用户名: 密码: 验证码:
基于热红外成像技术的自走式实时变量灌溉机的设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原春季降水量小,蒸发量大,冬小麦生长期易发生水分亏缺。尤其华北平原本身缺水严重,传统的漫灌方式更加浪费了宝贵的水资源,因此该地区宜发展高产高效的节水农业。虽然大型灌溉机械节水节能效果较好,但是华北平原耕地不统一,水管理较分散,一家一户的耕地面积小,而且大型灌溉机械成本较高,推广难度较大,长期以来该地区的灌溉作业机械化程度较低。使用灌溉机械能够在提高作业效率的同时,减轻劳动量,节约水资源,因而轻小型灌溉机械更适合当地现状,更具有推广使用的价值。本文设计了一种全新的自走式实时变量灌溉机械,与卷盘机相配合,使用低压软管出流的方式完成矩形小地块的精准灌溉。该机器灌溉前,采用遥控控制直流电机作为灌溉机的动力源,向外牵引卷盘机PE软管;灌溉时依靠压力水驱动卷盘机内水涡轮旋转牵引灌溉机回收,依据热红外成像技术获取处方图和灌溉控制系统的指令,能够在冬小麦地进行实时变量灌溉作业,通过PE软管的一拉一收完成边走边灌溉的任务,“直来直去”的灌溉方式能够提高灌溉作业效率,节水节能。本文主要完成了以下的工作:
     1.完成了基于热红外成像技术的自走式实时变量灌溉机的整机设计,测试了灌溉机的工作性能,灌溉机行走速度变化率为28.6%,行走方向上基本能保持匀速运动,保证灌溉水分布均匀性;12支管流量的克里斯琴森均匀系数(CU)达到了98.91%,灌溉量能够在10mm-80mm范围内调节,满足冬小麦灌溉定额的要求。实际作业时可以通过调节不同的入口压力和作业速度,调整所需灌溉强度。
     2.使用VB语言编写了基于GPS的实时变量灌溉控制系统软件,并使用Protel设计了单片机控制系统电路,烧制了单片机控制程序,印制了控制器电路板,完成整个控制系统软硬件的设计。根据热红外成像技术获取的处方图,结合GPS位置信息,当灌溉机到达指定位置即可按不同需水量控制预设电磁阀组的开闭,进行实时变量灌溉。
     3.在2011-2012以及2012-2013两个冬小麦生长季,于中国农业大学河北吴桥实验站,分别以不灌溉和漫灌为对照,使用喷灌,滴灌,以及机械灌溉的方式进行了冬小麦大田灌溉试验,验证了自走式变量灌溉机械的可行性。总体上来说,通过设计合理的灌溉方案,使用灌溉机进行精准灌溉能够保证冬小麦的产量及产量构成的因素,株高,穗长,生物量及收获指数维持在正常的水平,与滴灌在灌溉量相差不大时,产量能够提高3.25%,水分利用效率提高了10.1%,整体作业效果良好。
     4.引入了基于热红外成像技术的水分胁迫指数(CWSI)作为评价灌溉效果的指标,通过提前预测冬小麦产量评价实际灌溉效果,验证了使用热红外成像技术获取CWSI的方法的可行性及产量和CWSI较强的负相关关系,结合BP神经网络的方法对冬小麦产量进行了预测,相比于传统的非线性回归函数预测模型,提高了预测精度,效果更好。
North China Plain has little precipitation and more evaporation in spring which makes the winter wheat prone to have water deficit. In particular, the North China Plain itself has a serious water shortage problem, the traditional flood irrigation method is a waste of valuable water resources, and therefore this region should develop an efficient water-saving agriculture. Although large-scale irrigation machinery is better for saving water and energy, but the not unified North China Plain arable land, more dispersed water management, only small arable land for family workshops, much expensive large-scale irrigation equipment, long time no machine for irrigation in this region, all of these factors make the big machine promotion full of difficult, therefore light and small-scaled machine are more suitable for the local status. The irrigation machinery is capable of operating at improving irrigation efficiency, reducing the irrigation labor force and saving water resources. This paper presents self-propelled real-time variable irrigation machinery, fitted with reel machines to complete precision irrigation in small rectangular plots. Before irrigation, the machine use remote controlled DC motor as a power source for irrigation vehicle, pulling out the PE hose of the reel machine; During irrigation, pressured water rotate the water-driven turbine to wind up the PE hose recycling the irrigation vehicle. By using of irrigation map and control system to realize a real time variable irrigation in the winter wheat field, with PE hose pulling in and out to complete the irrigation task during machine walking. The development of self-propelled variable irrigation machines is capable of improving irrigation efficiency, saving water and energy. This paper completed the following tasks:1. Completed the design of self-propelled real-time variable irrigation machine, the machine is compact and flexible and can be used for small plots of crops in the North China Plain for irrigation operations which achieved a small plot irrigation mechanization. Test the irrigation machine performance and obtain its flow characteristics at different pressures which can be achieved uniform irrigation within the depth range of10mm-80mm, meet the requirements of the irrigation water intensity of winter wheat. The PE reel runs with an constant speed and the coefficient of Christiansen along the main pipe is98.91%. Irrigation depth can be achieved by adjusting inlet pressure and travel speed. Only one person is needed to operate the irrigation machinery which reduce the labor intensity and improve irrigation efficiency.
     2. Using VB language to write an GPS-based real-time variable irrigation control system program, designing a microcomputer control system circuit by Protel software, firing a single-chip control procedures, printing the controller circuit board and completing the entire control system hardware and software design. Through man-machine interface, design irrigation prescription map based on soil moisture information, control solenoid valve switch on and off to complete real-time variable irrigation according to different water demand in corresponding positions.
     3. Two winter wheat growing season during2011-2012and2012-2013to conduct irrigation trials of winter wheat field in China Agricultural University Experimental Station of Hebei Wuqiao, respectively, sprinkler irrigation, drip irrigation, no irrigation and mechanical irrigation methods were compared in the experimental study to verify the feasibility of self-propelled variable irrigation machine. Overall, through the rational design of irrigation schemes and use of irrigation machine is able to ensure the growth of winter wheat yield, constituted yield factors, plant height, ear length, biomass and harvest index remained at normal levels, irrigation machine is better than flood irrigation and sprinkler irrigation in his region, and can achieve similar effect with drip irrigation when irrigate similar amount of water, but the yield is increased3.25%, WUE is increased10.1%.
     4. The way of using infrared cameras to get CWSI are more efficient method, cooperate with BP neural network to predict yield of winter wheat will enhance the forecast accuracy, compared to traditional non-linear regression prediction model, this combination can predict higher accuracy and gain better results. Production and CWSI have strong negative correlation, which verify the same results with the previous findings.
     This paper develops a new type of self-propelled real-time variable irrigation machine, which can reduce labor intensity and improve irrigation work efficiency, promote the development of irrigated agriculture mechanization. By optimizing crop cultivation and irrigation patterns based on the machine is easy to realize energy and water conservation, promote agricultural agronomic technology integration, achieve win-win situation of lower energy consumption and high crop yield and efficiency.
引文
[1]孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000,16(2):1-5.DOI:10.3321/j.issn:1002-6819.2000.02.001.
    [2]康绍忠,马孝义.立足国情,积极发展节水农业[J].科技导报,1999,(7):17.DOI:10.3321/j.issn:1000-7857.1999.07.004
    [3]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[c].//中国农业工程学会机械化旱作农业与节水灌溉技术研讨会论文集.1998:38-45
    [4]李保国.1998~2007年中国农业用水报告[M],2009
    [5]李保国,黄峰.1998-2007年中国农业用水分析[J].水科学进展,2010,21(4):575-583.
    [6]兰林旺,周殿玺.小麦节水高产研究[M].北京:北京农业大学出版社,1995.
    [7]王淑芬,张喜英,裴冬,等.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32.DOI:10.3321/j.issn:1002-6819.2006.02.007
    [8]兰霞,周殿玺,兰林旺.灌溉制度对冬小麦产量结构形成与产量物质来源的影响[J].中国农业大学学报,2001,01:17-22.
    [9]李建民,王璞,周殿玺,等.灌溉制度对冬小麦耗水及产量的影响[J].生态农业研究,1999,04:25-28
    [10]邵凤成,丁振山,李洪云,等.春季灌溉次数对冬小麦产量影响的试验研究[J].天津农林科技,2011,04:1-2.
    [11]成林,刘荣花,马志红.缺水和灌水对冬小麦产量影响评估[J].干旱地区农业研究,2012,02:101-106.
    [12]张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,02:1-4.
    [13]吴永成,周顺利,王志敏.氮肥运筹对华北平原限水灌溉冬小麦产量和水氮利用效率的影响[J].麦类作物学报,2008,06:1016-1020.
    [14]陈丽利.对卷盘式喷灌机设计规划的几点思考[J].民营科技,2011,(6):96.
    [15]Food and Agriculture Organization (FAO) [J].1984.
    [16]Achtnich, W. Bewasserungslandbau. Agrotechnik Grundlagen der Bewasserungs wirtschaft. Ulmer Verlag, Stuttgart, Germany,1980.310-424
    [17]李远华,罗金耀.节水灌溉理论与技术(第二版)[M],武汉大学出版社,2003
    [18]陈大雕,林中卉,喷灌技术(第二版)[M],科学出版社,1992
    [19]Seginer, I., D. Kantz and D. Nir.1991. The distortion by wind of the distribution patterns of single sprinklers. Agric. Water Management,19:341-359.
    [20]刘海军,康跃虎,刘士平.喷灌对冬小麦生长环境的调节及其对水分利用效率影响的研究[J].农业工程学报,2003,06:46-51.
    [21]杨东.干旱风沙区喷灌技术试验研究[J].节水灌溉,2004,04:19-20+22.
    [22]李久生,饶敏杰,张建君.干旱地区喷洒水利用系数的田间试验研究[J].农业工程 学报,2002,06:42-45.
    [23]路振广,杨宝中,张玉顺.节水灌溉工程的技术综合评价[J].中国农村水利水电,2002,05:26-28.
    [24]张志新等.滴灌工程规划设计原理与应用[M].北京:中国水利水电出版社,2007
    [25]GB/T 50485-2009《微灌工程技术规范》
    [26]L. Mateos. A simulation study of comparison of the evaluation procedures for three irrigation methods[J]. Irrig Sci,2006(25):75-83
    [27]王建东,龚时宏,高占义,等.滴灌模式对农田土壤水氮空间分布及冬小麦产量的影响[J].农业工程学报,2009,11:68-73.
    [28]程裕伟,马富裕,冯治磊,等.滴灌条件下春小麦耗水规律研究[J].干旱地区农业研究,2012,02:112-117.
    [29]徐飞鹏,李云开,任树梅.新疆棉花膜下滴灌技术的应用与发展的思考[J].农业工程学报,2003,01:25-27.
    [30]刘大江,封金祥.精准灌溉及其前景分析[J].节水灌溉,2006,01:43-44.
    [31]邴志刚,卢胜利,刘景泰.面向精准灌溉的传感器网络的研究[J].仪器仪表学报,2006,S 1:294-296.
    [32]唐风敏.行走式节水灌溉精量施水控制系统的研究[D].中国农业大学,2007.D0I:10.7666/d.y1107833.
    [33]章军富.基于ZigBee无线传感器网络的精准灌溉控制系统[D].北京林业大学,2010
    [34]Renata Silvio da Frota Ribeiro. Fuzzy logic based automatic irrigation control system optimized via neural network. A dissertation presented for the PHD. The university of Tennessee.1998
    [35]张兵,袁寿其,成立.节水灌溉自动化技术的发展及趋势[J].排灌机械,2003,02:37-41.
    [36]郎需强.基于ZigBee和GPRS的远程果园智能灌溉系统的设计与实现[D].山东农业大学,2011.
    [37]章军富,陈峻崎,胡剑非,等.基于GPRS/SMS和μC/OS的都市绿地精准灌溉控制系统[J].农业工程学报,2009,09:1-6.
    [38]刘秀珍,郑德聪,马骏,等.精确灌溉与施肥自动化管理系统的研制与实现[J].水土保持学报,2006,05:197-200.
    [39]靳广超,彭承琳,赵德春,等.基于Zig Bee的土壤墒情监测系统[J].传感器与微系统,2008,10:92-94.
    [40]张小超,王一鸣,汪友祥,等.GPS技术在大型喷灌机变量控制中的应用[J].农业机械学报,2004,35(6):102-105,123.DOI:10.3969/j.issn.1000-1298.2004.06.029.
    [41]杨青,庞树杰,李勇军,李莉,等.基于GPS和GIS变量施水控制系统的设计.中国农业工程学会2005年学术年会论文集。165-200
    [42]杨青,庞树杰,李勇军,等.基于GPS和GIS的变量施水控制系统设计[J].农业机械学报,2006,37(12),126-129
    [43]周建军.基于组件式GIS的变量灌溉决策支持系统研究[D].河北农业大学,:2004.DOI:10.7666/d.y612462
    [44]金宏智,何建强,钱一超.变量技术在精准灌溉上的应用[J].节水灌溉,2003,01:1-3+46.
    [45]Benami, A. and A. Ofen.1984. Irrigation engineering. Irrigation Engineering Scientific Publications (LESP). pp.71-98.
    [46]NASS.2004.2003 Farm and Ranch Irrigation Survey,2002 Census of Agriculture. National Agricultural Statistics Service, United States Department of Agriculture, Washington, D.C. Available at http://www.nass.usda.gov/census/censusO2/fris/frisO3.htm, last accessed 15 July 2005
    [47]姚怡.应用于精准灌溉的无线传感网定位技术研究[D].湖南大学,:2009.DOI:10.7666/d.y1722934.
    [48]杜历.星雨卷盘式喷灌机特性分析[J].中国农村水利水电,2000(6):57~58
    [49]张翠香,李加林,孙洪平.卷盘式喷灌机在农作物灌溉中的应用[J].节水灌溉设备.2003(1):20-21
    [50]江建友.国外卷盘式喷灌机的选用[J].排灌机械2000,18(6):34-35
    [51]罗金耀.节水灌溉技术指标与综合评价理论及应用研究[D].武汉水利电力大学,1997
    [52]范永申,黄修桥,仵峰,等.喷灌和软管灌溉两用机组水量分布特性与试验[J].农业工程学报,2009,40(11),74-77
    [53]严海军.基于变量技术的圆形和平移式喷灌机水量分布特性的研究[D].中国农业大学,2005.
    [54]Omary, M; Camp, Cr; Sadler, Ej,1997:Center pivot irrigation system modification to provide variable water application depths. Applied engineering in agriculture 13(2): 235-239
    [55]Hanson BR, Orloff SB (1996). Rotator nozzles more uniform thran spray nozzles on center pivot sprinklers. Calif Agric50(1):32-35
    [56]Faci, J. M., R. Salvador, E. Playa'n and H. Sourell.2001. Comparison of fixed and rotating spray plate sprinklers. Journal of Irrig. and Drain. Engrg., ASCE, 127(4):224-233.
    [57]Michael D. Dukes, Calvin Perry. Uniformity testing of variable-rate center pivot irrigation control systems. Precision AgricPrecision Agric (2006) 7:205-218
    [58]Evett et al., (2006) S.R. Evett, R.T. Peters, T.A. Howell. Controlling water use efficiency with irrigation automation:Cases from drip and center pivot irrigation of corn and soybean. Proc.28th Annual Southern Conservation Systems Conference, Amarillo TX, June 26-28 (2006), pp.57-66
    [59]Schneider, A.D.2000. Efficiency and uniformity of the LEPA and spray sprinkler methods:A review. Transactions of the ASAE 43(4):937-944
    [60]Lyle, W. M. and J. P. Brodovsky.1982. LEPA irrigation system evaluation. American Society of Agricultural Engineers, Paper No.82-2536, ASAE, St. Joseph, MI 49085.
    [61]Hanson, B. R., L. J. Schwankl and A. Fulton.1988. Uniformity of low-energy preciseapplication (LEPA) irrigation machines. California Agriculture,42(5):12-14.
    [62]Azouggagh, M.1994. Modification and evaluation of a traveling boom irrigator for SugarCane in Morocco. Ph.D. publ., Thesis. Institut Agronomique et veterinaire Hassan, Morocco, pp.26-33.
    [63]Sourell, H., M. Albrecht, A. Bramm, T. Eggers, E. Fricke, F.-J. Lopmeier, P.-J. Paschold, D.Roth, M. Schmitz, H.-H. Thormann, F. SeeBelberg and C. Sommer.1999. Feldberegnung Ⅲ, pp.398-437,Hrsg. Rationalisierungs-Kuratoriumfiir Landwirtschaft (RKL), Rendsburg, Germany.
    [64]王朝娜.基于Multigen Creator/Vega的大型平移式喷灌机虚拟试验研究[D].山东农业大学,2010.
    [65]苏中伟.JPG75/300型卷盘式喷灌机设计要点的讨论[A].中国农业机械学会.农业机械化与全面建设小康社会——中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C].中国农业机械学会:2003:5.
    [66]朱国栋.对卷盘式喷灌机特点及规划设计问题的研究[J].黑龙江科技信息,2007,18:12
    [67]许一飞.软管卷盘式自动喷灌机特性分析[J].节水灌溉,1996,03:39-45.
    [68]Silva LL, Serralheiro R, Santos N. Improving Irrigation Performance in Hose-drawn Traveller Sprinkler Systems [J]. Biosystems Engineering.2007,96(1),121-127.
    [69]严海军,姚培培,王敏.灌溉用压力调节器性能试验与受力分析[J].排灌机械工程学报,2010,28(6)
    [70]严海军,许一飞.悬挂式卷管灌溉机的设计与研制[J].农业工程学报.2000,16(3):32-34
    [71]陈丽利.对卷盘式喷灌机设计规划的几点思考[J].民营科技,2011,06:96.
    [72]袁浩,王启平,罗勇,等.卷盘式喷灌机在大田作物中的应用[J].中国农村水利水电,2000,09:50-51.
    [73]SOLOMON KH. Yield related interpretations of irrigation uniformity and efficiency measures. Irrig.Sci.1984,5161-172
    [74]LETEY J Irrigation uniformity as related to optimum crop production-Additional research is needed. Irrig.Sci.1985,6 253-263
    [75]Ascough, G. W.; Kiker, G. A.,2002:The effect of irrigation uniformity on irrigation water requirements. Water SA 28(2):235-241 LETEY J Irrigation uniformity as related to optimum crop production-Additional research is needed. Irrig.Sci.1985,6 253-263
    [76]S.B.IDSO, R.D.JACKSON, P.J.PINTER,et,al. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorlogy,1981,24:45-55
    [77]Sherwood B.Idso. Non-water-stress baselings:a key to measuring and interpreting plant water stress. Agricultural Meteorlogy,1982,27:59-70
    [78]Patel N R; Mehta A N; Shekh A M. Canopy temperature and water stress quantification in rainfed pigeonpea (Cajanus cajan (L.) Millsp.)[J]. Agricultural Forest Meteorology,2001 109223-232
    [79]HG Jones, Plant, Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces.[J] Plant, Cell&Enviroment,1999, 22(9):1043-1055
    [80]J.Padhi; R.K.Misra; J.O.Payero. Estimation of soil water deficit in an irrigated cotton field with infrared thermography [J]. Field Crops Research.2012.126:44
    [81]Irmak S; Haman D Z; Bastug R. Determination of crop water stress index for irrigation timing and yield estimation of corn[J]. Agronomy Journal,2000 92 1221-1227
    [82]Ilkka Lenonen, Hamlyn G.Jones. Combing thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany,2004,55:1423-1431
    [83]LvShuran, LvShujin. Applying BP Neural Network Model to Forecast Peak Velocity of Blasting Ground Vibration [J]. Procedia Engineering,2011 26 257-26
    [84]Idso S B, Jackson R D, Pinter P J Jr, et al. Normalizing the stress degree day for environmental variability[J]. Agricultura 1 Meteorology,1981,24:45-55.
    [85]Ali Abdullah Alderfasi, David C Nielsen. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat.[J] Agricultural Water Management,2001, 4769-75
    [86]Yuan G, Luo Y. Sun X. Tang D. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain, Agricultural Water Management, 2004,64(1),29-40
    [87]Jones H G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces [J]. Plant, Cell and Environment,1999,22(9): 1043-1055
    [88]ISO (1991) Determination of the inhibitory effect of water constituents on bacteria: Pseudomonas cel multiplication inhibition test. International Standards Organization,Geneva, Switzerland, TC147/SC 5/N76, pp.17
    [89]杜文勇.华北麦田移动式滴灌技术研究及评价[D].中国农业大学,2011.
    [90]Christiansen J E (1942) Irrigation by Sprinkling. California Agricultural Experiment Station,Bull.670, University of California, Berkley, USA.
    [91]GB/T 27612.3-2011/ISO 15886-3:2004农业灌溉设备喷头第3部分:水量分布特性和试验方法
    [92]ASCE.Describing irrigation efficiency and uniformity. J.Irrig.Drain.1978, Div104(1) 35-41
    [93]BURT CM, CLEMMENS AJ, STRELKOFF TS, SOLOMON K.H, BLIESNER RD, HARDYLA, HO WELL TA and EISENHAUER DE(1997) Irrigaiton performance measures:Efficiency and uniformity. J.Irrig.Drain. Eng.123(6) 423-442
    [94]吴崇良.计算允许土壤表面持水量的喷灌强度[J].喷灌技术,1984,01:21-22.
    [95]允许喷灌强度试验研究协作组,金兆森,蒋定生.允许喷灌强度的测定和对我国土壤允许喷灌强度的建议[J].喷灌技术,1980,04:33-41.
    [96]周勉,羊锦忠,程桂鑫.根据土壤入渗能力确定允许喷灌强度的方法[J].江苏农学院学报,1980,03:1-11
    [97]刘海军,康跃虎.喷灌动能对土壤入渗和地表径流影响的研究进展[J].灌溉排水,2002,02:71-74+79.
    [98]谢礼贵.时针式喷灌机喷灌参数选择及喷头配置方法[J].喷灌技术,1982,02:7-11.
    [99]蒋定生,金兆森,田虎旗,等.使用不同喷头时砂壤土和壤土之允许喷灌强度[J].喷灌技术,1982,03:9-13
    [100]仪修堂,窦以松,兰才有,等.中心支轴式喷灌机喷头配置方法及其数学模型[J].农业工程学报,2007,02:117-121.
    [101]严海军,金宏智.圆形喷灌机末端出流多口系数的研究[J].农业机械学报,2003,05:65-68.
    [102]刘忠潮.计算喷灌管道沿程水头损失的多口系数问题[J].喷灌技术,1982,02:44-46.
    [103]Christiansen JE. Irrigation by sprinkling. California Agric. Experiment Station Bull, No.670,University of California, Davis Calif.,1942
    [104]Jensen JC, Fratini AM. Adjusted 'F' factors for sprinkler lateral design. Agricultural Engineering,1957,38(4):247
    [105]金宏智,严海军,钱一超.国外节水灌溉工程技术发展分析[J].农业工程学报,2010,S1
    [106]严海军,许一飞.悬挂式卷管灌溉机水力设计参数的几点探讨,节水灌溉,2001,(03),0009-10
    [107]严海军,许一飞.悬挂式卷管灌溉机的设计与研制,农业工程学报,2000,16(3),32-34
    [108]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [109]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社
    [110]门旗,米孟恩,陈祖森.低压多孔灌溉软管设计与评价方法的研究[J].喷灌技术,1995,04:17-19
    [111]SL280-2003卷管牵引绞盘式喷灌机使用技术规范[S]
    [112]谢俊,郭洪锍,陈炜,等.基于ANSYS和Fluent软件的导流管流场分析[J].机械设计与制造,2008,09:70-72.
    [113]韩占忠,王敬,兰小平.FLUENT流体工程学仿真计算实例与应用[M].北京理工大学 出版社,2004
    [114]孙帮成,李明高.ANSYS FLUENT 14.0仿真分析与优化设计.[M].北京:机械工业山版社,2013
    [115]Sousa PL, Silva LL, Serralheiro RP (1999). Comparative analysis of main on-farm irrigation systems in Portugal [J]. Agricultural Water Management,40,341-351
    [116]ASAE. Test procedure for determining the uniformity of water distribution of center pivot, corner pivot, and moving lateral irrigation machines equipped with spray or sprinkler nozzles, ANSI/ASAE S436 SEP92. In:ASAE Standards 1995,pp 750-751, ASAE, St Joseph, MI
    [117]Fernando Losilla, Pedro Sanchez, Cristina Vicente-Chicote, Barbara Alvarez, Andres Iborra. A WSAN Solution for Irrigation Control from a Model Driven Perspective. International Federation for Information Processing.(2007),Volume 248,35-46
    [118]Jianjun Zhou, Gang Liu, Su Li, Xiu Wang, Man Zhang. Decision support system of variable rate irrigation based on mathematical model and GIS. International Federation for Information Processing, (2008)Volume 259,1011-1019
    [119]RF SOLUTION STROM-433F MODEM RS232/USB 说明书
    [120]YL-100IL小功率无线数传模块使用手册.2004
    [121]吕晓兰.基于机器视觉技术的变量施药系统研究[D].中国农业大学,2008.
    [122]ATMEL公司AT89S52微控制器中文技术手册.
    [123]陈志青.喷雾机器人控制系统研制[D].中国农业大学,2002.
    [124]袁琦,储春华,李中品,等.基于Lab VIEW的水环境因子无线监测系统设计[J].电子设计工程,2012,05:159-162.
    [125]求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社.2006.
    [126]于英杰,张书慧,齐江涛,等.变量施肥机在不规则田块的定位方法[J].农业机械学报.2011,42(2):158-161
    [127]谭浩强.Visual Basic程序设计[M].清华大学出版社
    [128]严海军,许一飞.悬挂式卷管灌溉机的设计与研制[J].农业工程学报,2000,03:32-34
    [129]GA Clark, K Srinivas, DH Rogers, et al. Measured and Simulated Uniformity of Low Drift Nozzle Sprinklers [J]. Transactions of ASAE.2003,46(2):321-330
    [130]J Letey. Irrigation Uniformity as Related to Optimum Crop Production-Additional Research Is Needed[J]. Irrigation Science. (1985)6:253-263
    [131]G Sinai, B Zur, A Haramati. Estimations of permissible irrigation rates from soil properties in high frequency irrigation [J]. Irrigation Science. (2007)25:313-323
    [132]张承国,韩登仑.DYP-234电动圆形喷灌机的研制.中国农机化.2012(2)
    [133]Han, S., R.G.Evans, and S.M.Schineider.1996.Development of a site-specific irrigation scheduling program. ASAE Technical Paper No.96-2076. ASAE. St Joseph, MI.
    [134]Evans, R.G.and G.B.Harting.1999. Precision irrigation with center pivot systems on potatoes. In:Proc. ASCE 1999 International Water Resources Engineering Conference. August 8-11. Seattle, WA
    [135]Evans R G, Buchleiter G W, Sadler E J, et al. Controls for precision irrigation with self-propelled systems[C]//National irrigation symposium. Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, USA, November 14-16,2000. American Society of Agricultural Engineers,2000:322-331.
    [136]Allen R G,Pereira L S,Raes D,et al..Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56.Rome:Food and Agriculture Organization of the United Nations,1998:1
    [137]李久生,张建君,薛克宗.滴灌施肥灌溉原理与应用.北京:中国农业科学与技术出版社,2003.pp1-2
    [138]单长卷,土壤干旱对冬小麦水分生理和生物量分配的影响[J],麦类作物学报,2006,26(2):127-129
    [139]杜家菊,陈志伟.使用SPSS线性回归实现通径分析的方法[J].生物学通报,2010,02:4-6.
    []40]张磊,李福生,王连喜,等.不同灌溉量对春小麦生长及产量构成的影响[J].干旱地区农业研究,2009,27(4):46-49
    [141]王树安,兰林旺,周殿玺,等.冬小麦节水高产技术体系研究[J].中国农业大学学报,2007,12(6):44. DOI:10.3321/j.issn:1007-4333.2007.06.021.
    [142]吕丽华,胡玉昆,李雁鸣,王璞.灌水方式对不同小麦品种水分利用效率和产量的影响,麦类作物学报,2007,271:88-92
    [143]Y Erdem, T Erdem, AH ORTA, H Okursoy, Irrigation scheduling for watermelon with crop water stress index(CWSI).[J] Journal of Central Europen Agriculture,2006,6(4):449
    [144]Braunworth W.S.Jr; Mack H.J. Crop water production functions for sweet corn [J]. Journal of the American Society for Horticultural Science.1989114(2):210-215
    [145]Orta, A.H., Y. Erdem ve T. Erdem. Crop water stress index for watermelon [J]. Scientia Horticulturae.98,121-130, (2003).
    [146]Patel N R; Mehta A N; Shekh A M (2001). Canopy temperature and water stress quantiflcaiton in rainfed pigeonpea (Cajanus cajan (L.) Millsp.). Agricultural Forest Meteorology,109 223-232
    [147]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2008:108.
    [148]刘增进,李宝萍,李远华,等.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报,2004,20(4):58-63
    [149]吴忠东,王全九.微咸水连续灌溉对冬小麦产量和土壤理化性质的影响[J].农业机械学报,2010,41(9):36-43
    [150]黄文江,袁红春,王纪华,赵春江.基于神经网络的水稻产量预测模型[J].计算机与 农业,2000,10:21-24
    [151]赵振国,刘丽,徐建新.基于BP神经网络预测区域农业用水量[J].人民黄河,2007,29(9):59-62
    [152]程相军,王春宁,陈生潭.神经网络原理及其应用[M].北京:国防工业出版社,1995
    [153]J.O.Payero, S. Irmak. Variable upper and lower crop water stress index baselines for corn and soybean.[J] Irrigation Science,2006,25 21-32
    [154]陈博,欧阳竹.基于BP神经网络的冬小麦耗水预测[J].农业工程学报,2010,26(4):81-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700