用户名: 密码: 验证码:
灌漠土上连续间作对作物生产力和土壤肥力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间套作在生产中广泛应用,具有生产力和养分利用优势。间套作在高生产力和高养分量携出条件下,土壤肥力是否维持或者降低成为众所关注的问题。然而,连续间套作条件下土壤肥力变化及其受作物组合和施肥影响仍缺乏系统研究。因此,在甘肃武威白云试验站进行两个间套作定位试验研究不同作物间作组合以及不同施磷水平对土壤肥力(物理、化学和生物)的影响。定位试验一始于2003年,试验处理包括三种间作作物组合(小麦/玉米、蚕豆/玉米及小麦/蚕豆间作连作和间作轮作);四种轮作(小麦-玉米、小麦-蚕豆、蚕豆-玉米和小麦-蚕豆-玉米)以及三种连作(连作玉米、小麦和蚕豆)。定位试验二始于2009年,试验为裂区设计,主因素为不同施磷水平(0、40和80kg P/ha),副因素为4种间作模式(玉米/蚕豆、玉米/大豆、玉米/鹰嘴豆和玉米/油菜间作)和相应5种单作(单作玉米、蚕豆、大豆、鹰嘴豆和油菜)。在定位试验一的第9年(2011年)和第10(2012年)年,定位试验二的第3年(2011年)和第4(2012年)年,分别测定作物生产力和养分吸收量及土壤肥力变化。土壤肥力特征从物理(入渗率、土壤机械组成、紧实度、水稳性团聚体含量)、化学(有机质、全氮、Olsen P含量、速效钾、阳离子交换量和pH值)和生物学(脲酶、酸性磷酸酶、硝酸还原酶和蔗糖酶活性)性质进行研究。主要研究结果如下:
     (1)间作具有明显产量和养分吸收量优势。试验一,小麦和玉米,蚕豆和玉米及小麦和蚕豆三种作物组合平均下,两年间间作连作生产力比相应作物连作和轮作分别提高5.2-29.5%和2.9-12.8%;间作轮作比连作和轮作分别增加14.1-33.3%和11.6-16.2%均达到显著水平。三种作物组合平均下,两年里间作连作地上部氮吸收量分别比相应作物连作和轮作提高0-15.4%和4.4-9.8%,间作轮作比相应作物连作和轮作增加8.4-22.1%和12.7-16.1%,间作连作地上部磷吸收量比相应作物连作和轮作增加0-14.4%及0-10.5%,间作轮作比相应作物连作和轮作提高3.7-17.4%和7.3-13.1%;间作连作地上部钾吸收量比相应作物连作和轮作提高0-14.3%及0-20.4%,间作轮作比相应作物连作和轮作增加6.1-21.7%及2.3-28.3%均达到显著水平。
     试验二,三个磷水平平均而言,两年间蚕豆压米,大豆/玉米,鹰嘴豆/玉米及油菜/玉米间作比相对应单作分别增产14.5-19.6%,19.3-38.2%,20.7-24.3%及24.8-38.6%。两年间,间作地上部氮吸收量比对应单作分别增加19.2-20.7%,2.2-27.5%,24.8-26.5%以及29.4-39.7%;磷吸收量提高16.3-27.3%,2.4-30.6%,28.1-35.1%和36.9-40.7%,钾吸收量增加21.5-31.9%,9.7-52.9%,31.5-38.1%和43.1-49.2%。
     (2)间作改善了土壤物理性状。试验一在第9年(2011年)作物收获后,大于2mm土壤水稳性团聚体含量,蚕豆和玉米间作连作高于相应两作物的连作和轮作175%和105%,差异达到显著水平;间作轮作高于连作和轮作75%、65%,同样达到显著水平;在第10年(2012年),小麦和玉米间作连作高于相应两作物的连作和轮作188%和130%,小麦和玉米间作轮作高于连作和轮作138%和174%;蚕豆和玉米间作连作高于连作和轮作474%、450%,间作轮作高于连作和轮作135%、125%,均达到显著差异。2-0.25mm水稳性团聚体含量,2011年小麦和玉米连作和轮作分别比间作连作增加36.9%和44%,比间作轮作增加16.2%和22.1%;2012年蚕豆和玉米间作2-0.25mm土壤水稳性团聚体含量与相应连作和轮作相比,没有显著差异;蚕豆和小麦间作连作和间作轮作显著高于轮作。0.25-0.106mm和小于0.106mm土壤水稳性团聚体在每个作物组合下不同种植方式间均没有差异。种植方式对土壤容重、机械组成(沙粒、粉粒和粘粒组成)及紧实度没有显著影响;2011年间作连作和2012年轮作(小麦和玉米组合除外)显著提高土壤饱和入渗率。
     试验二,三个磷水平平均而言,蚕豆/玉米,大豆/玉米和油菜/玉米间作土壤饱和入渗率比相应单作分别提高91-131%,31.1-39.4%和9.6-25.6%。大于2mm水稳性团聚体含量,蚕豆/玉米,大豆/玉米,鹰嘴豆/玉米和油菜压米间作比相应单作分别提高12.2-17.4%,0-46.7%,19.6-39.2%和0-34.6%;2-0.25mm,0.25-0.106mm和小于0.106mm水稳性团聚体在间作和单作之间没有变化。土壤机械组成和紧实度间作相对于单作没有显著变化。因此,间作具维持或改善土壤物理性状的潜力。
     (3)间作维持土壤化学性状基本稳定。试验一,与连作和轮作相比,间作连作和间作轮作下土壤有机质、全氮、Olsen P、速效钾和阳离子交换量没有显著变化(2011年小麦/玉米和蚕豆压米间作土壤pH和2012年土壤速效钾和阳离子交换量除外)。
     试验二,三个磷水平平均而言,除2012年鹰嘴豆/玉米以及两年油菜/玉米间作外,土壤有机质在间作和单作之间没有差异;两年间土壤全氮含量在单作和间作之间均对施磷水平没有响应(2011年80kg P ha-1下蚕豆/玉米间作除外);2012年间作降低土壤Olsen P含量,2011年和2012年土壤速效钾均降低,2012年土壤阳离子交换量和pH有降低趋势。施磷缓解土壤Olsen P下降。
     (4)间作保持土壤生物学性状稳定。试验一,2011年小麦/玉米间作和2012年小麦/蚕豆间作土壤脲酶显著高于连作和轮作,土壤酸性磷酸酶、硝酸还原酶和蔗糖酶活性没有显著变化。
     试验二,三个磷水平平均而言,两年间,除间作土壤酸性磷酸酶活性高于对应单作,土壤脲酶、硝酸还原酶和蔗糖酶活性没有受到种植方式的影响。
     (5)温室模拟试验表明,土壤中大于2mm,2-0.25mm和0.25-0.106mm水稳性团聚体含量与作物生产力显著相关。通径分析发现土壤中大于2mm,2-0.25mm和0.25-0.106mm水稳性团聚体含量直接通径系数为-0.14,0.21和0.42,0.25-0.106mm水稳性团聚体对作物生产力影响显著。土壤物理性状解释40%作物生产力变化。
Intercropping is widely practised in agriculture because of its significant overyielding and nutrition acquisition advantages. Under this conditions whether soil fertility sustained or improved became a hot spot, which is well-known. However, there are few published studies about continuous intercropping on long-term changes in soil fertility. Therefore, we conducted two field experiments about the effects of intercropping systems and P application rates on soil fertility in Baiyun village, Wuwei City, Gansu Provience in northwest China. The first long-term field experiment was carried out in2003, the treatments included three intercropping systems (wheat (Triticum aestivum L. cv. Yongliang No.4)/maize(Zea mays L. cv. Zhengdan No.958), faba bean (Vicia faba L. cv. Lincan No.5)/maize and wheat/faba bean continuous and rotational intercroppings), four rotational systems (wheat-maize, wheat-faba bean, faba bean-maize and wheat-faba bean-maize), monoculture systems (monocropping maize, wheat and faba bean). The second long-term field experiment was conducted in2009which was a split-plot design, with different rates of P fertilizer (0,40and80kg P/ha) as main plot and four intercroppings (maize(Zea mays L. cv. Zhengdan No.958)/faba bean (Viciafaba L. cv. Lincan No.5)),(maize/soybean(Glycine max L.cv. Wuke No.2)),(maize/chickpea (Cicer arietinum L. cv. Longying No.1)) and (maize/turnip (Brassica campestris L.cv. Gannan No.4)) and five monocultures (maize, faba bean, soybean, chickpea and turnip) as sub-plot. We measured crop yields, above ground nutrient uptake and soil fertility in the9th (2011) and10th (2012) for the first experiment and in the3th (2011) and4th (2012) for the second experiment, respectively. Soil fertility properties included physical (soil saturation infiltration, soil particle composition, soil compaction and soil water stable aggregates concentration), chemical (soil organic matter, total N, Olsen P, available K, cation exchangeable capacity and pH) and biological properties (soil urease, acid phosphatase, nitrate reductase and sucrase activities). The main results were as follows:
     (1) Continuous intercropping still were overyielding and had nutrient acquisition advantage. In the first field experiment, averaged over wheat and maize, faba bean and maize, and wheat and faba bean crop combinations, crop productivity was enhanced by5.2-29.5%and2.9-12.8%in continuous intercropping; and increased by14.1-33.3%and11.6-16.2%in rotational intercropping in comparison with corresponding monoculture and rotation cropping systems over two years, respectively. N acquisition by above ground parts in continuous intercropping was increased by0-15.4%and4.4-9.8%, and in rotational intercropping by8.4-22.1%,12.7-16.1%compared to corresponding monoculture and rotational crops, respectively. P acquisition in continuous intercropping was enhanced by0-14.4%and0-10.5%, and rotational intercropping by3.7-17.4%and7.3-13.1%compared to the weighted means of monoculture and rotational crops, respectively. The percentages of K acquisition were raised by0-14.3%,0-20.4%in continuous intercropping,6.1-21.7%and2.3-28.3%in rotational intercropping, respectively.
     In the second field experiment, averaged over three P application rates, faba bean/maize, soybean/maize, chickpea/maize and turnip/maize intercroppings were overyielded by14.5-19.6%,19.3-38.2%,20.7-24.3%and24.8-38.6%, respectively, compared to corresponding monocultures across two years. N acquisition by above ground parts in intercropping was enhanced by19.2-20.7%,2.2-27.5%,24.8-26.5%and29.4-39.7%; P acquisition was raised by16.3-27.3%,2.4-30.6%,28.1-35.1%and36.9-40.7%; K acquisition was increased by21.5-31.9%,9.7-52.9%,31.5-38.1%and43.1-49.2%compared with corresponding monocultures across two years, respectively.
     (2) Intercropping improved soil physical properties. In the9lh (2011) years after crops harvest, soil concentration of water stable aggregates with greater than2mm in soil grown faba bean/maize intercropping were175%and105%higher for continuously intercropping,75%and65%higher for rotational intercropping than corresponding monocultre and rotation crops, respectively. In the10th (2012) years, soil concentration of water stable aggregates with greater than2mm in soil grown wheat/maize intercropping were188%and130%higher for monoculture and rotation crops, respectively. Soil concentration of water stable aggregates with greater than2mm in soil grown wheat/maize intercropping were138%and174%higher for rotational intercropping, respectively. Soil concentration of water stable aggregates with greater than2mm in soil grown faba bean/maize intercropping were474%and450%,135%and125%greater for continuous and rotational intercropping, respectively. In2011, soil concentration of2-0.25mm water stable aggregates in soil grown monoculture and rotation were36.9%and44%,16.2%and22.1%higher for continuous or rotational intercropping, respectively. In2012, soil concentration of2-0.25mm water stable aggregates were no differences among monoculture or rotational and intercropping, but rotational was greater than faba bean/wheat intercroppings. Soil concentration of0.25-0.106mm and smaller than0.106mm water stable aggregates were not affected by intercropping. Intercropping were not influenced on soil bulk density, texture and compaction. Soil infiltration were altered by continuous intercropping in2011and rotation in2012(with an exception of wheat with maize combination) in the long-term experiments.
     In the second field experiment, averaged over three P rates, soil infiltration were increased by91-131%,31.1-39.4%and9.6-25.6%in faba bean/maize, soybean/maize and turnip/maize intercropping, compared to corresponding monocultures across two years. Soil water stable aggregates with greater than2mm for faba bean/maize, soybean/maize, chickpea/maize and turnip/maize intercropping were improved by12.2-17.4%,0-46.7%,19.6-39.2%and0-34.6%compared with corresponding monocultures over two years. There were no significant differences in2-0.25mm,0.25-0.106mm, smaller than0.106mm soil aggregates, soil texture and compaction between intercropping and monoculture. Thus, soil physical properties were maintained or improved by intercropping.
     (3) Generally, soil chemical properties were sustained by intercropping. In the first experiment, Soil organic matter, total N, Olsen P, available K and cation exchangeable capacity were not as affected by intercropping (with an exception of soil pH in wheat/maize and faba bean/maize intercropping in2011and cation exchangeable capacity in2012). In the second experiment, averaged over P rates, soil OM were stable with an exception of chickpea/maize intercropping in2011and turnip/maize intercropping both two years. Interestly, there were no responses of soil total N to P application under both intercropping and monoculture (with an exception of faba bean/maize intercropping at80kg ha-1in2011); soil Olsen P was reduced by intercropping in2012; soil available K significantly decreased by intercropping in both years; soil cation exchangeable capacity and pH demonstrated a declined trends in2012. Soil Olsen P reduced by intercropping, which can be alleviated by P added.
     (4) Intercropping maintained soil biological properties. In the first experiment, soil urease activity in wheat/maize intercropping in2011and wheat/faba bean intercropping in2012were greater than corresponding monoculture and rotation, but soil acid phosphatase, nitrate reductase and sucrase activities were stable. In the second experiment, in the majority of cases soil enzymes activities did not differed across all the cropping systems at different P application rates compared to monocrops with the exception of soil acid phosphatase activity which was higher in intercropping than in the corresponding monocrops in both years, indicating that intercropping enhanced utilization of organic P in soil via altered soil acid phosphatase.
     (5) The greenhouse experiment demonstrated that soil water stable aggregates>2mm,2-0.25mm and0.25-0.106mm were significantly correlated with crop productivity. The path coefficients were-0.14,0.21and0.42, respectively, and were significantly in0.25-0.106mm. The determination coefficient (R2) is0.40indicated soil physical properties which explain40%the variation of productivity.
引文
陈端豪,1982.桑园土壤肥力与产叶量关系的初步研究.蚕桑通报.4:2
    陈恩凤,1984.黑土肥力的基础物质和土体构型的某些性质及其相互关系.中国科学院林业土壤研究所.土壤肥力研究论文集.pp:1-16
    陈文新,汪恩涛,陈文峰,2004.根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学.37(1):81-86
    樊军,2001.黄土高原旱地长期定位试验土壤酶活性研究.硕士学位论文.杨凌:西北农林科技大学
    封海胜,万书波,左学青,等.1999.花生连作土壤及根际主要微生物类群的变化及与产量的相关.花生科技.2:277-283
    郭艳玲,韩建国,赵守强,等.2006.种植多年生禾本科牧草对土壤物理性状的影响.牧草研究.23(10):14-18
    侯光炯,谢德体,闻光源,2001.土壤肥力学概要.农业土壤学-侯光炯在宜宾应用研究17年论文选集.pp:103-137
    侯彦会,周学辉,焦婷,等.2009.甘肃永昌县放牧草地土壤脲酶活性与土壤肥力的关系初探.草业学报.18:111-116
    胡恒觉,黄高宝,1999.新型多熟种植研究[M].甘肃科学技术出版社
    霍琳,武天云,蔺海明,等.2008.长期施肥对黄土高原旱地黑垆土水稳性团聚体的影响.应用生态学报.19:545-550
    贾恩吉,何文安,赵立华,1996.作物根茬对土壤物理性状的影响.吉林农业科学.3:55-57
    贾伟,周怀平,解文艳,等.2008.长期秸秆还田秋施肥对褐土微生物碳、氮量和酶活性的影响.华北农学报.23(2):138-142
    蒋建平,刘廷志,1996.泡桐丛枝病过氧化物同功酶季节性变化规律的研究.河南农业大学学报.30(2):123-126
    焦彩强,2008.集约化生产模式下耕作对土壤物理性质的影响及效应分析.硕士学位论文.杨凌:西北农林科技大学
    焦晓光,隋跃宇,张兴义,2008.土壤有机质含量与土壤脲酶活性关系的研究.农业系统科学与综合研究.24:494-496
    焦晓光,魏丹,2009.长期培肥对农田黑土土壤酶活性动态变化的影响.中国土壤与肥料.5:23-27
    兰玉峰,夏海勇,刘红亮,等.2010.施磷对西北沿黄灌耕灰钙土玉米/鹰嘴豆间作产量及种间相互作用的影响.中国生态农业学报.18:40-45
    黎孟波,张先婉,1991.土壤肥力概念与模式:土壤肥力研究之一.北京:中国科学技术出版社.pp:208-213
    李登航,王立,黄高宝,等.2009.保护性耕作对黄土高原坡耕地水土流失的影响.安徽农业科学.37(13):6087-6090
    李东坡,武志杰,陈利军,等.2005.长期培肥黑土脱氢酶活性动态变化及其影响因素.土壤通报.36:679-683
    李凡修,梅萍,2010.五元联系数模型在土壤肥力评价中的应用研究.江苏农业科学.6:529-530
    李秋祝,余常兵,胡汉升,等.2010.不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异.植物营养与肥料学报.16:777-785
    李守谦,1992.关于甘肃省“吨粮田”建设的几点看法.甘肃农业科技.1:1-3
    李小兵,何丙辉,2004.不同种植模式对金银花水土保持效益的影响.西南农业大学学报(自然科学版).26(4):120-123
    李玉英,余常兵,孙建好,等.2008.蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力.农业工程学报.24:223-227
    刘鸿鹄,赵玉明,王秀颖,等.2008.土壤肥力评价方法探讨.长江科学院院报.25(3):62-66
    刘洁,李贤伟,纪中华,等.2011.元谋干热河谷三种植被恢复模式土壤贮水及入渗特性.生态学报.31:2331-2340
    刘楠,张丽娟,刘文菊,等.2010.河北山前平原高产田冬小麦土壤微生物学特性的动态变化.水土保持学报.24(3):155-159
    刘宁,2009.桉树-甘蔗复合经营土壤化学性状及酶活性研究.安徽农业科学.37(27):13192-13195
    刘善江,夏雪,陈桂梅,等.2011.土壤酶的研究进展.中国农学通报.27:1-7
    刘晚苟,2001.不同土壤水分条件下容重对玉米生长和水分利用的调控.硕士学位论文.杨凌:西北农林科技大学
    刘雪梅,黄元仿,2005.应用激光粒度仪分析土壤机械组成的实验研究.土壤通报.36:579-582
    刘巽浩,1992.90年代我国耕作制度发展展望.耕作与栽培.2:1-6
    刘巽浩,1994.耕作学.中国农业出版社.北京
    刘巽浩,高旺盛,陈阜,等.1998.论21世纪中国多熟种植潜力与方向.21:12-33
    卢良恕,1999.21世纪农业科学技术的发展趋势.世界经济.1:43-47
    罗文熹,于国华,苘辉民,等.1991.花生品种间硝酸还原酶活性与其耐肥性的研究.华北农学报.6:90-96
    罗英,孙辉,唐学芳,等.2007.珠穆朗玛峰北坡土壤过氧化氢酶与蔗糖酶活性研究.土壤学报.44:1144-1147
    吕新,寇金梅,李宏伟,2004.模糊评判方法在土壤肥力综合评价中的应用研究.干旱地区农业研究.22(3):56-59
    吕中伟,杨占平,王志勇,等.2013.葡萄小麦间作对果园土壤水肥状况及物理性状的影响.安徽农业科学,41(8):3368-3370
    孟凡德,姜霞,金相灿,2004.长江中下游湖泊沉积物理化性质研究.环境科学研究.17:24-29
    潘琇,王亮,谢拾冰,等.2009.温州稻田耕层土壤机械组成与理化性状的相关研究.浙江农业科学.6:54-59
    宋同清,彭晚霞,易文明,等.2006.3种典型生物措施对亚热带红壤丘陵茶园季节性干旱的防御效果.水土保持学报.20(4):191-198
    苏子友,吴文良,张劲松,等.2007.小浪底库区坡地不同景观配置对土壤水分时空分布及产流产沙的影响.中国生态农业学报.15(4):78-81
    孙波,赵其国,1999,土壤质量评价指标及评价方法.地理科学进展.18(2):118-128
    孙国锋,陈阜,肖小平,等.2007.轮作对土壤物理性状及水稻产量的初步研究.农业工程学报. 23(12):109-113
    唐炎林,邓晓保,李玉武,等.2007.西双版纳不同林分土壤机械组成及其肥力比较.中南林业科技大学学报.13:46-52
    滕维超,刘少轩,曹福亮,等.2013.油茶大豆间作对盆栽土壤化学和生物性质的影响.中南林业科技大学学报.2:24-27
    佟屏亚,1994.我国耕作栽培技术成就和发展趋势.耕作与栽培.4:1-10
    王德彩,常庆瑞,刘京,等.2008.土壤空间数据库支持的陕西土壤肥力评价.西北农林科技大学学报(自然科学版).36(11):105-110
    王国梁,刘国彬,周生路,2003.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响.自然资源学报.18(5):528-535
    王国义,沈昌蒲,1992.大豆对耕层土壤物理性状的影响.东北农学院学报.23(2):121-128
    王俊华,尹睿,张华勇,等.2007.长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境.16(1):191-196
    王利群,王文兵,吴守一,等.2003.蔬菜硝酸盐含量与硝酸还原酶活性的研究.食品科学.24:37-40
    王平,2009.长期施肥对小麦/玉米间作体系土壤酶活性与养分的影响.硕士学位论文.兰州:甘肃农业大学
    王群,2010.土壤紧实胁迫对玉米根土系统及其生长发育的影响.硕士学位论文.郑州:河南农业大学
    王雅琴,王晓红,高巍,2005.施用底肥对黑土理化性质的影响.东北林业大学学报.33:51-52
    王英俊,李同川,张道勇,等.2013.间作白三叶对苹果/白三叶复合系统土壤团聚体及团聚体含量的影响.草地学报.21(3):485-493
    王宇蕴,任家兵,郑毅,等.2011.间作小麦根际和土体磷养分的动态变化.云南农业大学学报(自然科学版).6:24-30
    王长庭,王根绪,刘伟,等.2013.施肥梯度对高寒草甸群落结构、功能和土壤质量的影响.生态学报.33(10):3103-3113
    王振宇,2010.保护性耕作对冀西北高原土壤物理性质和养分的影响.硕士学位论文.保定:河北农业大学
    吴凤芝,刘德,栾非时,1999.大棚土壤连作年限对黄瓜产量及品质的影响.东北农业大学学报.30(3):245-248
    吴彦,刘庆,乔永康,等.2001.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报.6:648-655
    吴玉红,田霄鸿,侯永辉,等.2009.基于田块尺度的土壤肥力模糊评价研究.自然资源学报.24(8):1422-1430
    吴玉梅,1996.甜菜对土壤耕层物理性状的影响.中国糖料.4(1):13-17
    肖德荣,田昆,张利权,2008.滇西北高原纳帕海湿地植物多样性与土壤肥力的关系.生态学报.28:3116-3124
    谢英荷,洪坚平,金志南,等.1996.枣麦间作对土壤生态环境的影响.农村生态环境.12(3):27-30
    熊毅,1984.我国土壤物理科学研究的回顾-《土壤物理学》序言.土壤.16:41-45
    徐祖祥,2010.有机无机肥配施对土壤物理性状的影响.灌溉排水学报.29(2):11-13
    燕永新,2010.不同保护性耕作措施对内陆河灌区冬小麦田物理性状的影响.硕士学位论文.兰州:甘肃农业大学
    杨金玲,张甘霖,李德成,等.2009.激光法与湿筛-吸管法测定土壤颗粒组成的转换及质地确定.土壤学报.42:772-780
    杨丽娟,须晖,邱忠祥,等.2000.菜田土壤酶活性与黄瓜产量的关系.植物营养与肥料学报.6(1):113-116
    杨铁钊,范进华,2006.不同基因型烤烟品种和吸收钾差异的根系特性研究.西北农业学报.15:41-44
    杨长明,欧阳竹,2008.华北平原农业土地利用方式对土壤水稳性团聚体分布特征及其有机碳含量的影响.土壤.40:100-105
    叶绍明,温远光,杨梅,等.2010.连栽桉树人工林植物多样性与土壤理化性质的关联分析.水土保持学报.4:246-250
    叶优良,李隆,索东让,2008.小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响.生态环境.17:377-383
    依艳丽,夏艳玲,1997.磁场处理对土壤蔗糖酶和淀粉酶活性的影响.沈阳农业大学学报,28(3):205-209
    云雷,毕华兴,马雯静,等.2010.晋西黄土区核桃花生复合系统核桃根系空间分布特征.东北林业大学学报.38(7):67-70
    张恩和,2001.供磷水平对间套作物根系酸性磷酸酶活性的影响.西北植物学报.21:53-58
    张海林,秦耀东,朱文珊,2003.耕作措施对土壤物理性状的影响.土壤.2:140-144
    张金平,郝蓬莱,韩新英,2012.农林间作对核桃幼林生长的影响.山东林业科技.42(3):30-32
    张涛,陈云,谢虹,梁建生,2004.硝酸还原酶活性的调节及可能机制的研究进展.广西植物.24:367-372
    张晓艳,2008.保护性耕作条件下土壤物理性状及土壤侵蚀研究.硕士学位论文.兰州:甘肃农业大学
    张玉铭,毛任钊,胡春胜,等.2004.华北太行山山前平原土壤肥力状况与玉米产量相关关系的通径分析.干旱地区农业研究.22(3):51-55
    张昱,程智慧,徐强,等.2007.玉米/蒜苗套作系统中土壤微生物和土壤酶状况分析.土壤通报.38:1136-1140
    赵宏伟,马凤鸣,李文华,2004.氮肥施用量对春玉米硝酸还原酶活性及产质量的影响.东北农业大学学报.35:276-281
    赵庆良,马建华,2008.主成分分析在城市绿地土壤肥力模糊评价中的应用-以河南大学校园土壤为例.现代农业科技.11:28-30
    赵之重,2004.青海省土壤阳离子交换量与有机质和机械组成关系的研究.青海农林科技.4:4-6
    郑存德,2012.土壤物理性质对玉米生长影响及高产农田土壤物理特征研究.硕士学位论文.沈阳:沈阳农业大学
    郑存德,依艳丽,2012.土壤容重对玉米光合特性的影响及调控研究.土壤学报.49:944-953
    郑存德,依艳丽,张大庚,等.2011.土壤微生物对棕壤不同容重的响应.玉米科学.19:69-74
    郑存德,依艳丽,张大庚,等.2012.土壤容重对高产玉米根系生长的影响及调控研究.华北农学报.27:142-149
    郑林林,2010.山东烟区不同种植模式对土壤生物学性状及烟叶品质的影响.硕士学位论文.北京:中国农业科学院
    郑晓媛,赵莉,许楠,等.2011.桑树大豆间作地上部和地下部的种间作用研究.土壤.43:493-497
    周世萍,段昌群,刘宏程,2008.氯氰菊酯对土壤蔗糖酶,脲酶活性的影响.环境科学导刊.27:14-16
    邹诚,2009.黄土高原丘陵沟壑区不同土地利用模式土壤环境效应研究.博士学位论文.中国科学院研究生院(教育部水土保持与生态环境研究中心)
    Adesodun, J., Adeyemi, E., Oyegoke, C.O.,2007. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil and Tillage Research.92:190-197
    Adu-Gyamfi, J.J., Myaka, F.A., Sakala, W.D., et al.2007. Biological nitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops of maize-pigeonpea in semi-arid southern and eastern Africa. Plant and Soil.295(1-2):127-136
    Ae, N., Arihara, J., Okada, K., et al.1990. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science.248:477-480
    Alegre-Julio, C., Cassel, D.K.,1996. Dynamics of soil physical properties under alternative systems to slash-and-bur. Agriculture, Ecosystems and Environment.58:39-48
    Ali, R., Awan, T., Ahmad, M., et al.2012. Diversification of rice-based cropping systems to improve soil fertility, sustainable productivity and economics. Journal of Animal and Plant Sciences.22: 108-112
    Allen, J.R., Obura, R.K.,1983. Yield of corn, cowpea, and soybean under different intercropping systems. Agronomy Journal.75:1005-1009
    Alvarez-Solis, J.D., Rosset, P.M., Diaz-Hernandez, B.M., et al.2007. Soil fertility differences across a land-use intensification gradient in the highlands of Chiapas, Mexico. Biology and Fertility of Soils.43(3):379-386
    Amery, F., Smolders, E.,2012. Unlocking fixed soil phosphorus upon waterlogging can be promoted by increasing soil cation exchange capacity. European Journal of Soil Science.63:831-838
    Andrade, J.F., Cerrudo, A., Rizzalli, R.H., et al.2012. Sunflower-soybean intercrop productivity under different water conditions and sowing managements. Agronomy Journal.104:1049-1055
    Antonious, G.F.,2003. Impact of soil management and two botanical insecticides on urease and invertase activity. Journal of Environmental Science and Health, Part B.38:479-488
    Aulakh, M.S., Pasricha, N.S., Bahl, G.S.,2003. Phosphorus fertilizer response in an irrigated soybean-wheat production system on a subtropical, semiarid soil. Field Crops Research.80: 99-109
    Bakker, H.,1990. The world food crisis:Food security in comparative perspective. Canadian Scholars Press
    Baligar, V.C., Staley, T.E., Wright, R.J,1991. Enzyme activities in Appalachian soils:2. Urease. Communication in Soil Science and Plant Analysis.22:315-322
    Baligar, V.C., Wright, R.J., Hem, J.L.,2005. Enzyme activities in soil influenced by levels of applied sulfur and phosphorus. Communication in Soil Science Plant Analysis.36:1727-1735
    Bar-Yosef, B.,1991. Root excretions and their environmental effects:influence on availability of phosphorus. Eds. Waisel Y, Eshel Ay Kafkafi U. Plant roots:The hidden half. Marcel Dekker, New York.581-605
    Beckmann, E.O.,1965. Effects of long-term green manuring on soil fertility in vegetable production with special reference to phyto-hygienic aspects. Biology.45:117-131
    Beedy, T.L., Snapp, S.S., Akinnifesi, F.K., et al.2010. Impact of gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture, Ecosystems and Environment.138:139-146
    Berthrong, S.T., Jobbagy, E.G., Jackson, R.B.,2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications.19(8):2228-224
    Bhardwaj, A., Jasrotia, P., Hamilton, S., et al.2011. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture, Ecosystems and Environment.140:419-429
    Bieleski, R.L.,1973. Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology.24(1):225-252
    Bindraban, P.S., van der Velde M., Ye, L., et al.2012. Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability.4:478-488
    Blaise, D., Bonde, A.N., Chaudhary, R.S.,2005. Nutrient uptake and balance of cotton plus pigeonpea strip intercropping on rainfed vertisols of central India. Nutrient Cycling in Agroecosystems.73: 135-145
    Brockwell, J., Bottomley, P., Janice, E.,1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility:A critical assessment. Plant and Soil.174:143-180
    Bruntland, G.,1987. Our common future:The world commission on environment and development. Oxford:Oxford University Press
    Buerkert, A., Piepho, H., Bationo, A.,2002. Multi-site time-trend analysis of soil fertility management effects on crop production in sub-Saharan West Africa. Experimental Agriculture.38:163-183
    Bulluck, L.R., Brosius, M., Evanylo, G.K., et al.2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology.19:147-160
    Bulson, H.A.J., Snaydon, R.W., Stopes, C.E.,1997. Effects of plant density on intercropped wheat and field beans in an organic farming system. The Journal of Agricultural Science.128:59-71
    Burns, R.,1978. Enzyme activity in soil:some theoretical and practical considerations. Soil enzymes Academic Press, New York:295-340
    Cang, L., Wang, Y., Zhou, D., et al.2004. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu province, China. Journal of Environmental Sciences. 16:371-374
    Cardinale, B.J., Wright, J.P., Cadotte, M.W., et al.2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America.104:18123-18128
    Chatteijje, S.K, Nandi, B.,1981. Biodegradation of wheat stubbles by soil micro-organisms and role of the products on soil fertility. Plant and Soil.59:381-390
    Chen, B.M., Wang, Z.H., Li, S.X., et al.2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science.167:635-643
    Chen, Y., Cavers, C., Tessier, S., et al.2005. Short-term tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil and Tillage Research.82:161-171
    Chen, YX., Zhang, F.S., Tang, L., et al.2007. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant and Soil.291:1-13
    Christensen, B.T., Johnston, A.E.,1997. Soil organic matter and soil quality-lessons learned from long-term experiments at Askov and Rothamsted. Developments in Soil Science.25:399-430
    Chu, G.X., Shen, Q.R., Cao, J.L.,2004. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant and Soil.263: 17-27
    Conn, C., Dighton, J.,2000. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology and Biochemistry. 32:489-496
    Cordell, D., Drangert, J. O., White, S.,2009. The story of phosphorus:Global food security and food for thought. Global Environmental Change.19:292-305
    Cruz, A.F., Hamel, C., Hanson, K., et al.2009. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant and Soil.315:173-184
    Dahmardeh, M., Ghanbari., A., Syahsar, B., et al.2010. The role of intercropping maize (Zea mays L.) and Cowpea (Vigna unguiculata L.) on yield and soil chemical properties. African Journal of Agricultural Research.5:631-636
    Dakora, F.D., Phillips, DA.,2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil.245:35-47
    Darwin, C.,1872. The origin of species. Sixth London edition. Thompson and Thomas, Chicago, Illinois, USA
    de Kroon, H.,2007. Ecology-how do roots interact? Science.318(5856):1562-1563
    DeForest, J.L., Smemo, K.A., Burke, D.J., et al.2012. Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry.109(1-3):189-202
    Deng, S.P., Tabatabai, M.A.,1997. Effect of tillage and residue management on enzyme activities in soils.3. Phosphatases and arylsulfatase. Biology and Fertility of Soils.24:141-146
    Dick, W., Cheng, L., Wang, P.,2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry.32:1915-1919
    Dormaar, J.F.,1983. Chemical properties of soil and water-stable aggregates after sixty-seven years of cropping to spring wheat.Plant and Soil.75(1):51-61
    Dybzinski, R., Fargione, J.E., Zak, D.R., et al.2008. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia.158:85-93
    Eilrich, G.T, Hageman, R.,1973. Nitrate reductase activity and its relationship to accumulation of vegetative and grain nitrogen in wheat (Triticum aestivum L.). Crop Science 13:59-66
    Eisenhauer, N., Reich, P.B., Scheu, S.,2012. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic and Applied Ecology.13(7):571-578
    Emadi, M., Baghernejad, M., Memarian, H.R.,2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy.26:452-457
    Eskandari, H.,2011. Intercropping of wheat(Triticum aestivum) and bean (Vicia faba):Effects of complementarity and competition of intercrop components in resource consumption on dry matter production and weed growth. African Journal of Biotechnology.10(70):17755-17762
    Farquharson, R.J., Schwenke, G.D., Mullen, J.D.,2003. Should we manage soil organic carbon in Vertosols in the northern grains region of Australia? Animal Production Science.43(3):261-270
    Fornara, D., Tilman, D.,2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology.96:314-322
    Fortin, M., Culley, J., Edwards, M.,1994. Soil water, plant growth, and yield of strip-intercropped corn. Journal of Production Agriculture.7:63-69
    Frankenberger Jr, W.T., Johanson, J.B.,1983. Factors affecting invertase activity in soils. Plant and Soil. 74(3):313-323
    Fridley, J.D.,2001. The influence of species diversity on ecosystem productivity:how, where, and why?. Oikos.93(3):514-526
    Fu, M., Tabatabai, M.,1989. Nitrate reductase activity in soils:effects of trace elements. Soil Biology and Biochemistry.21:943-946
    Gardiner, D.T., Miller, R.W.,2004. Soils in our environment.10th Edition. Prentic-Hall, Inc. Upper Saddle River, New Jersey, USA. In:Hammond, A.L. (ed.) (1992):World Resources 1992-3. Oxford University Press, Oxford
    Gardner-Medwin, A.,1983. Analysis of potassium dynamics in mammalian brain tissue. The Journal of Physiology.335:393-426
    Ghosh, P.K., Mohanty, M., Bandyopadhyay, K.K., et al.2006. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. Field Crops Research.96:90-97
    Gilbert, N.,2009. Environment:The disappearing nutrient. Nature.461:716-718
    Gilbert, N.,2012. Dirt poor. Nature.483:525-527
    Gregorich, E., Drury, C., Baldock, J.A.,2001. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Canadian Journal of Soil Science.81:21-31
    Growther, E.M.,1938. Soil fertility and agricultural policy. Nature supplement.142:701-702
    Gu, Y., Wang, P., Kong, C.H.,2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European of Journal Soil Biology.45(5): 436-441
    Hageman, R., Flesher, D., Gitter, A.,1961. Diurnal variation and other light effects influencing the activity of nitrate reductase and nitrogen metabolism in corn. Crop Science.1:201-204
    Haggar, J. P., Warren, G., Beer, J.W., et al.1991. Phosphorus availability under alley cropping and mulched and unmulched sole cropping systems in Costa Rica. Plant and Soil.137:275-283
    Hammerbeck, A.L., Stetson, S.J., Osborne, S.L., et al.2012. Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Science Society of America Journal.76(4): 1390-1398
    Hartmann, A., Grasle, W., Horn, R.,1998. Cation exchange processes in structured soils at various hydraulic properties. Soil and Tillage Research.47:67-72
    Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S.,2003. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems.65:289-300
    Hauggaard-Nielsen, H., Jensen, E. S.,2005. Facilitative root interactions in intercrops. Plant and Soil. 274:237-250
    Hauggaard-Nielsen, H., Jensen, E.S.,2001. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research.72:185-196
    Haynes, R., Williams, P.,1999. Influence of stock camping behaviour on the soil microbiological and biochemical properties of grazed pastoral soils. Biology and Fertility of Soils.28:253-258
    He, J., Ke, N.J., Liu, H.W.,2009. Effects of 10 years of conservation tillage on soil properties and productivity in the farming-pastoral ecotone of Inner Mongolia, China. Soil Use and Management. 25:201-209
    He, Z.Q., Honeycutt, C.W., Griffin, T.S., et al.2010. Increases of soil phosphatase and urease activities in potato fields by cropping rotation practices. Journal of Food Agriculture and Environment.8: 1112-1117
    Hector, A., Schmid, B., Beierkuhnlein, C., et al.1999. Plant diversity and productivity experiments in European grasslands. Science.286:1123-1127
    Helyar, K.,1998. Efficiency of nutrient utilization and sustaining soil fertility with particular reference to phosphorus. Field Crops Research.56:187-195
    Henry, A., Chaves, N.F., Kleinman, P.J., et al.2010. Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America. Field Crops Research. 115(1):67-78
    Herencia, J.F., Ruiz-Porras, J.C., Melero, S., et al.2007. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agronomy Journal.99:973-983
    Herridge, D.F., Marcellos, H., Felton, W.L., et al.1995. Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation. Soil Biology and Biochemistry.27:545-551
    Hinsinger, P., Betencourt, E., Bernard, L., et al.2011. P for two, sharing a scarce resource:soil phosphorus acquisition in the rhizosphere of intercropped species. Plant physiology.156: 1078-1086
    Hogberg, P., Granstrom, A., Johansson, T., et al.1986. Plant nitrate reductase activity as an indicator of availability of nitrate in forest soils. Canadian Journal of Forest Research.16:1165-1169
    Horst, W., Waschkies, C.,1987. Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Z. Pflanzenernahr. Bodenkd.150:1-8
    Horwith, B.,1985. A role for intercropping in modern agriculture. BioScience.35:286-291
    Hou, Y., Zhou, X., Jiao, T., et al.2009. A preliminary study on the relationship between soil urease activity and soil fertility in the grazing grasslands of Yongchang County, Gansu Province. Acta Prataculturae Sinica.18(4):111-116
    Hu, J., Lin, X., Wang, J., et al.2011. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer. Journal of Soils and Sediments.11:271-280
    Ikerra, S.T., Maghembe, J.A., Smithson, P.C., et al.1999. Soil nitrogen dynamics and relationships with maize yields in a gliricidia-maize intercrop in Malawi. Plant and Soil.211:155-164
    Ilany, T., Ashton, M.S., Montagnini, F., et al.2010. Using agroforestry to improve soil fertility:Effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agroforestry Systems.80:399-409
    Isbell, F., Reich, P.B., Tilman, D., et al.2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America.110:11911-11916
    Jensen, E.S.,1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant and Soil.182:25-38
    Jensen, E.S., Hauggaard-Nielsen, H.,2003. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant and Soil.252:177-186
    Jin, K., Sleutel, S., Buchan, D., et al.2008. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research.104:115-120
    Kahrl, F., Li, Y., Su, Y., et al.2010. Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science and Policy.13:688-694
    Karlen, D., Mausbach, M., Doran, J., et al.1997. Soil quality:A concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal.61:4-10
    Karpenstein-Machan, M., Stuelpnagel, R.,2000. Biomass yield nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant and Soil.218:215-232
    Kathju, S., Lahiri, A.N.,1976. Effects of soil fertility on the acitivities of certain enzyme of desiccated wheat leaves. Plant and Soil.44:709-713
    Khan, S.R., Abbasi, M.K., Hussan, A.U.,2012. Effect of induced soil compaction on changes in soil properties and wheat productivity under sandy loam and sandy clay loam soils:A greenhouse experiment. Communications in Soil Science and Plant Analysis.43:2550-2563
    Klose, S., Tabatabai, M.,2000. Urease activity of microbial biomass in soils as affected by cropping systems. Biology and Fertility of Soils.31:191-199
    Knorzer, H., Graeff-Honninger, S., Guo, B., et al.2009. The rediscovery of intercropping in China:a traditional cropping system for future Chinese agriculture-a review. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Springer, Netherlands, pp.13-44
    Koehler, F.E., Albrecht William, A.,1953. Biosynthesis of amino acids according to soil fertility. Plant and Soil.4:336-344
    Kopke, U., Nemecek, T.,2010. Ecological services of faba bean. Field Crops Research.115:217-233
    Kozlowski, T. T.,1999. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research.14(6):596-619
    Laganiere, J., Angers, D.A., Pare, D.,2010. Carbon accumulation in agricultural soils after afforestation: Ameta-analysis. Global Change Biology.16(1):439-453
    Lal, R.,2001. Soil degradation by erosion. Land Degradation and Development.12:519-539
    Lambers, H., Shane, M.W., Cramer, M.D., et al.2006. Root structure and functioning for efficient acquisition of phosphorus:Matching morphological and physiological traits. Annals of Botany.98: 693-713
    Lan, Y., Han, X.R., Yang, J.F., et al.2011. Temporal and spatial dynamics of enzyme activities under long-term fertilization in a maize growing brown soil. Plant Nutrition and Fertilizer Science.5:21
    Joanna, A.C., Silveira, P.M.d., Silva, M.B.d., et al.2010. Urease activity as influenced by planting system and plant cover in soil under common bean. Revista Brasileira de Ciencia do Solo.34: 1933-1939
    Larson, C.,2010. Losing arable land, China faces stark choice:Adapt or go hungry. Science.339: 644-645
    Latif, M.A., Mehuys, G.R., Mackenzie, A.F., et al.1992. Effects of legumes on soil physical quality in a maize crop. Plant and Soil.140:15-23
    Leihner, D.E.,1983. Management and evaluation of intercropping systems with cassava
    Lesoing, G.W., Francis, CA.,1999a. Strip intercropping of corn-soybean in irrigated and rainfed environments. Journal of Production Agriculture.12:187-192
    Lesoing, G.W., Francis, C.A.,1999b. Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agronomy Journal.91:807-813
    Li, J., Zhao, B.Q., Li, X.Y., et al.2008. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agricultural Sciences in China.7:336-343
    Li, L., Li, S.M, Sun, J.H., et al.2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America.104(27):11192-11196
    Li, L., Sun, J.H, Zhang, F.S., et al.2001a. Wheat/maize or wheat/soybean strip intercropping:Ⅱ. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research.71: 173-181
    Li, L., Sun, J.H., Zhang, F.S.,2011. Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Soil Science and Plant Nutrition. 57:61-67
    Li, L., Sun, J.H., Zhang, F.S., et al.2006. Root distribution and interactions between intercropped species. Oecologia.147:280-290
    Li, L., Sun, J.H., Zhang, F.S., et al.2001a. Wheat/maize or wheat/soybean strip intercropping:Ⅱ. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research.71: 173-181
    Li, L., Sun, J.H., Zhang, F.S., et al.2001b. Wheat/maize or wheat/soybean strip intercropping:I. Yield advantage and interspecific interactions on nutrients. Field Crops Research.71:123-137
    Li, L., Yang, S.C., Li, X.L., et al.1999. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant and Soil.212:105-114
    Li, L, Zhang, L.Z., Zhang, F.S.,2013. Crop mixtures and the mechanisms of overyielding. In:Levin S.A. (ed.) Encyclopedia of Biodiversity, second edition, Waltham, MA:Academic Press.2. pp: 382-395
    Li, Q.Z., Sun, J.H., Wei, X.J., et al.2011. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil.339:147-161
    Li, S.M., Li, L., Zhang, F.S., et al.2004. Acid phosphatase role in chickpea/maize intercropping. Annal of Botany.94:297-303
    Li, W.X., Li, L., Sun, J.H., et al.2003. Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Journal of Plant Nutrition. 26:629-642
    Li, X.P., Mu, Y.H., Cheng, Y.B., et al.2013. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum.35: 1113-1119
    Li, Y.Y., Yu, C.B., Cheng, X., et al.2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil.323:295-308
    Lithourgidis, A.S., Dhima, K.V., Vasilakoglou, I.B., et al.2007. Sustainable production of barley and wheat by intercropping common vetch. Agronomy for Sustainable Development.27(2):95-99
    Lithourgidis, A.S., Vasilakoglou, I.B., Dhima, K.V., et al.2006. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research.99:106-113
    Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C.A., et al.2011. Dry matter yield, nitrogen content, and competition in pea-cereal in intercropping systems. European Journal of Agronomy.34(4): 287-294
    Liu, C.W., Cheng, S.W., Yu, W.S., et al.2003. Water infiltration rate in cracked paddy soil. Geoderma. 117:169-181
    Liu, X., Zhang, X., Wang, Y., et al.2010. Soil degradation:A problem threatening the sustainable development of agriculture in northeast China. Plant, Soil and Environment.56:87-97
    Liu, X.J., Zhang, Y., Han, W.X., et al.2013. Enhanced nitrogen deposition over China. Nature.494: 459-463
    Lopez-Bellido, L., Lopez-Bellido, R.J, Redondo, R., et al.2006. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions:effect of tillage system. Field Crops Research.98:253-260
    Loreau, M.,1998. Biodiversity and ecosystem functioning:A mechanistic model. Proceedings of the National Academy of Sciences of the United States of America.95:5632-5636
    Loreau, M., Naeem, S., Inchausti, P., et al.2001. Biodiversity and ecosystem functioning:Current knowledge and future challenges. Science.294:804-808
    Ma, R.X.,2000. Effects of allelochemicals on activity of nitrate reductase. Journal of Environmental Sciences.2:125-128
    MacDonald, GK., Bennett, E.M., Carpenter, S.R.,2012. Embodied phosphorus and the global connections of United States agriculture. Environmental Research Letters.7
    Mader, P., Fliessbach, A., Dubois, D., et al.2002. Soil fertility and biodiversity in organic farming. Science.296:1694-1697
    Mao, R., Zeng, D.H.,2010. Changes in Soil Particulate Organic Matter, Microbial Biomass, and Activity Following Afforestation of Marginal Agricultural Lands in a Semi-Arid Area of Northeast China. Environment Management.46:110-116
    Martel, Y.A., Mackenzie, A.F.,1980. Long-term effects of cultivation and land-use on soil quality in Quebec. Canadian Journal of Soil Science.60:411-420
    Mclaughlin, A., Mineau, P.,1995. The impact of agricultural practices on biodiversity. Agriculture, Ecosystems and Environment.55:201-212
    McNaughton, S.J.,1994. Biodiversity and function of grazing ecosystems, Biodiversity and ecosystem function, Springer, pp:361-383
    Mei, P.P., Gui, L.G, Wang, P., et al.2012. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research. 130:19-27
    Melero, S., Madejon, E., Ruiz, J.C., et al.2007. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. European Journal of Agronomy.26(3):327-334
    Melero, S., Porras, J.C.R., Herencia, J.F., et al.2006. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil and Tillage Research.90(1):162-170
    Mondal, S.S., Ghosh, A., Acharya, D., et al.2004. Production potential and economics of different rainfed rice (Oryza sativa)-based utera cropping systems and its effect on fertility build up of soil. Indian Journal of Agronomy.49:6-9
    Morari, F., Lugato, E., Giardini, L.,2008. Olsen phosphorus, exchangeable cations and salinity in two long-term experiments of north-eastern Italy and assessment of soil quality evolution. Agriclture, Ecosystems and Environment.124:85-96
    Morris, R,, Garrity, D.,1993a. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Research.34:319-334
    Mousavi, H., Ramamurthy, A.S.,2000. Optimal design of multi-reservoir systems for water supply. Advances in Water Resources.23(6):613-624
    Mousavi, S., Nouri-Emamzadei, M., Afyuni, M.,2000. Mulch and tillage effects on infiltration rates of a saline and leached clay soil. International Agricultural Engineering Journal.9:17-27
    Mtambanengwe, F., Mapfumo, P.,2005. Organic matter management as an underlying cause for soil fertility gradients on smallholder farms in Zimbabwe. Nutrient Cycling in Agroecosystems.73: 227-243
    Mucheru-Muna, M., Pypers, P., Mugendi, D., et al.2010. A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research.115(2):132-139
    Murungu, F.S., Chiduza, C., Muchaonyerwa, P., et al.2011. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-temperate climate of South Africa. Soil and Tillage research.112(1):58-65
    Naeem, S., Chapin, F.S., Robert, C., et al.1999. Biodiversity and ecosystem functioning:maintaining natural life support processes. Issues in Ecology 4. Ithaca:Ecological Society of America
    Nawaz, M.F., Bourrie, G., Trolard, F.,2013. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development.33(2):291-309
    Nichols, J.D., Rosemeyer, M.E., Carpenter, F.L., et al.2001. Intercropping legume trees with native timber trees rapidly restores cover to eroded tropical pasture without fertilization. Forest Ecology and Management.152:195-209
    Nielsen, K., Risgaard-Petersen, N., Somod, B., et al.2001. Nitrogen and phosphorus retention estimated independently by flux measurements and dynamic modelling in the estuary, Randers Fjord, Denmark. Marine Ecology Progress Series.219:25-40
    Njira, K.O.W., Nalivata, P.C., Kanyama-Phiri, G.Y., et al.2012. Biological nitrogen fixation in sole and doubled-up legume cropping systems on the sandy soils of Kasungu, Central Malawi. Journal Soil Science and Environmental Management.3:224-230
    Nourbakhsh, R, Jalalian, A., Shariatmadari, H.,2003. Estimation of cation exchange capacity from some soil physical and chemical properties. JWSS-Isfahan University of Technology.7:107-118
    Ojeniyi, S.O., Adekayode, F.O.,1999. Soil conditions and cowpea and maize yield produced by tillage methods in the rainforest zone of Nigeria. Soil and Tillage Research.51:161-164
    Oldeman, L.,1994. The global extent of soil degradation. Soil Resilience and Sustainable Land Use. pp: 99-118
    Oldeman, L., Van Engelen, V., Pulles, J.,1990. The extent of human-induced soil degradation. World Map of the status of human-induced soil degradation:An explanatory note
    Oorts, K., Vanlauwe, B., Merckx, R.,2003. Cation exchange capacities of soil organic matter fractions in a ferric lixisol with different organic matter inputs. Agriculture, Ecosystems and Environment. 100:161-171
    Ortas, I., Lai, R.,2012. Long-term phosphorus application impacts on aggregate-associated carbon and nitrogen sequestration in a Vertisol in the Mediterranean Turkey. Soil Science.177:241-250
    Palm, C.A., Gachengo, C.N., Delve, R.J., et al.2001. Organic inputs for soil fertility management in tropical agroecosystems:Application of an organic resource database. Agriculture, Ecosystems and Environment.83:27-42
    Pauli, F.W.,1967. Soil biodynamic mismanaged. Nature.216:1250-1251
    Pellegrino, E., Di Bene, C., Tozzini, C., et al.2011. Impact on soil quality of a 10-year-old short-rotation coppice poplar stand compared with intensive agricultural and uncultivated systems in a Mediterranean area. Agriculture, Ecosystems and Environment.140:245-254
    Qi, Z.P., Rao, I., Ricaurte, J., et al.2004. Root distribution and nutrient uptake in crop-forage systems on Andean hillsides. Journal of Sustainable Agriculture.23:39-50
    Rabary, B., Sall, S., Letourmy, P., et al.2008. Effects of living mulches or residue amendments on soil microbial properties in direct seeded cropping systems of Madagascar. Applied Soil Ecology.39: 236-243
    Radulov, I., Berbecea, A., Sala, F., et al.2011. Mineral fertilization influence on soil ph, cationic exchange capacity and nutrient content. Research Journal of Agriculture Science.43:160-165
    Raghothama, K.G.,1999. Phosphate acquisition. Annual review of plant physiology and plant molecular biology.50:665-693
    Raghothama, K.G., Karthikeyan, A.S.,2005. Phosphate acquisition. In Root Physiology:from Gene to Function. Springer Netherlands, pp.37-49
    Rao, A.V., Tarafdar, J.C., Sharma, S.K., et al.1995. Influence of cropping systems on soil biochemical properties in an arid rain-fed environment. Journal of Arid Environments.31:237-244
    Rast, H., Liedgens, M., Sangakkara, U., et al.2010. Early growth of crotalaria (Crotalaria junced), tithonia (Iithonia diversifolia), and maize (Zea mays) as affected by soil fertility and phosphorus fertilizer under pot and field conditions. Communications in Soil Science and Plant Analysis.41: 1655-1664
    Ritter, E.,2007. Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant and Soil.295: 239-251
    Ross, D.,1983. Invertase and amylase activities as influenced by clay minerals, soil-clay fractions and topsoils under grassland. Soil Biology and Biochemistry.15:287-293
    Ross, D.S., Matschonat, G., Skyllberg, U.,2008 Cation exchange in forest soils:the need for a new perspective. European Journal of Soil Science.59:1141-1159
    Rusinamhodzi, L., Corbeels, M., Nyamangara, J., et al.2012. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research.136:12-22
    Saikh, H., Varadachari, C., Ghosh, K.,1998. Effects of deforestation and cultivation on soil CEC and contents of exchangeable bases:A case study in simlipal national park, India. Plant and Soil 204: 175-181
    Sarapatka, B., Krskova, M.,1997. Interactions between phosphatase activity and soil characteristics from some locations in the Czech Republic. Rostlinna Vyroba-UZPI 43
    Sartori, F., Lal, R., Ebinger, M.H., et al.2007. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture, Ecosystems and Environment 122:325-339
    Scherer-Lorenzen, M., Palmborg, C., Prinz, A., et al.2003. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology.84:1539-1552
    Scherr, S J.,1999. Soil degradation:A threat to developing-country food security by 2020? International Food Policy Research Institute, pp:5-31
    Schipanski, M.E., Drinkwater, L.E.,2012. Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant and Soil.357:147-159
    Scholz, R.W., Ulrich, A.E., Eilitta, M., Roy, A.,2013b. Sustainable use of phosphorus:A finite resource. Science of the Total Environment.461:799-803
    Scholz, R.W., Wellmer, F.W.,2013a. Approaching a dynamic view on the availability of mineral resources:What we may learn from the case of phosphorus? Global Environmental Change-Human and Policy Dimensions.23:11-27
    Searle, P., Comudom, Y., Shedden, D., et al.1981. Effect of maize/legume intercropping systems and fertilizer nitrogen on crop yielding and residual nitrogen. Field Crops Research.4:133-145
    Shah, Z., Shah, S.H., Peoples, M.B., et al.2003. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Research.83: 1-11
    Shang, J., Flury, M., Chen, G., et al.2008. Impact of flow rate, water content, and capillary forces on in situ colloid mobilization during infiltration in unsaturated sediments. Water Resources Research. 44:64-70
    Shen, J.B., Li, R., Zhang, F.S., et al.2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research.86:225-238
    Shi, Y., Lalande, R., Ziadi, N., et al.2012. An assessment of the soil microbial status after 17 years of tillage and mineral P fertilization management. Applied Soil Ecology.62:14-23
    Shields, L.M., Durrell, L.W.,1963. Alage in relation to soil fertility. Nature.5:92-127
    Simard, R.R., Angers, D.A., Lapierre, C.,1994. Soil organic matter quality as influenced by tillage, lime, and phosphorus. Biology and Fertility of Soils.18:13-18
    Simek, M., Jisova, L., Hopkins, D.W.,2002. What is the so-called optimum pH for denitrification in soil? Soil Biology and Biochemistry.34:1227-1234
    Singh, D.K., Kumar, S.,2008. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71:412-418
    Singh, H., Sharma, K.N., Arora, B.S.,1995. Influence of continuous fertilization to a maize-wheat system on the changes in soil fertility. Fertilizer Research.40:7-19
    Singh, M.K., Thakur, R., Verma, U.N., et al,1998. Productivity and nutrient balance of maize (Zea mays) plus blackgram (Phaseolus mungo) intercropping as affected by fertilizer and plant density management of blackgram. Indian Journal of Agronomy.43:495-500
    Soares, M.R., Alleoni, L.R.F.,2008. Contribution of soil organic carbon to the ion exchange capacity of tropical soils. Journal of Sustainable Agriculture 32:439-462
    Steinbeiss, S., BEβLER, H., Engels, C., et al.2008. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Global Change Biology.14(12):2937-2949
    Steiner, C., Teixeira, W.G, Lehmann, J., et al.2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil.291:275-290
    Stephens, B.D., Neyra, C.A.,1983. Nitrate and nitrite reduction in relation to nitrogenase activity in soybean nodules and rhizobium japonicum bacteroids. Plant Physiology.71:731-735
    Strong, A.,1992. Gypsum applications to aggregated saline sodic clay topsoils. Soil Science Society of American Journal.43:249-260
    Subbian, P., Lal, R., Subramanian, K.,2000. Cropping systems effects on soil quality in semi-arid tropics. Journal of Sustainable Agriculture.16:7-38
    Sudha, B., George, A.,2011. Tillage and residue management for organic carbon sequestration in coconut (Cocos nucifera)-based cropping systems. Indian Journal of Agronomy.56:223-227
    Suryapani, S., Umar, S., Malik, A.A., et al.2013. Symbiotic nitrogen fixation by lentil improves biochemical characteristics and yield of intercropped wheat under low fertilizer input. Journal of Crop Improvement.27(1):53-66
    Szajdak, L.W., Gaca, W.,2010. Nitrate reductase activity in soil under shelterbelt and an adjoining cultivated field. Chemistry and Ecology.26:123-134
    Tang, C., Barton, L., McLay, C.,1997. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Animal Production Science.37:563-570
    Thevathasan, N.V., Gordon, A.M.,2004. Ecology of tree intercropping systems in the North temperate region:Experiences from southern Ontario, Canada. Agroforesty Systems.61:257-268
    Thierfelder, C., Wall, P.C.,2012. Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use and Management.28:209-220
    Thomas, V., Shantaram, M.V.,1984. In cultivation and incorporation of green manure legumes in coconut basins. Plant and Soil.80:373-380
    Tiecher, T., dos Santos, D.R., Calegari, A.,2012. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil and Tillage Research.124: 57-67
    Tiessen, H., Cuevas, E., Chacon, P.,1994. The role of soil organic-matter in sustaining soil fertility. Nature.371:783-785
    Tilman, D., Cassman, K.G., Matson, P.A., et al.2002. Agricultural sustainability and intensive production practices. Nature.418:671-677
    Tilman, D., Knops, J., Wedin, D., et al.1997a. The influence of functional diversity and composition on ecosystem processes. Science.277:1300-1302
    Tilman, D., Lehman, C.L., Thomson, K.T.,1997b. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America.94:1857-1861
    Tilman, D., Reich, P.B., Knops, J.M.H.,2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature.441:629-632
    Tilman, D., Wedin, D., Knops, J.,1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature.379:718-720
    Unkovich, M., Blott, K., Knight, A., et al.2003. Water use, competition, and crop production in low rainfall, alley farming systems of south-eastern Australia. Crop and Pasture Science.54:751-762
    Vance, N.C., Entry, J.A.,2000. Soil properties important to the restoration of a Shasta red fir barrens in the Siskiyou Mountains. Forest Ecology and Management.138:427-434
    Vandermeer, J.H.,1992. The ecology of intercropping. Cambridge University Press
    Velmourougane, K., Venugopalan, M., Bhattacharyya, T., et al.2013. Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in India. Geoderma.197:186-192
    Venterea, R.T., Rolston, D.E.,2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology.6:303-316
    Ventura, W., Watanabe, I.,1993. Green manure production of Azolla microphylla and sesbania rostrata and their long-term effects on rice yields and soil fertility. Biology and Fertility of Soils.15: 241-248
    Von Braunschweig, L.C., Orlovius, K.,2002. Effect of different K-supply on sugar beet production and soil fertility in a long-term fertilizer experiment. Biuletyn-Instytutu Hodowli I aklimatyzacji Roslin. 31-38
    Vopenka, L.,1993. The effect of long-time fertilizing on kinetic indicators of cation exchange. Rostlinna Vyroba-Uzpi 39
    Wan, F., Chen, P.,2004. Soil enzyme activities under agroforestry systems in Northern Jiangsu Province. Forestry Studies in China.6:21-26
    Wang, Q.K., Wang, S.L., Liu, Y.X.,2008. Responses to N and P fertilization in a young eucalyptus dunnii plantation:Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology.40:484-490
    Wang, X., Yang, W., Ren, W., et al.2012. Study on the differences in yield and nutrient absorption of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Journal of Nutrition and Fertilizer Science.18:803-812
    Watson, CA., Atkinson, D., Gosling, P., et al.2002. Managing soil fertility in organic farming systems. Soil Use and Management.18:239-247
    Wiesmeier, M., Steffens, M., Kolbl, A., et al.2012. Soil degradation in semi-arid grasslands due to intensive grazing in northern China, EGU General Assembly Conference Abstracts, pp:270
    Williams, W.A., Demment, M.W., Jones, M.B.,1990. A concise table for path analysis statistics. Agronomy Journal.82(5):1022-1024
    Wu, R., Tiessen, H.,2002. Effect of land use on soil degradation in alpine grassland soil, China. Soil Science Society of America Journal.66:1648-1655
    Xia, H.Y., Wang, Z.G., Zhao, J.H., et al.2013. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research.154:53-64
    Yan, J.H., Zhou, G.Y., Zhang, D.Q., et al.2007. Changes of soil water, organic matter,, and exchangeable cations along a forest successional gradient in southern China. Pedosphere 17:397-405
    Yang, X.M., Wander, M.M.,1998. Temporal changes in dry aggregate size and stability:tillage and crop effects on a silty loam Mollisol in Illinois. Soil and Tillage Research.49:173-183
    Yang, Z., Singh, B.R., Hansen, S.,2007. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil and Tillage Research.95:161-171
    Yong, T, Yang, W., Xiang, D., et al.2012b. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Prataculturae Sinica.21:50-58
    Yong, T, Yang, W., Xiang, D., et al.2012a. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizosphere soil and nitrogen uptake of crops. Acta Agronomica Sinica.38:333-343
    Yu, W., Shen, S., Zhang, L., et al.2004. Relationships between water-stable aggregates and nutrient status in black soil after reclamation. Ying Yong Sheng Tai Xue Bao.15:2287-2291
    Zhang, F.S., Li, L.,2003. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil 248:305-312
    Zhang, H., Schroder, J.L., Fuhrman, J.K., et al.2005. Path and multiple regression analyses of phosphorus sorption capacity. Soil Science Society of America Journal.69(1):96-106
    Zhang, W.F., Ma, W.Q., Ji, Y., et al.2008. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cyclying in Agroecosystems. 80(2):131-144
    Zhang, X.Y., Cruse, R.M., Sui, Y.Y., et al.2006. Soil compaction induced by small tractor traffic in northeast China. Soil Science Society of America Journal.70:613-619
    Zhou, D.M., Hao, X.Z., Wang, Y.J., et al.2005. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere.59:167-175
    Zhou, X.G., Yu, GB., Wu, F.Z.,2011. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology. 47:279-287
    Zhu, L., Guo, J.X., Lu, P., et al.2002. Primary study on the soil urease activity in three main plant communities in the songnen meadow. Acta Phytoecological Sinica.27(5):638-643
    Zhu, Y., Chen, H., Fan, J., et al.2000. Genetic diversity and disease control in rice. Nature.406: 718-722
    Zhu, Z., Chen, D.,2002. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems.63: 117-127
    Zomer, R.J., Trabucco, A., Coe, R., et al.2009. Trees on farm:Analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper-World Agroforestry Centre 89
    Zou, C.Y., Li, Z.J.,2002. Intercropping and relay intercropping. In:Shi YC (ed.) Chinese Academic Aanon in the 20th Century. Agriculture (in Chinese). Fuzhou:Fujian Education Press
    Zuo, Y.M., Zhang, F.S., Li, X.L., et al.2000. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil.220:13-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700