用户名: 密码: 验证码:
中国大田作物茬高—茬重模型的建立及东北、华北和西北地区秸秆能源利用可获得性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大田作物秸秆是可再生的有机资源,且来源丰富、数量巨大,我国每年大田作物秸秆产生量约7.5亿吨,约占全世界的25%左右。秸秆资源的开发利用能促进农业生产系统中的物质高效循环和能量高效转化,成为循环农业中不可或缺的重要资源。秸秆资源有效还田能有效增加土壤有机质含量,改良土壤结构,降低化肥施用量,培肥地力,同时也降低农民生产成本,改善农田生态,消除焚烧秸秆造成的大气污染,对实现农业可持续发展具有十分重要的意义。本研究中运用统计学和系统工程学等理论方法,对我国不同地区的大田作物的不同品种的秸秆资源利用现状、移出量的关联度分析及茬高-茬重关系模型的建立和验证等进行了深入的分析研究,为促进我国大田作物秸秆高效利用提供理论依据。其主要研究结论如下:
     (1)我国不同地区的主栽作物类型是各不相同,这与各个地区的气候条件、耕作制度、作物的生长特性等密切相关。作物的株高与地上部生物量的比值和地区、作物品种均无直接相关性,并在地区空间分布上不存在差异。作物收获时留茬高度相同,秸秆移出量占秸秆总量的比值在不同类型作物品种差异不显著(p<0.01)。
     (2)从作物类型来看,本研究中涉及9种作物(玉米、水稻、小麦、大豆、高梁、棉花、向日葵、油菜和燕麦)所建立的茬高-茬重关系模型的茬高比与茬重比结果显著相关(P<0.01)。对于同一种作物的不同品种间的茬高比与茬重比的结果显著相关(P<0.01)。线性关系模型的建模决定系数(R2)均高于0.98。验证这9种大田作物秸秆的线性模型,验证线性模型的决定系数(R2)高于0.98。
     (3)2010~2011年,华北地区年均田间秸秆量折合标煤量为46.3百万吨,包括42.3百万吨的田间秸秆量和3.9百万吨的加工副产物量。7-9月收获的田间作物秸秆量均值为40.9百万吨。
     东北地区年均田间秸秆量为105.7百万吨,其包括92.8百万吨的田间作物秸秆量和12.9百万吨的加工副产物量。此秸秆总量折合标煤量相当于57.0百万吨,7~9月收获的田间作物秸秆产量均值为25.5百万吨。
     西北地区年均的秸秆总量59.8百万吨由91.9%的田间秸秆(55.0百万吨)与8.1%的加工副产物(4.8百万吨)组成。9月、6月和10月是最主要的收获月份,收获的秸秆总量为19.2百万吨。2009-2011年西北地区的大田作物秸秆总标煤量为33.4百万吨,包括30.7百万吨的田间秸秆和2.7百万吨的加工副产物量。
     (4)2010~2011年,我国的大田作物秸秆总量为7.50亿吨,其中有0.78亿吨的秸秆留茬还田,而秸秆可移出量为5.58亿吨。根据线性模型计算,理论还田量只需1.92亿吨(25.65%)就能满足土壤需求。因此,结果表明我们仍可从大田中移出秸秆资源量即为1.19亿吨。
     (5)通过对我国6个地区31个省市、自治区的大田作物秸秆移出量进行灰色关联度分析,影响因素指标排序前三位的分别是作物产量、有效灌溉面积和成灾面积。
Field crop residue is renewable and sustainable organic resource, which has a huge number of sources and rich quantities. There is about750million tons production of field crop residue per year in China, which accounts for about25%of the world. The development and utilization of crop residue resources can promote the agricultural production, the efficient conversion and energy efficient cycle in the cropping system, and have become the indispensable important resources circulation in agriculture. Returning crop residue resource can effectively increase the content of soil organic matter, improve soil structure, reduce the applying fertilizer content, improve soil fertility, and also reduce farmers1production cost, which would be improve the farmland ecology, the elimination of air pollution caused by burning crop residue. It is of great significance to realize the sustainable development of agricultural. The statistical method and system engineering theory would be used in different varieties of the crop residue and utilization in this study, and the analysis of relational correlation model between available quantity and stubble height-stubble weight are carried on to promote theory basis on efficient utilization of field crop residue. Main research conclusion is as follows:
     1. The main crop type is different in six regions of China, which has the relation of the climatic conditions in each region, cropping system and crop growth characteristics. The ratio between plant height and aboveground dry matter has no direct correlation to different region, crop varieties. If the same stubble height when harvesting the crops was left, there is no significant difference between varieties with the ratio between the percentages of total crop residue (p<0.01). But there would be slightly different quantity between each variety, which also would not affect stubble weight in different region.
     2. It involves nine crops of maize, rice, wheat, soybean, sorghum, cotton, sunflower, canola, and oat from crop classification in this study. The results of the ratio between stubble height and stubble weight in the relational modeling are significantly correlated (P<0.01). And for different varieties of the same crop, the results analysis is the significant correlation without difference values (P<0.01).
     3. The average amount of total residue in NC (16.9Million ha) of83.0Mt (Mt=Mega tonnes) annually comprised of76.6Mt field residues and6.4Mt process residues. The average amount of total biomass residue in NEC (19.8Million ha) of105.7Mt annually comprised of92.8Mt field residues and12.9Mt process residues. In NC, the total standard coal equivalent (SCE) averaged for2010and2011amounted to46.4Mt, which comprised42.4Mt field residues and of3.9Mt process residues.
     In NEC, the standard coal equivalent (SCE) of57.0Mt comprised49.7Mt field residues and7.4Mt process residues on an air-dried basis. In the period between July-September, the amount of field residue available were40.9Mt (NC) and53.1Mt (NEC), respectively.
     In NWC, the average amount of total residue of59.8Mt annually comprised of55.0Mt field residues (91.9%) and4.8Mt process residues (8.1%). The standard coal equivalent (SCE) of33.4Mt comprised30.7Mt field residues and2.7Mt process residues on an air-dried basis. In June, September, and October, the amount of field residue (19.2Mt) was harvested.
     4. The amount of750million tons total filed crop residue was estimated in China between2010and2011. Annual311million tons of crop residue was returned, accounting for41.63%of the total crop residue. The sustainable availability of field crop residue could reach558million tons (74.35%), which could be used for sustainable utilization in China. According to this research, sustainable theory capacity returning to soil was192million tons (25.65%) of field crop residue, which can meet the sustainable utilization of soil.
     5. Three influence factors in grey correlation degree of available quantity of field crop residue were crop yields, effective irrigation area and the flooded area in thirty-one provinces of six regions of China.
引文
[1]Wang XY, Yang L, Steinberger Y, et al.. Field crop residue estimate and availability for biofuel production in China. Renewable & Sustainable Energy Reviews,2013,27,864-875
    [2]侯方安,陈海燕.发展秸秆循环经济建设节约型新农村的对策.农机化研究,2006,11:11-14
    [3]罗平,曹兴,郑春树,等.黑龙江省宝清县农作物秸秆综合利用途径分析.可持续发展,2009,1:30-31
    [4]于海琳.黑龙江省发展生物质能源问题的研究.经济研究导刊,2008,22(3):114-117
    [5]毕于运,寇建平,王道龙,等.中国秸秆资源综合利用技术.北京:中国农业科学技术出版社,2008,1-7
    [6]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳,氮,磷的影响.土壤学报,2002,39(1):89-96
    [7]张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694
    [8]朱菜红,董彩霞,沈其荣,等.配施有机肥提高化肥氮利用效率的微生物作用机制研究.植物营养与肥料学报,2010,16(2):282-288
    [9]张海林,高旺盛,陈阜,等.保护性耕作研究现状,发展趋势及对策.中国农业大学学报.2005,10(1):16-20
    [10]Muth D., Bryden K., Nelson R.. Sustainable agricultural residue removal for bioenergy:A spatially comprehensive US national assessment. Applied Energy,2013,102:403-417
    [11]Richard G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States-rainfall and wind-induced soil erosion methodology. Biomass and Bioenergy,2002,22(6):349-363
    [12]Lal R. Crop residues as soil amendments and feedstock for bioethanol production. Waste Management,2008,28(4):747-758
    [13]United States Department of Agricature. Crop residue removal for biomass energy production: effects on soils and recommendations. Technical Note,2006,19:1-7
    [14]孙振均.中国生物质产业及发展取向.农业工程学报,2004,20(5):1-5
    [15]中国农业部/美国能源部项目专家组.中国生物质资源可获得性评价.北京:中国环境科学出版社,1998,1-21
    [16]谢光辉.非粮生物质原料体系研发进展及方向.中国农业大学学报,2012,17(6):1-19
    [17]王革华.实现秸秆资源化利用的主要途径.上海环境科学,2002,21(11):651-656
    [18]Fan YT, Zhang YH, Zhang SF, et al.. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology,2006,97:500-505
    [19]Holland J.. The environmental consequences of adopting conservation tillage in Europe:reviewing the evidence. Agrucuture, Ecosystems and Environment,2004,103:1-25
    [20]高焕文.保护性耕作概念机理与关键技术.四川农机,2005,4:22-23
    [21]杨文钰,王兰英.作物秸秆还田的现状与展望.四川农业大学学报,1999,17(9):211-216
    [22]Kassam A., Brammer H.. Combining sustainable agricultural production with economic and environmental benefits. The Geographical Journal,2013,179(1):11-18
    [23]Kassam A.. The future of farming:what needs to change? A personal view. The Sixth Hugh Bunting Memorial Lecture, University of Reading,2011,13 June
    [24]Marongwe L., Kwazira K., Jenrich M., et al.. An African success:the case of Conservation Agriculture in Zimbabwe. International Journal of Agricultural Sustainability,2011,9(1):153-161
    [25]刘巽浩.泛论我国保护性耕作的现状与前景.农业现代化研究,2008,29(3):208-212
    [26]李新举,张志国,邓基先,等.免耕对土壤生态环境的影响.山东农业大学学报,1998,29(4):520-526
    [27]Derpsch R., Moriya K.. Implications of soil preparation as compared to no-tillage, on the sustainability of agricultural production:experiences from South America. Management of tropical agroecosystems and the beneficial soil biota,1999,1:49-65
    [28]FAO. Save and Grow:A new paradigm of agriculture, (www.fao.org/ag/save-and-grow/),2011
    [29]Cooper C. A macro analysis of crop residue and animal wastes as a potential energy source in Africa. Journal of Energy in Southern Africa,2007,18(1):10-19
    [30]赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响.中国农业科学,1996,29(2):59-66
    [31]徐祖祥.连续秸秆还田对作物产量和土壤养分的影响.浙江农业科学,2003,1:35-36
    [32]徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中C,N,P含量与分配的影响.中国农业科学,2000,33(5):1-7
    [33]严洁,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响.中国农机化,2005,1:31-34
    [34]曾木祥,张玉洁.秸秆还田对农田生态环境的影响.农业环境与发展,1997,51(1):1-7
    [35]沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应.干旱地区农业研究,1998,16(1):45-50
    [36]李勇,曹红娣,邓久胜,等.小麦秸秆全量还田对土壤速效氮及水稻产量的影响.生态与农村环境学报,2009,25(4):46-51
    [37]孙进,王义炳.稻草覆盖对旱地小麦产量与土壤环境的影响.农业工程学报.2001,17(6):53-55
    [38]张振江.长期麦秆直接还田对作物产量与土壤肥力的影响.土壤通报,1998,29(4):154-155
    [39]陈新红,叶玉秀,许仁良,等.小麦秸秆还田量对水稻产量和品质的影响.作物杂志,2009,1:54-57
    [40]李宝灿.麦秆全量还田对水稻产量和品质的影响.现代农业科技,2011,3:60-61
    [41]刘世平,陈后庆,陈文林,等.稻麦两熟制不同耕作方式与秸秆还田对小麦产量和品质的影响.麦类作物学报,2007,27(5):859-863
    [42]郑艳玲,刘成,赵丽琴.寒地水稻秸秆还田配施氮素效果研究.现代农业科学,2009,16(4):104-109
    [43]郝建成,刘洪蓬,曲善功,等.德州市秸秆还田对提升耕地地力的研究.农业科技通讯,2012,10:94-97
    [44]李洪文,陈君达,高焕文,等.早地表土耕作效应研究.干旱地区农业研究,2000,18(2):13-18
    [45]王树楼,丁玉川,王笳.早地免耕不同秸秆覆盖量试验初报.山西农业科学,1992,10:10-12
    [46]张翠珍,邵长泉,孙士宗,等.稻草还田改良滨海盐土的作用及增产效应.土壤肥料,1997,1:25-27
    [47]张红梅,汤爱勤.秸秆直接还田的研究进展.植保土肥,2010,10:19-21
    [48]刘凤艳,龚振平,马先树,等.秸秆还田对水稻病虫害发生的影响.黑龙江农业科学,2010,8:75-78
    [49]强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,2004,15(3):469-472
    [50]Li CS, Salas W., DeAngelo B., et al.. Assessing Alternatives for Mitigating Net Greenhouse Gas Emissions and Increasing Yields from Rice Production in China over the Next Twenty Years. Journal of Environmental Quality,2006,35(4):1554-1565
    [51]Khalll M., Rasmussen R., Wang MX, et al.. Methane emissions from rice fields in China. Environment Science Technology,1991,25:979-981
    [52]Pan GX, Li LQ, Wu LS, et al.. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology,2003,10(1):79-92
    [53]白小琳,张海林,陈阜,等.耕作措施对双季稻田CH4与N2O排放的影响.农业工程学报,2010,26(1):282-289
    [54]刘瑞伟.我国农作物秸秆利用现状及对策.农业与技术,2009,29(1):7-9
    [55]韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87-91
    [56]曹国良,张小曳,王亚强,等.中国区域农田秸秆露天焚烧排放量的估算.科学通报,2007,52(15):1826-1831
    [57]Lal R. Forest soils and carbon sequestration. Forest Ecology and Management,2005,220(1): 242-258
    [58]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-924
    [59]崔明,赵立欣,田宜水,等.中国主要农作物秸秆资源能源化利用分析评价.农业工程学报,2008,24(12):291-296
    [60]汪海波,章瑞春.中国农作物秸秆资源分布特点与开发策略.山东省农业管理干部学院学报,2007,23(2):164-165
    [61]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62-67
    [62]刘娅.农作物秸秆治理与综合利用.辽宁农业科学,2003,1:18-23
    [63]陈冬冬,高旺盛,陈源泉.中国农作物秸秆资源化利用的生态效应和技术选择分析.中国农学通报,2007,23(10):143-149
    [64]全国农业技术推广中心.中国有机肥料养分志.北京:中国农业出版社,1999:53-58
    [65]曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算.资源科学,2006,28(1):9-13
    [66]田宜水,孟海波.农作物秸秆开发利用技术.北京:化学工业出版社,2008:5-13
    [67]Li LJ, Wang Y, Zhang Q, et al.. Wheat straw burning and its associated impacts on Beijing air quality. Science in China Series D:Earth Sciences,2008,51(3):403-414
    [68]Yang SJ, He HP, Lu SL, et al.. Quantification of crop residueburning in the field and its influence on ambient air quality in Suqian, China. Atmospheric Environment,2008,42(9):1961-1969
    [69]王丽,李雪明,许妍.中国大陆秸秆露天焚烧的经济损失研究.干旱区资源与环境,2008,22(2):170-175
    [70]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略.国土与自然资源研究,2008(2):92-93
    [71]毕于运,高春雨,王亚静,等.中国秸秆资源数量估算.农业工程学报,2009,25(12):211-217
    [72]Summers M., Jenkins B., Hyde P., et al.. Biomass production and allocation in rice with implications for straw harvesting and utilization. Biomass and Bioenergy,2003,24(3):163-173
    [73]国家统计局.中国统计年鉴2012.北京:中国农业出版社,2012:427-469
    [74]SAS Institute. SAS version 8.02. SAS Institute Inc., Cary, NC, USA.1999
    [75]国家统计局.中国统计年鉴2011.北京:中国农业出版社,2011:453-482
    [76]王晓玉,薛帅,谢光辉.大田作物秸秆量评估中秸秆系数取值研究.中国大业大学学报,2012,17(1):1-8
    [77]Yu ZW. Crop cultivation (North China Version). In:China Agriculture Press. Beijing, China,2003
    [78]Zhang YH, Wang QF, Zhang JL. Developmental prospect of fodder beet in China. Sugar crops China,2005,4:53-54
    [79]郭利磊,王晓玉,陶光灿等.中国各省大田作物加工副产物资源量评估.中国大业大学学报,2012,17(6):45-55
    [80]韦茂贵,王晓玉,谢光辉.我国不同地区主要大田作物田间秸秆成熟期.中国大业大学学报,2012,17(6):20-31
    [81]韩学凤,张鹏,易欣欣.农作物秸秆的综合利用.北京农学院学报,2003,18(3):226-230
    [82]马占云,林而达,李怒云.气候变化对我国生物质能的影响研究综述.中国气象学会2007年年会气候变化分会场论文集,2007
    [83]Metzder R.A., Benford G., Hoffert M.I.. To bury or to burn:Optimum use of crop residues to reduce atmospheric CO2. Climatic Change,2002,54:369-374
    [84]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响.作物学报,2006,32(4):484-490
    [85]冯蕾,王效华.江苏省农作物秸秆资源量的灰色预测.能源研究与利用,2010,4:1-3
    [86]丁文斌,徐通,王雅鹏.粮食主产省粮食生产投入要素效率DEA分析.西北农林科技大学学报,2007,7(4):56-60
    [87]崔胜先.东北三省主要农作物秸秆生物质资源评价:[博士学位论文].北京:中国农业大学,2011
    [88]刘思峰.灰色系统理论的产生与发展.南京航空航天大学学报,2004,36(2):267-272
    [89]朱永达.系统运行机制和结构优化的理论,方法及实证.郑州:郑州大学出版社,2008,37-56
    [90]闫丽珍,成升魁,阂庆文.安徽省蒙城县作物秸秆资源利用现状及其影响因素分析.干旱地区农业研究,2006,24(3):160-163
    [91]徐秀娟,吴文革.安徽省农作物秸秆资源及其综合利用.中国农业科技导报,2009,11(2):39-43
    [92]万晓红.秸秆资源化利用技术分析及新途径探讨.农业环境与发展,2006,3:39-42
    [93]孔凡标,臧峥峥.开发秸秆资源促进综合利用.农业工程技术,2009,1:5-7
    [94]张明敬.开发利用秸秆资源改善农业生态环境.农业环境与发展,2009,1:27-29
    [95]白延飞.农村秸秆资源化利用的技术模式探讨.北京农业,2008,12:56-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700