.L., and Bristow K.L. Soil surface heat flux:Some general questions and comments on measurements. Agric. For. Meteorol.,1995,75:43-50.
    Musgrave, R.B., and Moss, D.N. Photosynthesis under field conditions. I. A portable, closed system for determining net assimilation and respiration of corn. Crop Sci.,1961,1:37-41.
    Nadezhdina, N., and Cermak, J. The technique and instrumentation for estimationthe sap flow rate in plants (in Czech).1998. Patent No.286438 (PV-1587-98). Bureaufor Inventions and Discoveries, Prague, Prague.
    Oleson, K.W., Niu, G.Y., and Yang, Z.-L., et al. CLM3.5 Documentation.2007, http://www.cgd.ucar.edu/tss/clm/distribution/clm3.5/CLM3_5_documentation.pdf.
    Ochsner, T.E., Sauer, T.J., and Horton, R. Soil heat storage measurements in energy balance studies. Agron.J.,2007,99:311-319.
    Ochsner, T. E., Horton, R., and Ren, T. A new perspective on soil thermal properties. Soil Sci. Soc. Am. J.,2001,65:1641-1647.
    Ochsner, T.E., Sauer, T.J., and Horton, R. Field tests of the soil heat flux plate method and some alternatives. Agron. J.,2006,98:1005-1014.
    Ochsner, T.E., Horton, R., and Ren T. Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone. Vadose Zone J.,2003.,2:572-579.
    Philip, J.R. Numerical solution of equations of the diffusion type with diffusivity concentration-dependent. Trans. Faraday Soc.,1955,51:885-892.
    Philip, J.R., and de Vries, D.A. Moisture movement in porous materials under temperature gradients. Trans. Amer. geophys. Union,1957,38:222-232.
    Philip, J. R. Evaporation, and moisture and heat fields in the soil. Journal of meteorology,1957, 14:354-366.
    Penuelas, J., Rutishauser, T., and Filella, I. Phenology feedbacks on climate change. Science,2009,324: 887-888.
    Philip, R.J., and Kluitenberg, G.J. Errors of dual thermal probes to soil heterogeneity across a plane interface. Soil Sci. Soc. Am. J.,1999,63:1579-1585.
    Parkes, M., and Li Y. Modeling mobile water flow. In:Camp, C.R., Sadler, E.J., Yoder, R.E. (Eds.), Evapotranspiration and Irrigation Scheduling. Proceedings of the International Conference, November 3-6, San Antonio, TX,1996, pp 509-515.
    Perrier, A., Archer, P., and Blanco de Pablos, A. Etude de l'e'vapotranspiration re'elle et maximale de diverses cultures:dispositifs et mesures. Ann. Agron.1974,25:697-731.
    Qiu, G.Y., and Ben-Asher, J. Experimental determination of soil evaporation stages with soil surface temperature. Soil Sci. Soc. Am. J.,2010,74(1):13-22.
    Qiu, G.Y., Ben-Asher, J., and Yano, T., et al. Estimation of soil evaporation using the differential temperature method. Soil Sci. Soc. Am. J.,1999,63:1608-1614.
    Reynolds, J.F., Kemp, P.R., and Tenhunen, J.D. Effects of longterm rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan desert:a modeling analysis. Plant Ecol.,2000,150:145-159.
    Ren, T, Noborio, K, and Horton, R. Measuring soil water content, electrical conductivity, and thermal properties with a thermo time domain reflectometry probe. Soil Sci. Soc. Am. J.,1999,63:450-457.
    Ren, T., Kluitenberg, G J., and Horton, R. Determining soil water flux and pore water velocity by a heat pulse technique. Soil Sci. Soc. Am. J.,2000,64:552-600.
    Ritchie, J.T. Model for predicting evaporation from a row crop with incompletecover. Water Resour. Res.1972,8:1204-1213.
    Rana, G., and Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:A review, Eur. J. Agron.,2000,13(2-3):125-153.
    Scott, R.L., Huxman, T.E., and Cable, W.L., et al. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan desert shrubland. Hydrol. Process.,2006,20:3227-3243.
    Shokri, N., Lehmann, P., and Or, D. Effects of hydrophobic layers on evaporation from porous media. Geophys. Res. Lett.,2008,35, L19407, doi:10.1029/2008GL035230.
    Shokri, N., Lehmann, P., and Or, D. Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. Res.,2009.45, W10433,
    Shokri, N., Lehmann, P., and Or, D. Evaporation from layered porous media. J. geophys. res.,2010,115, B06204, doi:10.1029/2009JB006743.
    Sakai, M., Jones, S.B., and Tuller, M. Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance. Water Resour. Res.,2011,47, W02547.
    Sauer, T.J., Singer, J.W., and Prueger, J.H., et al. Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agric. For. Meteor.,2009,145:206-214.
    Shuttleworth, W. J. Putting the "vap" into evaporation, Hydrol. Earth Syst. Sci.,2007,11(1):210-244.
    Saugier, B., Ripley, E.A. Evaluation of the aerodynamic method of determining fluxes over natural grassland. Q. J. Roy. Meteorol. Soc.1978,104:257-270.
    Shawcroft, R.W., and Gardner, H.R. Direct evaporation from soil under a row cropcanopy. Agric. Meteorol.,1983,28:229-238.
    Stannard, D.I., and Weltz, M.A. Partitioning evapotranspiration in sparsely vege-tated rangeland using a portable chamber. Water Resour. Res.,2006,42:1-13.
    Sakuratani, T. A heat balance method for measuring water flux in the stem ofintact plants. J. Agr. Met., 1981,37:9-17.
    Sakuratani, T. Studies of evaporation from crops. II. Separate estimation oftranspiration and evaporation from a soybean field without water shortage. J.Agr. Met.,1987,42:309-317.
    Swanson, R.H., and Whitfield, D.W.A. A numerical analysis of heat pulse velocitytheory and practice. J. Exp. Bot0,1981,32:221-239.
    Scanlon, T.M., and Sahu, P. On the correlation structure of water vapor and carbondioxide in the atmospheric surface layer: a basis for flux partitioning. WaterResour. Res.,2008,44, W10418.
    Tanner, C.B. Measurement of evapotranspiration. In:Hagan, R.M., Haise, H.R., Edminister, T.W. (Eds.), Irrigation of Agricultural Lands, Agron. Mon. No.11, Am. Soc. Agron. Madison, WI,1967, pp 534-574.
    Trautz, A.C., Smits, K.M., and Schulte P., et al. Laboratory validation and numerical testing of the sensible heat balance and heat-pulse methods to determine in situ soil-water evaporation. Vadose Zone J.,2013, doi:10.2136/vzj2012.0215.
    Verstraeten, W. W., Veroustraete, F., and Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation, Sensors,2008,8(1):70-117.
    Wilcox, B.P., Breshears, D.D., and Seyfried, M.S. Water balance on rangelands. In:Stewart, B.A., Howell, T.A. (Eds.), Encyclopedia of water science. Marcel Dekker, Inc., New York,2003, pp 791-794.
    Wetzel, P.J. and Chang, J.T. Concerning the relationship between evapotranspiration and soil moisture. J. Appl. Meteor.,1987,26:18-27.
    Welch, S.M., Kluitenberg, G.J., and Bristow, K.L. Rapid numerical estimation of soil thermal properties for a broad class of heat-pulse emitter geometries. Meas. Sci. Technol.1996,7:932-938.
    Webb, E.K. Aerial microclimate. Agriculture meteorology, meteorological monographs. Am. Meteorol. Soc.1965,6 (28):27-58.
    Walker, G.K. Measurement of evaporation from soil beneath crop canopies.Can. J. Soil Sci.,1983,63: 137-141.
    Wilson, K.B., Hanson, P.J., and Mulholland, P.J., et al. Acomparison of methods for determining forest evapotranspiration and its com-ponents:sap-flow, soil water budget, eddy covariance and catchment waterbalance. Agric. For. Meteorol.,2001,106:153-168.
    Williams, D.G., Cable, W., and Hultine, K., et al. Evapotranspiration components determined by stable isotope, sap flowand eddy covariance techniques. Agric. For. Meteorol.,2004,125:241-258.
    Xiao, X., Horton, R., and Sauer, T.J., et al. Cumulative soil water evaporation as a function of depth and time. Vadose Zone J.,2011,10:1016-1022.
    Xiao X., Sauer, T.J., and Heitman, J.L., et al. Sensible heat balance measurements of soil water evaporation beneath a maize canopy. Soil Sci. Soc. Am. J.,2014, in press. doi:10.2136/sssaj2013.08.0371.
    Yamanaka, T., Takeda, A., and Shimada, J. Evaporation beneath the soil surface:some observational evidence and numerical experiments. Hydrol. Process.,1998,12:2193-2203.
    Yamanaka, T., and Yonetani, T. Dynamics of the evaporation zone in dry sandy soils. J. Hydrol.,1999, 217:135-148.
    Zhao, N., Liu, Y., and Cai, J., et. al. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain:Basal crop coefficients and soil evaporation component. Agr. Water Manage.,2013,117:93-105.
    Zeggaf, A.T., Takeuchi, S., and Dehghanisanij, H., et al. A Bowen ratiotechnique for partitioning energy fluxes between maize transpiration and soilsurface evaporation. Agron. J.,2008,100: 988-996.
    Zegada-Lizarazu, W., and Berliner, P.R. Inter-row mulch increase the water useefficiency of furrow-irrigated maize in an arid environment. J. Agron. Crop Sci.,2011,197:237-248.
    Zhang, Y.Q., Liu, C., and Shen Y., et al. Measurement of evapotranspiration in a winter wheat field. Hydrol. Process.,2002,16:2805-2817.
    Zhang, X., Lu, S., and Heitman, J., et al. Measuring subsurface soil-water evaporation with an improved heat-pulse probe. Soil Sci. Soc. Am. J.,2012,76:876-879.
    樊引琴,蔡焕杰.冬小麦田棵间蒸发的试验研究.灌溉排水,2000,4:14.
    刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究.水利学报,1998,10:36-39.
    刘钰,Fernando, R.M., Pereira, L.S.微型蒸发器田间实测麦田与裸地土面蒸发强度的试验研究.水利学报,1999,6:45-49.
    李王成,王为,冯绍元,陈绍军,霍再林.不同类型微型蒸发器测定土壤蒸发的田间试验研究.农业工程学报,2007,23(10):6-13.
    任图生,邵明安, 巨兆强,等.利用热脉冲时域反射技术测定土壤水热动态和物理参数I.原理.土壤学报,2004,41(2):225-229.
    王会肖,砂土土壤蒸发的测定与模拟.中国农业气象,1997,18(4):29-35.
    袁国富,张娜, 孙晓敏,等.利用原位连续测定水汽δ18O值(?)(?)Keeling Plot方法区分麦田蒸散组分.植物生态学报,2010,34(2):170-178.
    张旭东,蔡焕杰,付玉娟,等.黄土区夏玉米叶面积指数变化规律的研究.干旱地区农业研究,2006,24(2):25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700