用户名: 密码: 验证码:
水稻苗期黄绿叶基因YGL2的功能研究和垩白粒率QTL qPGWC-7候选基因的功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两部分研究内容,第一部分为水稻苗期黄绿叶基因YGL2(YELLOW-GREEN LEAF2)的图位克隆和功能分析,第二部分为水稻垩白粒率QTL qPGWC-7的精细定位和候选基因的功能初步分析。
     第一部分:在高等植物中,血红素加氧酶(Heme Oxygenase, HO)是血红素分解代谢的限速酶,它能够催化血红素的降解,从而合成光敏色素前体。之前已经有研究报道了水稻中血红素加氧酶在控制光周期,调节水稻开花中的作用。但是,其在调节水稻叶绿素合成中的作用仍然没有研究。本文中,我们从60Co辐射诱变的冈46B突变体中发现了一个苗期表现为黄绿叶的突变体,命名为ygl2。在自然条件下,大田中生长的ygl2突变体在苗期,叶片呈现黄绿色表型,3叶期时突变体黄化表型最为明显;随着植株的生长,突变体褪绿叶片逐渐转绿,到抽穗期基本恢复到野生型的正常绿叶表型。通过测定叶绿素的含量发现,三叶期突变体中叶绿素(Chl)和类胡萝卜素的含量显著降低,而叶绿素a/叶绿素b的比例明显增加,随着植株的生长,这种差异逐渐缩小。对叶片叶绿体的扫描电镜观察发现突变体中叶绿体基粒填充不完整,每个类囊体片层的数目显著减少,导致叶片中叶绿体发育不完全,因此叶片出现黄化表型。为研究引起叶片黄化的突变基因,我们构建了ygl2和日本晴的F2群体,遗传分析表明黄叶表型是由一个单隐性基因控制,利用图位克隆的方法将该基因定位在水稻第6染色体短臂两Indel标记In44和In39之间约66.8kb的区间内。测序分析发现,在该区间内的一个编码血红素加氧酶的基因的第1外显子插入了约7kb的片段,导致突变体中编码的氨基酸的改变并且引起该基因的表达量显著下降;转基因互补实验和RNAi结果均表明该基因的突变导致了黄叶表型的产生;系统进化树分析表明该基因编码的蛋白属于血红素加氧酶1亚家族,该基因的突变使蛋白的二级和三级结构发生了轻微改变,但是水稻原生质体亚细胞定位发现ygl2中该基因的突变并没有影响其编码蛋白在细胞叶绿体中的定位;GUS染色和qRT-PCR分析表明该基因在水稻各组织中组成型表达,但是在叶片中的表达量最高,并且苗期该基因的表达量高于分蘖期;不同温度处理后,YGL2基因的表达受到影响并且与叶绿素合成和光合作用相关的基因的表达均受到影响,表明YGL2在水稻叶绿素的合成和光合作用中具有重要的作用。YGL2的克隆为进一步阐明血红素加氧酶在调节植物叶绿素合成和光合作用中的重要作用奠定了基础。
     第二部分:水稻籽粒垩白的产生严重影响稻米品质,垩白是一个非常复杂的数量性状,精细定位和克隆控制垩白的QTL不仅有助于阐明水稻垩白形成的分子机制,同时还可以利用分子标记辅助选择的方法,提高育种效率。本研究中的C-51是一个以9311为轮回亲本,PA64S为供体亲本的染色体置换系材料,在不同环境下其垩白粒率均显著高于背景亲本9311,扫描电镜观察发现C-51垩白部分淀粉颗粒呈圆形或椭圆形,排列疏松,大小不一,而9311透明部分淀粉颗粒呈现多角形多面体状,棱角分明,淀粉粒相互嵌合紧密排列在一起,但是9311和C-51的灌浆速率和干物质积累无显著差异。本研究通过对前人研究结果的验证和进一步精细定位,最终将控制该垩白粒率的QTL qPGWC-7定位在第7染色体Indel18和Indel3两标记之间,区间大小约17.1kb。经过预测分析发现,该区间包含3个ORFs,其中C-51中ORF1的表达量在整个灌浆过程中均高于9311,在开花后第18天表达量达到最大,并且C-51和9311在氨基酸序列的保守结构域存在一个氨基酸的改变,因此将该ORF1作为候选基因进行功能分析。体外酶活测定证明在高垩白粒率的C-51中qPGWC-7的酶活与低垩白粒率的9311并没有明显差异,因此垩白粒率的差异可能和该基因的表达量差异有关;GUS组织化学染色检测则证明该基因主要在水稻各个组织中的维管组织中表达,在幼稳中表达量最高,并且该基因受低温诱导;拟南芥和水稻原生质体亚细胞定位将蛋白定位于细胞的高尔基体上。上述研究结果为qPGWC-7的进一步的功能研究奠定了良好的基础。
This thesis includes two parts:the first is "map-based cloning and functional analysis of YGL2gene for yellow-green leaf in rice", and the other part is "fine mapping of a QTL qPGWC-7for percentage of grains with white chalkiness and preliminary characterization of the candidate gene in rice".
     Part one:Heme Oxygenase (HO) in higher plants is a rate-limiting enzyme for catabolism of heme, it can catalyze the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chi) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf2(ygl2) from a Co-irradiated population. Normal grown ygl2showed yellow-green leaves in seedling stage and was most obvious in three-leaf stage, from tiller initiating to heading stage, yellowish leaves gradually turned green and approached almost as normal as wild type did. Pigments contents at different developmental stages were examined and the results showed that, at three-leaf stage, the ygl2mutant had a significant reduction of Chi and Car levels but apparent increase of Chi a/b ratio compared to the wild type but these difference were decreased along with the plant grown. We compared the ultrastructures of chloroplasts between the ygl2mutant and wild type plants at three-leaf stage using transmission electron microscopy. The number of thylakoid lamellar in chloroplasts of the ygl2was significantly less than that of wild type, whereas the structure of the thylakoid lamellar seemed normal and similar to that of wild type. For map-based cloning of ygl2gene, a mapping population of F2was constructed by a cross between the ygl2mutant and Nipponbare, genetic analysis indicated that the chlorosis phenotype in the ygl2mutant was controlled by a recessive nuclear gene. The ygl2locus was finally narrowed to a region of66.8-kb between two InDel markers, In44and In39on the long arm of chromosome6. Sequencing analysis showed that a fragment of7-kb was inserted into the first exon of one gene in this region which encode Heme Oxygenase, resulting in amino acid polymorphisms and expression level declined. Genetic complementation and RNAi all indicated that the abnormal phenotype of ygl2mutant resulted from the mutation of YGL2gene. Phylogenetic tree analysis showed that YGL2belong to the HO1family, and the mutation of YGL2made little changes to the secondary and3D structures of the protein, but had no effect on the localization of chloroplast through subcellular localization of rice protoplast. qRT-PCR and GUS histochemical staining indicated that YGL2were constitutively expressed in various tissues and particularly the highest in leaf. The expression level at seedling stage was much higher than that of tillering stage and that it was affected obviously after treatment with two different temperatures, meanwhile, the expressions of genes associated with Chl biosynthesis and photosynthesis were also changed. The results indicated YGL2played an important role in the regulation network of Chl biosynthesis and photosynthesis. The cloning of YGL2established the foundation for illuminating the important roles of HO in regulating Chl biosynthesis and photosynthesis in higher plants.
     Part two:Chalkiness of rice grain has profound influence on qualities of rice, it is a complicated quantitative trait and controlled by many quantitative trait locus (QTLs). Fine mapping and cloning of QTLs for chalkiness not only helps us in illuminating the molecular mechanism of chalkiness, but also improving breeding efficiency using marker-assisted selection (MAS). In this study, C-51was a chromosome segment substitution lines (CSSL) created using9311as the recurrent and PA64s as the donor, the percentage of grains with white chalkiness (PGWC) of C-51was significantly higher than that of9311in different environment. Scanning electron microscope (SEM) analysis showed the C-51starch granules of opaque part were round or oval, loosely packed and sizes, and very different from angular, densely packed, polyhedral starch granules of9311transparent part, but there were no significant differences in fresh weight of grain and dry weight of brown rice between C-51and9311in different periods after flowering. We verified the results previously and conducted further fine mapping. The QTL qPGWC-7was finally narrowed to a region of17.1-kb between two InDel markers, InDel18and InDel3on chromosome6. This region contains three ORFs, the expression of ORF1in C-51was much higher than that of9311during grain filling period, especially the highest 18days after flowering. In addition, there was a amino acid polymorphism in the conserved domain of ORF1protein between C-51and9311, so ORF1was used as the candidate gene for further functional analysis. The enzyme activity of qPGWC-7was no difference between expressed proteins of C-51and9311in vitro, so the difference for chalkiness may caused by the difference of expression levels. GUS histochemical staining indicated that qPGWC-7was constitutively expressed in vascular tissues of various organs and particularly the highest in young panicle. On the other hand, the expression level was induced by low temperature. qPGWC-7was located on Golgi through subcellular localization of rice and Arabidopsis protoplast. These results above provided a good basis for further study of qPGWC-7function.
引文
An G, Lee S, Kim S H. Molecular genetics using T-DNA in rice. Plant Cell Physiol,2005,46:14-22
    Anderson K E, Bloomer J R, Bonkovsky H L, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med,2005,142:439-450
    Andres F, Galbraith D W, Talon M, et al. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant physiol,2009,151:681-690
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    Awan M, Konzak D F, Rutger J N. Mutagenic effect of sodium azide in rice. Crop Sci,1980,20: 663-668
    Balestrasse K B, Yannarelli G G, Noriega G O, et al. Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. Biometals,2008,21:433-441
    Beale S I. Green genes gleaned. Trends Plant Sci,2005,10:309-312
    Beale S I, Weinstein J D. Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In PM Jordan, ed, Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, The Netherlands, 1991, PP 155-235
    Black D. Mechanisms of alternative pre-messenger RNA splicing. Ann Reviews Biochem,2003,72: 291-336
    Bollivar D W. Recent advances in chlorophyll biosynthesis. Photosynth Res,2006,90:173-194
    Chai C L, Fang J, Liu Y, et al. ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol,2001,75:211-222
    Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metal oprotease that is required for chloroplast development. Plant J,2005,41:364-375
    Chen Y H, Chao Y Y, Hsu Y Y, et al. Heme oxygenase is involved in H2O2-induced lateral root formation in apocynin-treated rice. Plant Cell Rep,2013,32:219-226
    Chereskin B M, Wong Y S, Castelfranco P A. In Vitro Synthesis of the Chlorophyll Isocyclic Ring: Transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A(5). Plant physiol,1982,70:987-993
    Chory J. Light signals in leaf and chloroplast development:photo receptors and downstream responses in search of a transduction pathway. New Biology,1991:538-548
    Cornah J E, Terry M J, Smith A G. Green or red:what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci,2003,8:224-230
    Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot,2012,63:1675-1687
    Dai Z, Gao J, An K, et al. Promoter elements controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34. Plant Mol Biol,1996,32:1055-1065
    Davis S J, Kurepa J, Vierstra R D. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA, 1999,96:6541-6546
    Davison P A, Schubert H L, Reid J D, et al. Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry,2005,44:7603-7612
    Delaroche D, Cantrelle F X, Subra F, et al. Cell-penetrating peptides with intracellular actin-remodeling activity in malignant fibroblasts. J Biol Chem,2010,285:7712-7721
    Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol,2004,56:1-14
    Fromme P, Melkozernov A, Jordan P, et al. Structure and function of photosystem I:interaction with its soluble electron carriers and external antenna systems. FEBS Lett,2003,555:40-44
    Gothandam K M, Kim E S, Cho H, et al.OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol,2005,58:421-433
    Grimm B. Novel insights into the control of tetrapyrrole metabolism of higher plants. Curr Opin Plant Biol,1998,1:245-250
    Gustafsson A. The plastid development in various types of chlorophyll mutations. Hereditas,1942,28: 483-492
    Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumand sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271-282
    Hirochika H, Guiderdoni E, An G, et al. Rice mutant resources forgene discovery. Plant Mol Biol,2004, 54:325-334
    Hiroki S, Kusumi K, Tozawa Y, et al. The virescent-2 mutation inhibits translation of plastid transcripts for the p lasted genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004,45:985-896
    Hortensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Bio,2006,57:55-77
    Hortensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Sci,2009,14:155-162
    Huang X, Zhang X, Yang S. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis. Cell Res,2009,19:1205-1216
    Huq E, A!-Sady B, Hudson M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science,2004,305:1937-1941
    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005,436:793-800
    Izawa T, Oikawa T, Tokutomi S, et al. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J,2000,22:391-399
    Jander G, Norris S R, Rounsley S D, et al. Arabidopsis map-based cloning in the post-genome era. Plant physiol,2002,129:440-450
    Jiang H, Li M, Liang N, et al. Molecular cloning and function analysis of the stay green gene in rice. Plant J,12007,52:197-209
    Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol.2003,44:463-472
    Kensuke K, AkikoM, Mitsuo N, et al. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J,1997,12: 1241-1250
    Kensuke K, Asanori Y, Naoko M, et al. Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTP. Plant Cell Physiol.2004,45:1194-1201
    Konstantinos T, Kalevi K, Stephen V, et al. Promoting ecosystem and human health in urban areas using Green Infrastructure:a literature review. Landsc. Urban Plan,2007,81:167-178
    Koornneef M,Cone J W, Dekens R G, et al. Photomorphogenic responses of long hypocotyl mutants of tomato. J Plant Physiol,1985,120:153-165
    Kropat J, Oster U, Rudiger W, et al. Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA.1997,94:14168-14172
    Kusaba M, Ito H, Morita R, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell,2007,19:1362-1375
    Kusumi K, Mizutani A, Nishimura M et al. A virescent gene VI determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997,12:1241-1250
    Kusumi K, Sakata C, Nakamura T, et al. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J,2011,68:1039-1050
    Kusumi K, Yara A, Mitsui N, et al. Characterization of a rice nuclear encoded plastid RNA polymerase gene OsRpoTp. Plant and Cell Physiol,2004,45:1194-1201
    Larkin R M, Alonso J M, Ecker J R, et al. GLrN4, a regulator of chlorophyll synthesis and intracellular signaling. Science,2003,299:902-906
    Liang Q, Lu X, Jiang L, et al. EMB1211 is required for normal embryo development and influences chloroplast biogenesis in Arabidopsis. Physiol Plant,2010,140:380-394
    Lichtenthaler H K, Babani F. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol Biochem,2001,38:889-895
    Lichtenthaler H K, Babani F. Light adaption and senescence of the photosynthetic apparatus:changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity during light adaptation and senescence of leaves. In:Papageorgiou G, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht,2004, pp 713-736
    Lichtenthaler H K. Biosynthesis, accumulation and emission of carotenoids, a-tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynth Res,2007,92:163-179
    Lichtenthaler H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods Enzymol,1987,148:350-382
    Linley P J, Landsberger M, Kohchi T, et al. The molecular basis of heme oxygenase deficiency in the pcdl mutant of pea. FEBS J,2006,273:2594-2606
    Liu R, Hu J J. HemeBIND:a novel method for heme binding residue prediction by combining structural and sequence information. BMC Bioinformatics,2011,12:207
    Masuda T, Fusada N, Oosawa N, et al. Functional analysis of isoforms of NADPH:protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant cell physiol,2003,44: 963-974
    Matsuoka M. Classification and characterization of cDNA that encodes the light harvesting chlorophyll a/b binding protein of photosystem II from rice. Plant Cell Physiol,1990,31:519-526
    McCouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res,2002a,9:199-207
    McCouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res,2002b,9:257-279
    Miyao A, Tanaka K, Mumta K. Target site specificity of the Tos17 retrotransposon shows a for insertion within genes and against insert ion in retrotransposon-rich regions of the genome. Plant Cell.2003, 15:1771-1780
    Miyoshi K, Ito Y, Serzawa A, et al. OsHAP3 genes regulate chloroplast biogensis in rice. Plant J,2003, 36:532-540
    Mullet J E. Dynamic regulation of chloroplast transcription. Plant Physiol,1993,103:309-313
    Muramoto T, Kohchi T, Yokota A, et al. The Arabidopsis photomorphogenic mutant hyl is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell,1999,11:335-347
    Murray D L, Kohorn B D. Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Mol Biol,1991,16:71-79
    Nagata N, Tanaka R, Satoh S, et al. Identification of a vinyl reduetase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus Species. Plant Cell, 2005,17:233-240
    Nakagawara E, Sakuraba Y, Yamasato A, et al. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J.2007,49:800-809
    Ortiz de Montellano P R, Wilks A. Heme oxygenase structure and mechanism. Adv Inorg Chem,2001, 51:359-407
    Oster U, Tanaka R, Tanaka A, Ru" diger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305-310
    Park S Y, Yu J W, Park J S, et al. The senescence- induced stay green protein regulates chlorophyll degradation. Plant Cell.2007,19:1649-1664
    Pretty J, Peacock J, Hine R et al. Green exercise in the UK countryside:effects on health and physiological well-being, and implications for policy and planning. J Environ Plann Manage,2007, 50:211-231
    Quail P H. Photosensory perception and signalling in plant cells:new paradigms? Current opinion in cell biology,2002a,14:180-188
    Quail P H. Phytochrome photosensory signalling networks. Nature reviews. Molecular cell biology, 2002b,3:85-93
    Raux-Deery E, Leech H K, Nakrieko K A, et al. Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana:a plastid-located sirohydrochlorin ferrochelatase containing a2FE-2S center. J Biol Chem.2005,280:4713-4721
    Richard A T, Biochemical Spectroscopy, Vol 1. Adam Hilger Ltd, London,1975, pp 327-330
    Santiago-Ong M, Green R M, Tingay S. shygrll is a mutant affected in multiple aspects of photomorphogenesis. Plant Physiol,2001,126:587-600
    Sarijeva G, Knapp M, Lichtenthaler H K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol,2007,164:950-955
    Sato Y, Morita R, Katsuma R, et al. Two short- chain dehydrogenase/reductases, NON- YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting comp lex II degradation du ring senescence in rice. Plant J,2009,57:120-131
    Sato Y, Morita R, Katsuma S, et al. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex Ⅱ degradation during senescence in rice. The Plant journal:for cell and molecular biology,2009,57: 120-131
    Schelbert S, Aubry S, Burla B,et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell,2009,21:767-785
    Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nature protocols,2008,3:1101-1108
    Sichul L, Kim J H, Yoo E S, et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol,2005,57:805-818
    Stenbaek A, Jensen P E. Redox regulation of chlorophyll biosynthesis. Phytochemistry,2010,71: 853-859
    Stoutjesdijk P A, Singh S P, Liu Q, et al. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant physiol,2002,129:1723-1731
    Strand A. Plastid-to-nucleus signalling. Curr Opin Plant Biol.2004,7:621-625
    Su N, Hu M L, Wu D X, et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol,2012,159:227-238
    Sugimoto H, Kusumi K, Noguchi K, et al. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J,2007,52:512-527
    Terry M J, Kendrick R E. The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem,1996,271:21681-21686
    Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol,1999,119: 143-152
    Terry M J, Linley P J, Kohchi T. Making light of it:the role of plant heme oxygenases in phytochrome chromophore synthesis. Biochem Soc T,2002,30:604-609
    Terry M J, McDowell M T, Lagarias J C. (3Z)- and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J Biol Chem,1995,270:11111-11118
    Terry M J, Wahleithner J A, Lagarias J C. Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys,1993,306:1-15
    Victor I K, Fabienne P C, Michel H, et al. A chromo domain protein encoded by the arabidops is CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell,1999,1:87-99
    Von Wettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis. Plant Cell,1995,7:1039-1057
    Vothknecht U C, Kannangara C Q, von Wettstein D. Barley glutamyl tRNAGlu reductase:mutations affecting haem inhibition and enzyme activity. Phytochemistry.1998,47:513-519
    Weller J L, Terry M J, Rameau C, et al. The Phytochrome-Deficient pcdl mutant of pea is unable to convert heme to biliverdin IXa. Plant Cell,1996,8:55-67
    Wild A, Riihle W, Grahl H. The effect of light intensity during growth of Sinapis alba on the electron transport and the noncyclic photophosphorylation. In:Marcelle R (ed) Environmental and biological control of photosynthesis. Junk, The Hague,1975, pp 115-121
    Wu Z M, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol,2007,145:29-40
    Xie Y, Xu D, Cui W, et al. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot, 2012,63:3869-3883
    Xiong J, Bauer C E. Complex evolution of photosynthesis. Annu Rev Plant Biol,2002,53:503-521
    Xu H, Vavilin D, Funk C, et al. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol BioL 2002,49:149-160
    Yoo S C, Cho S H, Sugimoto H, et al. Rice Virescent-3 and Stripe-1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol,2009,150:388-401
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002,296:79-92
    Zhang H T, Li J J, Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode Chi D and Chi I subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006,62:325-337
    Zhang L, Wei Q, Wu W, et al. Activation of the heterotrimeric G protein alpha-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J,2009,58: 1041-1053
    Zhao Y, Wang M L, Zhang Y Z, et al. A chlorophyll reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed,2000,119:131-135
    Zhou K, Ren Y, Lv J, et al. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta,2013,237:279-292
    陈佳颖,赵剑,刘晓,等.一个新水稻温敏感叶色突变体的遗传分析及其基因分子定位.植物学报,2010,45:419-425
    陈善福,舒庆尧,吴殿星,等.利用γ射线辐照诱发水稻龙特甫B叶色突变.浙江大学学报:农业与生命科学版,1999,25:569-572
    胡忠,彭丽萍,蔡永华.一个黄绿色的水稻细胞核突变体.遗传学报,1981,8:256-261
    李秀兰,孙小秋,王平荣,等.一个新的水稻黄绿叶突变体的遗传分析与基因定位.作物学报,2010,36:1050-1054
    刘朝辉,李小艳,张建辉,等.一个新的水稻叶绿素缺失黄叶突变体的特征及基因分子定位.遗传,2012,34:223-229
    王军,王宝和,周丽慧,等.一个水稻新黄绿叶突变体基因的分子定位.中国水稻科学,2006,20:455-459
    许凤华,程治军,王久林,等.水稻白条纹叶Gws基因的精细定位与遗传分析.作物学报,2010,36:713-720
    张毅,吕俊,李云峰,等.水稻白化转绿基因对农艺性状和外观米质的影响.作物学报,2008,34:284-289
    张力科,李志彬,刘海燕,等.两个新的水稻叶色突变体形态结构与遗传定位研究.中国农业科学,2010,43:223-229
    包劲松,夏英武.水稻淀粉合成的分子生物学研究进展.植物学通报,1999,16:352-358
    曾大力,钱前,阮刘青,等.稻米垩白三维切面的遗传分析.中国水稻科学,2002,16(1):11-14
    晁园,冯付春,高冠军,等.利用重组自交系群体定位水稻品质相关性状的QTL,华中农业大学学报,2012,31:397-403.
    陈刚,王忠,刘巧泉,等.转反义Wx基因水稻颖果的发育及物质积累.中国水稻科学,2006:277-282
    陈建国,朱军.籼粳交稻米品质性状的遗传相关分析.湖北大学学报自然科学版,1998,3:87-89
    陈清泉,宋光泉,欧阳静仁.籼型杂交稻与常规稻米质特性差异的研究.中国农业科学,1991,24:44-51
    程方民,胡东维,丁元树.人工控温条件下稻米垩白形成变化及胚乳扫描结构观察.中国水稻科学,2000,14(2):83-87
    巩迎军,冯杰,肖珂,等.日本水稻品种越光稻米的外观品质性状的QTL遗传剖析,中国农学通报,2008,24:96-101
    郭二男,潘增,王才林,等.粳稻的腹白研究.作物学报,1983,9:31-38
    郭益全.米粒垩白之遗传.中华农业研究,1986,35:129-138
    郝伟,金健,孙世勇,等.覆盖野生稻基因组的染色体片段置换系的构建及其米质相关数量性状基因座位的鉴定.植物生理与分子生物学学报,2006,32:354-362
    黄发松,孙宗修,胡培松,等.食用稻米品质形成研究的现状与展望.中国水稻科学,1998,12(3):172-176
    贾志宽.稻米垩白形成的气候生态基础研究.应用生态学报,1992,3:321-326
    姜维梅,周敏,李太贵.早籼垩白米形成的形态解剖学的研究.浙江大学学报(理学版),2002,29(4):459-463
    金军.氮肥施用量施用期对稻米品质及产量的影响.扬州:扬州大学,2002
    金正勋,秋太权,孙艳丽,等.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7:31-35
    黎毛毛,徐磊,任军芳,等.粳稻垩白性状的QTL检测,中国水稻科学,2009,23:371-376
    李俊周,付春阳,张洪亮,等.利用旱稻导入系定位水、旱田外观品质的QTL及土壤水分效应分析.农业生物技术学报,2009,17:651-658
    李太贵,沈波,陈能,等.Q酶在水稻子粒垩白形成中作用的研究.作物学报,1997,23:338-344
    李欣,莫惠栋,王安民,等.粳型杂种稻米品质性状的遗传表达.中国水稻科学,1999,13:197-204
    林建荣,吴明国,石春海.粳型杂交稻稻米外观品质性状的遗传效应研究.中国水稻科学,2001,15:93-96
    刘家富,奎丽梅,朱作峰,等.普通野生稻稻米加工品质和外观品质性状QTL定位.农业生物技术学报,2007,15:90-96
    吕川根.栽培密度和施肥方法对稻米品质影响的研究.中国水稻科学,1988,2(30):141-144
    吕英海,李建粤.水稻蜡质基因及其利用研究进展.西北植物学报,2005,25:2335-2339
    马均,明东风,马文波,等.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,2005,38:290-296
    莫惠栋.谷类作物胚乳性状遗传控制的鉴别.遗传学报,1995,22:126-132
    莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14
    潘瑞炽,董愚得.植物生理学.第三版.北京:高等教育出版社,1995,176-178
    彭估松,郑志仁,刘涤,等.淀粉的生物合成及其关键酶.植物生物学通讯,1997,33:297-303
    沈波,陈能,李太贵,等.温度对早籼稻米垩白发生胚乳物质形成的影响.中国水稻科学,1997,11(3):183-186
    沈鹏,金止勋,罗秋香,等.水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系.中国水稻科学,2006,20:58-64
    松田智明.登熟期の水稻子房における淀粉贮藏细胞の微细构造と转流、蓄积机构について日本作物学会纪事,1984,53:146-147
    孙业盈,吕彦,董春林,等.水稻Wx基因表达调控的研究进展.遗传,2005,27:1013-1019
    汤圣祥,张云康,余汉勇,等.籼粳杂交稻米胶稠度的遗传特性分析.中国水稻科学,1996,29:51-55
    唐启源.稻米胚乳透明度生态变化的研究.湖南农业大学学报,1996,22:6-12
    唐湘如,余铁桥.灌浆成熟期温度对稻米品质及有关生理生化特性的影响.湖南农学院学报,1991,17:1-9
    田代亨,江幡守卫腹白米に关する的研究第3报.日本作物学会纪事,1975,44:86-92
    田代一亨.稻米腹白形成机制的研究Ⅳ.抽穗期施氮对腹白形成的影响.日本作物学会纪事,1972,48:99-106
    王情英,江良荣,郑景生,等.稻米垩白和粒形的主效QTL定位分析,分子植物育种,2011,9:547-553
    王月福,丁振文,李尚霞,等.小麦籽粒灌浆过程中关键淀粉合成酶的活性及其效应.作物学报,2003,29:75-81
    王岳钧,孙健.不同栽培方法对优质早籼产量和品质的影响.浙江农业科学,1996:10-12
    王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全.中国农业科技导报,2000,3:8-11
    王忠,顾蕴洁,陈刚,等.稻米的品质和影响因素.分子植物育种,2003,:231-241
    王忠,顾蕴洁,陈刚,等.水稻胚乳细胞的分裂、分化和充实.当代作物生理学研究,中国农业科学技术出版社.北京,2002
    王忠,李卫芳,顾蕴洁,等.水稻胚乳的发育及其养分输入的途径.作物学报,1995,2:520-527
    韦朝领,刘敏华,陈多璞,等.江淮地区稻米品质性状典型相关分析及其与气象因子关系的研究.安徽农业大学学报,2001,28(4):345-349
    吴顺,李晓方,萧浪涛,等.稻米垩白与直链淀粉含量的数量性状位点及其相互关系研究.华南师范大学学报(自然科学版),2005,1:90-94
    吴秀菊,江玲,万向元,等.与稻米高垩白粒率相关的qPGWC-9的生理功能.植物生理与分子生物学学报,2007,33(2):153-159
    星川清亲.解剖图说稻的生长.蒋彭炎,许德海译.上海:上海科学技术出版社,1978.
    徐富贤,郑家奎,朱永川,等.川东南杂交中稻超稀栽培对稻米整精米率和垩白粒率的影响.植物生态学报,2004,28:686-691
    徐是雄,徐雪宾.稻的形态与解剖.北京:农业出版社,1984.
    徐锡元,茶村修吾.腹白米に关する的研究第1报.日本作物学会纪事,1979,48:418-424
    徐云碧,申宗坦.籼稻米粒垩白的遗传.浙江农业大学学报,1989,15:8-13
    许凤英,马均,王贺正,等.水稻强化栽培下的稻米品质.作物学报,2005,31:577-582
    杨福,聂小兰,宋慧,等.2个不同垩白度粳稻胚乳养分输导组织解剖结构的比较研究.吉林农业大学学报,2005,27:11-14,18
    杨亚春,倪大虎,宋丰顺,等.不同生态地点下稻米外观品质性状的QTL定位分析,中国水稻科学,2011,25:43-51
    殷延勃,朱美静,马洪文,等.环境因子对宁夏水稻品质性状的影响.宁夏农林科技,2002:17-19
    于波,NASSIROU Tondi-yacouba,高冠军,等.水稻外观品质性状和千粒重的QTLs分析,湖北农业科学,2012,51:4187-4192
    张嵩午.我国秦岭-淮河过渡区稻米品质的气候分析.自然资源学报,1991,6:211-219
    长户一雄,江幡守卫.心白米に关する的研究第2报.日本作物学会纪事,1959,28:46-50
    长户一雄,江幡守卫.心白米に关する研究第1报.日本作物学会纪事,1958,27:49-51
    钟连进,程方民.水稻籽粒灌浆过程支链淀粉的积累及其相关酶的品种类型间差异.作物学报,2003,29:452-456
    周广洽,谭周兹.水稻结实期温度对米粒外观品质和淀粉形成的影.湖南农业科学,1986:5-9
    周立军,江玲,刘喜,等.水稻千粒重和垩白粒率的QTL及其互作分析.作物学报,2009a,35:255-261
    周立军,刘喜,江玲,等.利用CSSL和RIL群体分析稻米垩白率QTL及互作效应.中国农业科学,2009b.42:1129-1135
    Abel G J, Springer F, Willmitzer L, et al. Cloning and functional analysis of a cDN A encoding a novel 139 kDa starch synthase from potato(Solanum tuberosum L.). The Plant journal:for cell and molecular biology,1996,10:981-991
    Ayres N M, McClung A M, Larkin P D, et al. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet,1997,94:773-781
    Azevedo R A, Damerval C, Landry J, et al. Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Biochem,2003,270:4898-4908
    Ball S, Guan H P, James M. From glycogen to amylopectin:a model explaining the biogenesis of the plant starch granule. Cell,1996,86:349-352
    Ballicora M A, Laughlin M J, Fu Y, et al. Adenosine 5'-diphospate glucose pyrophosphorylase from potato tuber (Significance of the N terminus of the small subunit for catalytic properties and heat stability). Plant Physiol,1995,109:245-251
    Blauth S L, Yao Y, Klucinec J D, et al. Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol,2001,125:1396-1405
    Burton R A, Bewley J D, Smith A M, et al. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Planta,1995,7:3-15
    Chen H M, Zhao Z G, Jiang L, et al. Molecular genetic analysis on percentage of grains with chalkiness in rice (Oryza sativa L.), African Journal of Biotechnology,2011,10:6891-6903
    Chen H, Siebenmorgen T J. Effect of rice kernel thickness on degree of milling and associated optical measurements. Cereal Chemistry,1997,74:821-825
    Cheng F M, Zhong L J, Wang F, et al. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem,2005,90:39-46
    Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase Ⅰ enzyme:studies of glucan affi nity and catalytic properties. Plant J,2001,25:475-486
    Craig J, Lloyd J R, Tomlinson K, et al. Mutations in the gene encoding starch synthase Ⅱ profoundly alter amylopectin structure in pea embryos. Plant Cell,1998,10:413-426
    Del Rosario A R, Briones V P, Vidal A J, et al. Composition and endosperm structure of developing and mature rice kernel. Cereal Chem,1968,45:225-235
    Delatte T, Umhang M, Trevisan M, et al. Evidence for distinct mechanisms of starch granule breakdown in plants. J Biol Chem,2006,281:12050-12059
    Delvalle D, Dumez S, Wattebled F, et al. Soluble starch synthase I:a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant J,2005,43:398-412
    Dian W, Jiang H, Wu P. Evolution and expression analysis of starch synthase Ⅲ and Ⅳ in rice. J Exp Bot,2005,56:623-632
    Dickinson D B, Preiss J. ADP-glucose pyrophosphorylase from maize endosperm. Archives Biochemistry and Biophysics,1969,130:119-128
    Edwards A, Fulton D C, Hylton C M, et al. A combined reduction in activity of starch synthases Ⅱ and Ⅲ of potato has novel effects on the starch of tubers. Plant Journal,1999,17:251-261
    Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice:the quest for quality. Trends in Plant Science,2009,14(3):133-139
    Fujita N, Toyosawa Y, Utsumi Y, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot,2009,60:1009-1023
    Fujita N, Yoshida M, Asakura N, et al. Function and Characterization of Starch Synthase Ⅰ Using Mutants in Rice. Plant Physiol,2006,140:1070-1084
    Fujita N, Yoshida M, Kondo T, et al. Characterization of SSⅢa-deficient mutants of rice:The function of SSⅢa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol,2007, 144:2009-2023
    Guan H, Li P, Imparl-Radosevich J, et al. Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch Biochem Biophys,1997,342:92-98
    Guo T, Liu X L, Wan X Y, et al. Identification of a Stable Quantitative Trait Locus for Percentage Grains with White Chalkiness in Rice(Oryza sativa). J Integr Plant Biol,2011,53:598-607
    Han X, Wang Y H, Liu X, et al. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot,2012,63: 121-130
    Hao W, Zhu M Z, Gao J P, et al. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines. J Integr Plant Biol,2009,51:500-512
    He P, Li S G, Qian Q, et al. Genetic analysis of rice grain quality. Theor Appl Genet,1999,98:502-508
    Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta,2004,220:9-16
    James M G, Robertson D S, Myers A M. Chraracterization of the maize gene sugaryl, a determinant of starch composition in kernels. Plant Cell,1995,7:417-429
    Jiang H W, Dian W M, Liu F Y, et al. Molecular cloning and expression analysis of three genes encoding starch synthase Ⅱ in rice. Planta,2004,218:1062-1070
    Kang H G, Park S H, Matsuoka M, et al. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene(OsPPDKB). Plant J, 2005,42:901-911
    Keeling P L, Myers A M. Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol, 2010,1:271-303
    Kobayashi A, Bao G, Ye S, et al. Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breeding Sci,2007,57:107-116
    Koh H J, Heu M H. Agronomic characteristics of a mutant for genic male sterility-chalky endosperm and its utilization on F1 hybrid breeding system in rice. Korean J Crop Sci,1995,40:684-696
    Kubo A, Akdogan G, Nakaya M, et al. Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem,2010,58:4463-4469
    Li H X, Chen Z, Hu M X, et al. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep,2011:1641-1659
    Li J M, Xiao J H, Grandillo S, et al. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome,2004,47:697-704
    Li Z F, Wan J M, Xia J F, et al. Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Breed Sci.2003,53:209-215
    Li Z F, Wan J M, Xia J F, et al. Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genetica Sinica,2003,30:251-259
    Lin K, Chang M C, Yeou G T, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005,5:2140-2156
    Liu X L, Guo T, Wan X Y, et al. Transcriptome analysis of grain filling caryopses reveals involvement of multiple regulatory path ways in chalky grain formation in rice. BMC Genomics,2010,11:730
    Liu X, Hua Z T, Wang Y. Quantitative trait locus (QTL) analysis of percentage grains chalkiness using AFLP in rice (Oryza sativa L.), African Journal of Biotechnology,2011,10:2399-2405
    Liu X, Wang Y, Wang S W. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa). Genetics and Molecular Research,2012,11:717-724
    Mei D Y, Zhu Y J, Yu Y H, et al. Quantitative trait loci for grain chalkiness and endosperm transparency detected in three recombinant inbred line populations of indica rice, Journal of Integrative Agriculture,2013,12:1-11
    Myers A M, Morell M K, James M G, et al. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol,2000,122:989-997
    Nagato K, Ebata M. Studies on white-core rice kernel II on the physical properties of the kernel. Proc Crop Sci Soc Jpn,1959,28:46-50
    Nakamura Y, Kubo A, Shimamune T, et al. Correlation between activities of starch debranching enzyme and a-polyglucan structure in endosperms of sugary-1 mutants of rice. Plant J,1997,12:143-153
    Nakamura Y, Umemoto T, Takahata Y, et al. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm:possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physioloy Plant,1996,97:491-498
    Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol,2001,127:459-472
    NSPRC (The National Standard of the People's Republic of China).2009. High Quality Paddy. CB/T17891-1999. (in Chinese)
    Okagaki R J, Wessler S R. Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics,1988,120:1137-1143
    Okita T W, Nakata P A, Anderson J M, et al. The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol,1990,93:785-790
    Okita T W. Is there an alternative pathway for starch synthesis? Plant Physiol,1992,100:560-564
    Qin Y, Kim S M, Sohn J K. Genetic analysis and mapping for grain chalkiness characteristics of brown rice (Oryza sativa L.). Genes and genomics,2009,31:155-164
    Rahman S, Nakamura Y, Li Z, et al. The sugary-type isoamylase gene from rice and Aegilops tauschii: Characterization and comparison with maize and Arabidopsis. Genome,2003,46:496-506
    Rahman S, Regina A, Li Z, et al. Comparison of starchbranching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme Ⅱa from wheat D genome donor Aegilops tauschii. Plant Physiol,2001,125:1314-1324
    Raju G M, Srinivas T. Effect of physical, physiological, and chemical factors on the expression of chalkiness in rice. Cereal Chem,1991,68:210-211
    Roldan I, Wattebled F, Lucas M M, et al. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule. Plant J,2007,49:492-504
    Ryoo N, Yu C, Park C S, et al. Knockout of a starch synthase gene OsSSⅢa/Flo5 causes white-core floury endosperm in rice(Oryza saliva L.). Plant Cell Rep,2007,26:1083-1095
    Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet,1984,64: 467-473
    Satoh H, Shibahara K, Tokunaga T, et al. Mutation of the plastidial, a glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell,2008,20:1833-1849
    She K C, Kusano H, Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and the starch quality. Plant Cell,2010,22:3280-3294
    Smidansky E D, Clancy M, Meyer F D, et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA,2002,99:1724-1729
    Smith A M, Bettey M, and Bedford I D. Evidence that the rb locus alters the starch content of developing pea embryos through an effect on ADP glucose pyrophosphorylase. Plant Physiol,1989, 89:1279-1284
    Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs. Plant Physiol,1995,107:673-677
    Smith A M, Denyer K, Matin C R. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol,1997,48:67-87
    Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genet,2007,39:623-630
    Tabata M, Hirabayashi H, Takeuchi Y, et al. Mapping of quantitative trait loci for the occurrence of white-back kernals associated with high temperature during the ripening period of rice(Oryza saliva L.). Breeding Sci,2007,57:47-52
    Tan Y F, Xing Y Z, Li J X, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet,2000,101:823-829
    Tashiro T, Ebata M. Studies on white-belly rice kernel Ⅶ. Jpn J Crop Sci,1980,49:482-488
    Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot,2004,55:2131-2145
    Tian R, Jiang G H, Shen L H, et al. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breed,2005,15:117-124
    Umemoto T, Yano M, Satoh H, et al. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet,2002,104:1-8
    Valdez H A, Busi M V, Wayllace N Z, et al. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry,2008,47: 3026-3032
    Wan X Y, Wan J M, Weng J F, et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet,2005,110:1334-1346
    Wanchana S, Toojinda T, Tragoonrung S, et al. Duplicated coding sequence in the waxy allele of tropical glutinous rice(Oryza sativa L.). Plant Sci,2003,165:1193-1199
    Wang E T, Wan J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genet,2008,40:137-141
    Wang L Q, Liu W J, Xu Y, et al. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet,2007,115:463-476
    Wang Y H, Ren Y L, Liu X, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J,2010,64:812-824
    Woo M K, Ham T H, Ji S H, et al. Inactivation of the UGPasel gene causes genic male sterility and endosperm chalkiness in rice(Oryza sativa L.). Plant J,2008,54:190-204
    Yamakawa H, Hirose T, Kuroda M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol,2007,144:258-277
    Yang S H, Cheng B Y, Wu J L, et al. Review and prospects on rice breeding and extension in China. Rice Science,2006,13:1-8
    Yoshida S, Ikegami M, Kuze J, et al. QTL analysis for plant and grain characters of sake-brewing rice using a doubled haploid population. Breeding Sci,2002,52:309-317
    Zhang X L, Myers A M, James M G. Mutations affecting starch synthase iii in Arabidopsis alter leaf starch structure and increase the rate of starch synthesisi. Plant Physiol,2005,138:663-674
    Zhong X H, Huang N R. Rice grain chalkiness is negatively correlated with root activity during grain filling. Rice Sci.2005,2:192-196
    Zhou L J, Chen L M, Jiang L, et al. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet,2009,118:581-590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700