用户名: 密码: 验证码:
羊草克隆整合对碱环境异质性的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
克隆植物是一个独特的植物类群,它广泛分布于几乎所有类型的生态系统中,并在许多生态系统如草原、湿地、森林中占据优势地位,在植被恢复中发挥着举足轻重的作用。在长期的进化过程中,克隆植物形成了有效利用异质性资源以及抵御各种局部胁迫的生态适应对策—克隆整合。羊草(Leymus chinensis (Trin.) Tzvel.)属于根茎型克隆植物,是松嫩碱化羊草草甸的优势种,也是植被恢复的主要牧草之一,但是对碱影响克隆整合的机制尚不十分清楚。该研究以羊草为研究对象,采用野外试验和室内模拟的方法,研究切断根茎、环境因素(模拟碱胁迫)和不同发育阶段(生根前和生根后)对克隆整合的影响,探讨不同碱环境异质性和植株不同发育阶段克隆整合的强度、方向和克隆整合耗益之间的权衡关系,进一步分析羊草对碱环境的克隆整合机制。主要结论如下:
     (1)异质性碱胁迫明显影响植物的克隆整合作用效果。在重度碱胁迫处理条件下,克隆整合发挥正向作用,未受碱胁迫的母株和遭受碱胁迫的子株之间发生明显的水分传递现象,母株对子株的水分整合提高了子株的防御能力,缓解了碱胁迫对子株的生理伤害,从而相应地提高了羊草的生物量。但在同质和低碱异质性处理下,克隆整合的这种帮助作用不明显,说明克隆整合的强度随碱异质性的增大而增大。克隆植物会根据碱生境条件作出应对策略,产生形态和生理上的可塑性反应,在羊草地下器官生物量分配格局的结果表明,羊草根、根茎和芽对克隆整合表现出不同的可塑性响应,克隆整合作用使得芽的存活数明显增加,根茎的伸长不明显和克隆整合并未使植物根重有所提高,甚至出现下降的趋势。通过对母株和子株生物量的分析得出,克隆整合虽然使母株生物量有所降低,但子株从中获得的益处远远大于母株的损耗,因此对母株和子株的组合来说克隆整合是有益的。克隆整合是根茎克隆植物抵御碱胁迫的重要适应对策。
     (2)同位素标记试验证明,克隆植物的母株通过连接的根茎向子株输送氮素,从而减缓了碱胁迫对子株的影响,克隆整合增加了子株的高度和地上地下生物量。在高碱胁迫下,子株的不同发育阶段对克隆整合的强度有一定的影响,母株向子株传输的氮营养在子株生根后比生根前有一定减少,但子株的营养供给主要依赖于母株。通过15N丰度的计算结果表明,母株对子株氮营养的贡献占80.5%,子株根对自己的贡献仅为19.5%。
     (3)碱化羊草草甸野外试验表明,切根对植物群落和土壤产生了明显的影响。植被密度、盖度和生物量呈先降低后升高的发展趋势,生物量在第二年达到最高,其中密度、盖度和生物量以切根深度10cm为最高。切根后土壤容重显著降低,其中0-10、10-20cm土层深度变化最明显。羊草作为根茎克隆植物,切断根茎后植株之间的克隆整合作用中止,导致羊草的适合度下降,生物量在第一年明显降低。随着时间的延长,切断根茎带来的消极作用慢慢减弱,羊草通过调节自身的可塑性反应适应新的环境,克隆分株加强了分蘖的速度而减少了对根茎空间扩展的资源投入,采取所谓“密集型”的发展策略。从切根改良羊草草甸的综合效果分析,一般切根深度控制在10-20cm较为适宜。
Clonal species are widely distributed in various ecosystems, as one of the unique group, it plays an important role in the vegetation restoration such as grassland, wetland and forest. During their long-term evolutionary processes, they may take the adaptive strategy-clonal integration to cope with the heterogeneous environments. Leymus chiensis (Trin.) Tzvel.(Poaceae) is a perennial rhizome clonal grass, and one of the main forage for vegetation recovery that often form monodominant stands in the L. chinensis meadow of the Songnen Plain. However, how alkalinity affects clonal integration of this species remained unknown. In this study, the clonal plant of L. chinensis was selected as our study materials, we had studied the clonal integration influences of severe rhizome and external environmental factors (soil alkalinities) and internal factors (developmental stage) on clonal plants, in the way of field investigation and simulation test, to determine the integration intensity, direction and benefits and costs under the combined effects of hetetogeneity alkalinities and plant age, to further analyze the mechanism of clonal integration on L. chinensis. Main conclusions are as follows:
     (1) Heterogeneity alkalinities would significantly affect the effects of clonal integtation on plants. Within the heavy heterogeneous alkalinities treatments, clonal integration had a positive effect on plant growth, reproduction and tolerance to alkalinities. Support from mother ramets in non-stressful habitats improved the biomass of daughter ramets in stressful conditions through a connecting rhizome on L. chinensis by water transportation. But it do not occur in homogeneous habitats or those with low heterogeneity. The results indicated that higher rates of clonal integration may be selected for in habitats with increased alkaline heterogeneity. Clonal integration affected the allocation pattern of below-ground organs, with the roots, rhizomes and buds of daughter ramets showing different responses to clonal integration. Under the heterogeneous high alkaline conditions in this study, the biomass allocation to buds markedly increased as did rhizome length, but these changes were not significant and had negative effects on roots. Cost-benefit analysis based on biomass measures showed that the mother ramet incurred a cost to enhance daughter ramet survival but clonal integration confers overall benefits to the entire clonal fragment. Therefore, clonal integration is an important adaptive strategy by which rhizomatous clonal plants can withstand local alkaline stress.
     (2) Our study has also found that the plant developmental stage is an important factor that affects the extent of clonal integration of L. chinensis, which has mother ramets that produce vegetative bulbils (clonal offspring) that pass through distinct pre-and post-rooting stages. The amount of15N translocated from mother to daughter ramets becoming increasing apparent in pre-rooting than post-rooting. In high alkaline environment, the nitrogen demands of the young ramets are supplied mainly from the mother ramets through clonal integration. The largest contribution portion of mother ramets applied was80.5%while that root of daughter ramets was19.5%.
     (3) The results of field test showed that cutting roots has a significant influence on community characteristics and soil nature. The total community coverage and density and biomass levels decreased firstly and increased subsequently, and the10cm cutting root depth was highest. This decline of production mainly because of clonal integration loss interconnect ramets. While the time was prolonged, the influence to weaken slowly. Cutting root significantly increased the soil bulk density and water moisture content. The number of tiller was significantly increased and had little effects on rhizome length. On the basis of comprehensive control on alkalinization L. chinensis meadow in Songnen Plain, the cutting root depth in the10-20cm more appropriate.
引文
Agrawal A A. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology, 2000,81(7):1804-1813.
    Agrawal A A, Strauss S Y and Stout M J. Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution,1999,53(4):1093-1104.
    Alpert P. Nitrogen Sharing among Ramets Increases Clonal Growth in Fragaria-Chiloensis. Ecology,1991, 72(1):69-80.
    Alpert P. Does clonal growth increase plant performance in natural community. Abstract botanica,1995,19: 11-16.
    Alpert P. Nutrient sharing in natural clonal fragments of Fragaria chiloensis. Journal of Ecology,1996,84(3): 395-406.
    Alpert P. Clonal integration in Fragaria chiloensis differs between populations:ramets from grassland are selfish. Oecologia,1999a,120(1):69-76.
    Alpert P. Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology,1999b, 141(1-2):99-106.
    Alpert P, Holzapfel C and Slominski C. Differences in performance between genotypes of Fragaria chiloensis with different degrees of resource sharing. Journal of Ecology,2003,91(1):27-35.
    Alpert P and Mooney H A. Resource Sharing among Ramets in the Clonal Herb, Fragaria-Chiloensis. Oecologia,1986,70(2):227-233.
    An S Q, Gu B H, Zhou C F, et al. Spartina invasion in China:implications for invasive species management and future research. Weed Research,2007,47(3):183-191.
    Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature,2004,431(7005):181-184.
    Birch C P D and Hutchings M J. Exploitation of Patchily Distributed Soil Resources by the Clonal Herb Glechoma-Hederacea. Journal of Ecology,1994,82(3):653-664.
    Bloom A J, Chapin F S and Mooney H A. Resource Limitation in Plants-an Economic Analogy. Annual Review of Ecology and Systematics,1985,16:363-392.
    Burdon JJ S R. Disease in plant communities. Appl Biol,1980,5:145-220.
    Cain M L. Pattern of solidago altissima growth and mortality:The role of below-ground ramet connection. Oecologia,1990,82:19-20.
    Campbell S A and Nishio J N. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. Journal of Plant Nutrition,2000,23(6):741-757.
    Caraco T and Kelly C K. On the Adaptive Value of Physiological Integration in Clonal Plants. Ecology,1991, 72(1):81-93.
    Chapman D F, Robson M J and Snaydon R W. The Influence of Leaf Position and Defoliation on the Assimilation and Translocation of Carbon in White Clover (Trifolium-Repens L).1. Carbon Distribution Patterns. Annals of Botany,1991,67(4):295-302.
    Charpentier A, Anand M and Bauch C T. Variable offspring size as an adaptation to environmental heterogeneity in a clonal plant species:integrating experimental and modelling approaches. Journal of Ecology,2012,100(1):184-195.
    Chen J, Lei N and Dong M. Clonal integration improves the tolerance of Carex praeclara to sand burial by compensatory response. Acta Oecologica,2010,36(1):23-28.
    Colvill K E and Marshall C. Tiller Dynamics and Assimilate Partitioning in Lolium-Perenne with Particular Reference to Flowering. Annals of Applied Biology,1984,104(3):543-557.
    Crowley P H, Stieha C R and McLetchie D N. Overgrowth competition, fragmentation and sex-ratio dynamics:a spatially explicit, sub-individual-based model. Journal of Theoretical Biology,2005, 233(1):25-42.
    Curran P J, Dungan J L and Gholz H L. Exploring the Relationship between Reflectance Red Edge and Chlorophyll Content in Slash Pine. Tree Physiology,1990,7(1-4):33-48.
    D'Hertefeldt T and Jonsdottir I S. Extensive physiological integration in intact clonal systems of Carex arenaria. Journal of Ecology,1999,87(2):258-264.
    D'Hertefeldt T and van der Putten W H. Physiological integration of the clonal plant Carex arenaria and its response to soil-borne pathogens. OIKOS,1998,81(2):229-237.
    de kroon H S F. Resource allocation pattern as a function of clonal morphology:a general model applied to foraging clonal plant. J of Ecol,1991,79:519-530.
    De Kroon H v G J. The Ecology and Evolution of Clonal Plants. Leiden:Backhuys Publisher,1997.
    De Kroon H, Visser E J W, Huber H, et al. A modular concept of plant foraging behaviour:the interplay between local responses and systemic control. Plant Cell and Environment,2009,32(6):704-712.
    de Kroon J H v G J. The ecology and evolution of conal plants. Leiden:Backhuys Publisher,1997.
    Degenhardt B, Gimmler H, Hose E, et al. Effect of alkaline and saline substrates on ABA contents, distribution and transport in plant roots. Plant and Soil,2000,225(1-2):83-94.
    deKroon H, Fransen B, vanRheenen J W A, et al. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia,1996,106(1):73-84.
    Dekroon H and Schieving F. Resource-Allocation Patterns as a Function of Clonal Morphology-a General-Model Applied to a Foraging Clonal Plant. Journal of Ecology,1991,79(2):519-530.
    Derner J D and Briske D D. An isotopic (N-15) assessment of intraclonal regulation in C-4 perennial grasses: ramet interdependence, independence or both? Journal of Ecology,1998,86(2):305-314.
    Dong M. Morphological Responses to Local Light Conditions in Clonal Herbs from Contrasting Habitats, and Their Modification Due to Physiological Integration. Oecologia,1995,101(3):282-288.
    Dorken M E and Barrett S C H. Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae):a clonal aquatic plant. Journal of Ecology,2004,92(1):32-44.
    Doust L L. Population-Dynamics and Local Specialization in a Clonal Perennial (Ranunculus-Repens).1. The Dynamics of Ramets in Contrasting Habitats. Journal of Ecology,1981,69(3):743-755.
    Doust L L and Doust J L. The Battle Strategies of Plants. New Scientist,1982,95(1313):81-84.
    Eriksson O J L. Hierarchical selection and risk spreading in clonal plants, clonal growth in plants:regulation and function,1990):79-94.
    Evans J P. Nitrogen translocation in a clonal dune perennial, Hydrocotyle bonariensis. Oecologia,1988,77(1): 64-68.
    Evans J P and Whitney S. Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle-bonariensis (Apiaceae). American Journal of Botany,1992,79(12):1344-1347.
    Foster B L and Tilman D. Seed limitation and the regulation of community structure in oak savanna grassland. Journal of Ecology,2003,91(6):999-1007.
    Friedman D and Alpert P. Reciprocal Transport between Ramets Increases Growth of Fragaria Chiloensis When Light and Nitrogen Occur in Separate Patches but Only If Patches Are Rich. Oecologia,1991, 86(1):76-80.
    Gao L, Li B, Liu W Y, et al. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes. Aquatic Botany,2013,107(0):47-53.
    Gomez S, Latzel V, Verhulst Y M, et al. Costs and benefits of induced resistance in a clonal plant network. Oecologia,2007,153(4):921-930.
    Hartnett D C and Bazzaz F A. Physiological Integration among Intraclonal Ramets in Solidago-Canadensis. Ecology,1983,64(4):779-788.
    He Y T, Qi Y C, Dong Y S, et al. Effects of Nitrogen Fertilization on Soil Microbial Biomass and Community Functional Diversity in Temperate Grassland in Inner Mongolia, China. Clean-Soil Air Water,2013, 41(12):1216-1221.
    Herben T. Physiological integration affects growth form and competitive ability in clonal plants. Evolutionary Ecology,2004,18(5-6):493-520.
    Hester M W, McKee K L, Burdick D M, et al. CLONAL INTEGRATION IN SPARTINA PATENS ACROSS A NITROGEN AND SALINITY GRADIENT. Canadian Journal of Botany-Revue Canadienne De Botanique,1994,72(6):767-770.
    Horton J L and Hart S C. Hydraulic lift:a potentially important ecosystem process. Trends in Ecology & Evolution,1998,13(6):232-235.
    Huber-Sannwald E, Pyke D A, Caldwell M M, et al. Effects of nutrient patches and root systems on the clonal plasticity of a rhizomatous grass. Ecology,1998,79(7):2267-2280.
    Humphrey L D and Pyke D A. Clonal foraging in perennial wheatgrasses:a strategy for exploiting patchy soil nutrients. Journal of Ecology,1997,85(5):601-610.
    Hutchings M. Clonal plants as cooperative systems:benefits in heterogeneous environments. Plant Species Biology,1999,14(1):1-10.
    Hutchings M J and Bradbury I K. Ecological Perspectives on Clonal Perennial Herbs. Bioscience,1986, 36(3):178-182.
    Hutchings M J, John E A and Wijesinghe D K. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology,2003,84(9):2322-2334.
    Hutchings M J and Wijesinghe D K. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology & Evolution,1997,12(10):390-394.
    Ikegami M, Whigham D and Werger M A. Responses of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A. gray. Plant Ecology,2007,189(2):247-259.
    Jackson R B and Caldwell M M. Integrating resource heterogeneity and plant plasticity:Modelling nitrate and phosphate uptake in a patchy soil environment. Journal of Ecology,1996,84(6):891-903.
    Jonsdottir I S and Callaghan T V. Intraclonal translocation of ammonium and nitrate nitrogen in carex big below torrex schwein using N-15 and nitrate reductase assays. New Phytologist,1990,114(3): 419-428.
    Jonsdottir I S and Watson M A. Extensive physiological integration:an adaptive trait in resource-poor environments?,1997.
    Joy K W. Translocation in Sugar-Beet.I. Assimilation of 14co2 + Distribution of Materials from Leaves. Journal of Experimental Botany,1964,15(45):485-&.
    Kemball W D and Marshall C. The Significance of Nodal Rooting in Trifolium-Repens L-P-32 Distribution and Local Growth-Responses. New Phytologist,1994,127(1):83-91.
    Klimes L K J, Hendriks R & van Groenendael J. The ecology and evolution of clonal plants. Leiden: Backbuys Publishers,1997.
    Koivunen S, Saikkonen K, Vuorisalo T, et al. Heavy metals modify costs of reproduction and clonal growth in the stoloniferous herb Potentilla anserina. Evolutionary Ecology,2004,18(5-6):541-561,
    Li D and Takahashi S. Particularities of clonal plant species induced by physiological integration. Grassland Science,2003,49(4):395-402.
    Li D T S, Zhu T. effects of soil nitrogen availability and clonal integration on the branching behaviors of zoysia japonica. Acta Pratacult Sin,2006,15(5):135-146.
    Li Q, Liu X, Yue M, et al. Response of physiological integration in Trifolium repens to heterogeneity of UV-B radiation. Flora - Morphology, Distribution, Functional Ecology of Plants,2011,206(8): 712-719.
    Liu H, Yu F, He W, et al. Clonal integration improves compensatory growth in heavily grazed ramet populations of two inland-dune grasses. Flora,2009,204(4):298-305.
    Liu J, Guo W Q and Shi D C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica,2010,48(2):278-286.
    Lu P, Sang W G and Ma K P. Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive Eupatorium species in China. Journal of Integrative Plant Biology, 2008,50(4):393-401.
    Lv B S, Li X W, Ma H Y, et al. Differences in growth and physiology of rice in response to different saline-alkaline stress factors. Agronomy Journal,2013,105(4):1119-1128.
    Marshall C. Source-sink relation of interconnected ramets [M]. In:van Groenendael J. de Kroon H eds. Clonal growth in plants:regulation and function [M]. The Hague:SPB Academic Publishing,1990): 23-42.
    Marshall C S G R. The distribution of assimilates in lolium multi florum multi florum Lam. following differential tiller defoliation. Annuals of Botany,1968,29:365-370.
    Matlaga D P and Sternberg L D L. Ephemeral clonal integration in Calathea marantifolia (Marantaceae): evidence of diminished integration over time. American Journal of Botany,2009,96(2):431-438.
    Mclellan A J, Prati D and Kaltz,O. Structure and analysis of phenotypic and genetic variation in clonal plants
    Ltiden:Backhuys,1997,185-210.
    Mueller K E, Hobbie S E, Tilman D, et al. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Global Change Biology,2013,19(4): 1249-1261.
    Noble J C and Marshall C. The Population Biology of Plants with Clonal Growth.2. The Nutrient Strategy and Modular Physiology of Carex-Arenaria. Journal of Ecology,1983,71(3):865-877.
    Oborny B, Czaran T and Kun A. Exploration and exploitation of resource patches by clonal growth:a spatial model on the effect of transport between modules. Ecological Modelling,2001,141(1-3):151-169.
    Oborny B and Kun A. Fragmentation of clones:how does it influence dispersal and competitive ability? Evolutionary Ecology,2001,15(4-6):319-346.
    Oborny B and Kun A. Fragmentation of clones:How does it influence dispersal and competitive ability? Evolutionary Ecology,2002,15:319-346.
    Oborny B, Kun A, Czaran T, et al. The effect of clonal integration on plant competition for mosaic habitat space. Ecology,2000,81(12):3291-3304.
    Ong C K C K, Marshall C. Assimilation of 14-co2 by the inflorescence of Poa annua L. and Lolium pererne L. Ann Bot,1978,42:855-862.
    Outridge P M and Hutchinson T C. Induction of Cadmium Tolerance by Acclimation Transferred between Ramets of the Clonal Fern Salvinia-Minima Baker. New Phytologist,1991,117(4):597-605.
    Pennings S C and Callaway R M. The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology,2000,81(3):709-716.
    Penuelas J and Filella I. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environmental and Experimental Botany, 2003,49(3):201-208.
    Peterson A G and Chesson P. Short-term fitness benefits of physiological integration in the clonal herb Hydrocotyle peduncularis. Austral Ecology,2002,27(6):647-657.
    Pitelka LF A J. Physiology and integration of ramets in clonal plants. New Haven,1985,399-436.
    Prado P, Collier C J and Lavery P S. C-13 and N-15 translocation within and among shoots in two Posidonia species from Western Australia. Marine Ecology Progress Series,2008,361:69-82.
    Price E A C, Marshall C and Hutchings M J. Studies of Growth in the Clonal Herb Glechoma-Hederacea.1. Patterns of Physiological Integration. Journal of Ecology,1992,80(1):25-38.
    Roiloa S R and Retuerto R. Presence of developing ramets of Fragaria vesca L. increases photochemical efficiency in parent ramets. International Journal of Plant Sciences,2005,166(5):795-803.
    Roiloa S R and Retuerto R. Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Functional Plant Biology,2006a,33(10):961-971.
    Roiloa S R and Retuerto R. Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca. physiologia Plantarum,2006b,128(4):662-676.
    Roiloa S R and Retuerto R. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Annals of Botany,2006c,98(5):1043-1052.
    Roiloa S R and Retuerto R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany,2007,61(1):1-9.
    Saitoh T, Seiwa K and Nishiwaki A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata:An isotopic (N-15) assessment. Annals of Botany,2006,98(3):657-663.
    Salzman A G and Parker M A. Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia,1985,65(2):273-277.
    Schmid B and Bazzaz F A. Clonal Integration and Population-Structure in Perennials-Effects of Severing Rhizome Connections. Ecology,1987,68(6):2016-2022.
    Schmid B and Bazzaz F A. Growth-Responses of Rhizomatous Plants to Fertilizer Application and Interference. OIKOS,1992,65(1):13-24.
    Scholefield D and Oenema O. Nutrient Cycling Within Temperate Agricultural Grasslands In. Proceedings of the 1999 18th International Grassland Congress. Canada,1999.
    Shumway S W. Physiological Integration among Clonal Ramets during Invasion of Disturbance Patches in a New-England Salt-Marsh. Annals of Botany,1995,76(3):225-233.
    Silvertown J W. Introduction to plant population (third edition). New York,1993.
    Slade A J and Hutchings M J. Clonal integration and plasticity in foraging behavior in Glechoma-hederacea. Journal of Ecology,1987a,75(4):1023-1036.
    Slade A J and Hutchings M J. The Effects of Light-Intensity on Foraging in the Clonal Herb Glechoma-Hederacea. Journal of Ecology,1987b,75(3):639-650.
    Slade A J and Hutchings M J. The Effects of Nutrient Availability on Foraging in the Clonal Herb Glechoma-Hederacea. Journal of Ecology,1987c,75(1):95-112.
    Song M H and Dong M. Clonal plants and plant species diversity in wetland ecosystems in China. Journal of Vegetation Science,2002,13(2):237-244.
    Soyrinke N. Studies on generative and vegetative reproduction of seed plants in the alpine vegetation of petsamo lapplands. Auunal botanici societatis zoologicae botanicae fennicae "vanamo",1938,11: 1-311.
    Stehlik I and Holderegger R. Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. Journal of Ecology,2000,88(3):424-435.
    Stuefer J F. Two types of division of labour in clonal plants:benefits, costs and constraints. Perspectives in Plant Ecology, Evolution and Systematics,1998,1(1):47-60.
    Stuefer J F, DeKroon H and During H J. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology,1996,10(3):328-334.
    Stuefer JF D H, de Kroon H. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology,1994,82:511-518.
    Stuefer J F and Hutchings M J. Environmental Heterogeneity and Clonal Growth-a Study of the Capacity for Reciprocal Translocation in Glechoma-Hederacea L, Oecologia,1994,100(3):302-308.
    Tang C, Robson A D, Longnecker N E, et al. The Growth of Lupinus Species on Alkaline Soils. Australian Journal of Agricultural Research,1995,46(1):255-268.
    Teng X H H R M, Wu Y N. Research progress for fragmentation, spatial genetic structure of clonal plant. NE. Agr.Univ,2011,42:8-14.
    Thomas R G. The structure of the mature plant. Wallingford:Oxon:CAB International,1987,1-29.
    Tietema T and Vanderaa F. Ecophysiology of the Sand Sedge, Carex-Arenaria L.3. Xylem Translocation and the Occurrence of Patches of Vigorous Growth within the Continuum of a Rhizomatous Plant-System. Acta Botanica Neerlandica,1981,30(3):183-189.
    Torok P, Miglecz T, Valko O, et al. Fast restoration of grassland vegetation by a combination of seed mixture sowing and low-diversity hay transfer. Ecological Engineering,2012,44:133-138.
    Tworkoski T J, Benassi T E and Takeda F. The effect of nitrogen on stolon and ramet growth in four-genotypes of Fragaria chiloensis L. Scientia Horticulturae,2001,88(2):97-106.
    Van Kleunen M, Fischer M and Schmid B. Clonal integration in Ranunculus reptans:by-product or adaptation? Journal of Evolutionary Biology,2000,13(2):237-248.
    van Kleunen M and Stuefer J F. Quantifying the effects of reciprocal assimilate and water translocation in a clonal plant by the use of steam-girdling. OIKOS,1999,85(1):135-145.
    Vorontzova L I and Zaugolnova L B. Population biology of steppe plants. WSL,1985):143-178.
    Wang N, Yu F H, Li P X, et al. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biology, 2009,11(3):483-489.
    Wang Z, Li L, Han X, et al. Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level? Acta Oecologica,2004,26(3):255-260.
    Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota. Science,2004,304(5677):1629-1633.
    Watson M A. Integrated Physiological Units in Plants. Trends in Ecology & Evolution,1986,1(5):119-123.
    Watson M A and Casper B B. Morphogenetic Constraints on Patterns of Carbon Distribution in Plants. Annual Review of Ecology and Systematics,1984,15:233-258.
    Welker J M, Briske D D and Weaver R W. Nitrogen-15 partitioning within a three generation tiller sequence of the bunchgrass Schizachyrium scoparium:response to selective defoliation. Oecologia,1987, 74(3):330-334.
    wilhalm T A. A comparative study of clonal fragmentation in tussock forming grass, Clonality in plant communities, proceedings of the 4th International workshop on clonal plants. Abstracts Botanica, 1996):19.
    Xiao Y, Tang J, Qing H, et al. Effects of salinity and clonal integration on growth and sexual reproduction of the invasive grass Spartina alterniflora. Flora,2011,206(8):736-741.
    Xiao Y, Tang J B, Qing H, et al. Clonal integration enhances flood tolerance of Spartina alterniflora daughter ramets. Aquatic Botany,2010,92(1):9-13.
    Yichun X, Zongyao S and Yongfei B. Classifying historical remotely sensed imagery using a tempo-spatial feature evolution (T-SFE) model. Isprs Journal of Photogrammetry and Remote Sensing,2010, 65(2):182-90.
    Yu F H, Chen Y F and Dong M. Clonal integration enhances survival and performance of Potentilla anserina, suffering from partial sand burial on Ordos plateau, China. Evolutionary Ecology,2001,15(4-6): 303-318.
    Yu F H and Dong M. Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the stoloniferous herb Halerpestes ruthenica. Acta Botanica Sinica,2003,45(4): 408-416.
    Yu F H, Dong M and Krusi B. Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist,2004,162(3):697-704.
    Yu F H, Dong M and Zhang C Y. Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Botanica Sinica,2002,44(4): 468-473.
    Zhang C Y, Yang C and Dong M. Clonal integration and its ecological significance in Hedysarum laeve, a rhizomatous shrub in Mu Us Sandland. Journal of Plant Research,2002,115(1118):113-118.
    Zhang X Q, Liu J, Welham C V J, et al. The effects of clonal integration on morphological plasticity and placement of daughter ramets in Black locust (Robinia pseudoacacia). Flora,2006,201(7):547-554.
    Zhu M J, Ren A Z, Wen W, et al. Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China. Ferns Microbiology Letters,2013,340(2):135-145.
    Zhu T C, Li, J.D., Yang, D.C.,. A Study of the Ecology of Yang-cao (Leymus chinensis) Grassland in Northern China. Proc XIV InternGrassl Congre,1981):429-431.
    于飞海.克隆植物对异质性环境的生态适应对策.中国科学院研究生院(植物研究所),2002.
    尤泳,王德成,王光辉,等.破土切根对退化羊草草地土壤理化特性的影响.农区草业论坛.中国福建厦门,2008,7.
    王春裕.刍议土壤盐渍化的生态防治.生态学杂志,1976,16(6):67-71.
    王昱生.关于无性系植物种群整合作用(Integration)研究的现状及其应用前景.生态学杂志,1994,(02):57-60.
    王昱生,李景信.羊草种群无性系生长格局的研究.植物生态学与地植物学学报,1992,(03):234-242.
    王昱生,洪锐民,黄大明,等.羊草种群克隆分株之间光合产物的转移.生态学报,2004,(05):900-907.
    王娓,郭继勋,张保田.东北松嫩草地羊草群落环境因素与凋落物分解季节动态.草业学报,2003,(01):47-52.
    王殿才,郑金艳,李凤兰.松土补播改良退化草场试验研究.畜牧兽医科技信息,2009,(12):98.
    王艳红,王珂,邢福.匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展.生态学杂志,2005,(01):70-74.
    王长爱,李德志,朱志玲.克隆植物生理整合作用的研究方法及其应用.应用与环境生物学报,2006,(04):581-588.
    司振江.盐碱化草原农业改良技术及水盐运动规律研究.东北农业大学,2010.
    何文兴,杨志荣,曹毅,等.川西北高寒沙区切断根茎对赖草和沙生苔草克隆生长的影响.生态学杂志,2005,(06):607-612.
    宋承先.现代西方经济学(微观经济学部分).上海:复旦大学,1988,202-207.
    宋明华,董鸣,蒋高明,等.东北样带上的克隆植物及其重要性与环境的关系.生态学报,2001,(07):1095-1103.
    李本银,汪金舫,赵世杰,等.施肥对退化草地土壤肥力、牧草群落结构及生物量的影响.中国草地,2004,(01):15-18.
    李建东,杨允菲.松嫩平原植物群落时空变化及数据库.北京:科学出版社,2011.
    李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理.科学出版社,1997:224-225.
    李楠,宋建国,刘伟,等.草原施肥对羊草产量和质量的影响.草原与草坪,2001,(03):38-41.
    周脉廉.植物的根.生物学通报,1985,(07):36.
    姚支春.人工苜蓿草地浅耕改良效果的观察.草与畜杂志,1992,(01):13-15.
    柯世朕,李德志,范旭丽,等.克隆植物中的劳动分工及其生态学效应.热带亚热带植物学报,2008,(06):586-594.
    段显德,季长波,陆静梅.盐胁迫下羊草的生理适应性及结构适应性研究.通化师范学院学报,2003,(02):26-29.
    徐万宝.草地改良机械化新技术浅谈.中国草原,1988,(01):64-68.
    祝廷成.羊草生物生态学.吉林:吉林科技出版社,2004.
    袁有福.重耙松土改良退化羊草草场的研究.中国草原,1984,(04):18-22.
    郗金标,邢尚军,张建锋,等.几种重盐碱地土壤改良利用模式的比较.东北林业大学学报,2003,(06):99-101.
    盛丽娟,李德志,朱志玲,等.克隆植物的碳素生理整合及其生态学效应.应用与环境生物学报,2007,(06):888-894.
    郭继勋,姜世成,孙刚.松嫩平原盐碱化草地治理方法的比较研究.应用生态学报,1998,(04):90-93.
    郭继勋,祝廷成.羊草草原枯枝落叶积累的研究——自然状态下枯枝落叶的积累及放牧、割草对积累量的影响.生态学报,1994,(03):255-259.
    慈龙骏.中国的荒漠化及其防治.北京:高等教育出版社,2005.
    董鸣.异质性生境中的植物克隆生长:风险分摊.植物生态学报,1996,(06):543-548.
    董鸣.切断根茎对根茎禾草沙鞭和赖草克隆生长的影响.植物学报,1999,(02):194-198.
    乌仁其其格,闫瑞瑞,辛晓平,等.切根改良对退化草地羊草群落的影响.内蒙古农业大学学报(自然科学版),2011,(04):55-58.
    乌恩旗,张国昌,刘春晓.羊草草原改良措施与效果.草地学报,2001,(04):290-295.
    刘富俊,黎云祥,廖咏梅,等.异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响.植物生态学报,2011,(08):864-871.
    刘兴土.松嫩平原退化土地整治与农业发展.北京:科学出版社,2001.
    刘凤红.克隆整合与植物对沙地生境的适应——毛乌素沙地的案例.中国科学院植物研究所,2007.
    卢文喜,马洪云,杨忠平.吉林西部退化草地不同修复措施的效果分析.云南农业大学学报,2005,(01):111-113.
    叶学华.植物克隆性在生态修复中的意义.中国科学院研究生院(植物研究所),2006.
    吕志男.几种典型根茎型植物繁殖特性的研究.内蒙古农业大学,2010.
    吴亚坤,周连仁,杨劲松.堆肥对苏打草甸碱土植被重建的影响.土壤,2007,(05):801-805.
    宝音陶格涛.不同改良措施下退化羊草(Leymus chinensis)草原群落恢复演替规律研究.内蒙古大学,2009.
    宝音陶格涛,王静.退化羊草草原在浅耕翻处理后植物多样性动态研究.中国沙漠,2006,(02):232-237.
    张云霞,邓培渊.茎的分枝方式新见.郑州师范教育,2012,(04):57-59.
    张丽丽,董鸣,李仁强,等.土壤养分斑块对比度改变活血丹克隆整合强度和方向.植物生态学报,2007,(04):619-624.
    张济民,王振堂.东北羊草草原碱斑消长与植被演替关系的初步研究.东北师大学报(自然科学版),1989,(01):97-103.
    张称意,杨持,董鸣.根茎半灌木羊柴对光合同化物的克隆整合.生态学报,2001,(12):1986-1993.
    杨慧玲,薛瑞丽,叶永忠,等.克隆整合对无芒雀麦在异质性盐分环境中存活和生长的影响.生态学报,2009,(06):2827-2834.
    杨丽娜,宝音陶格涛.不同改良措施对退化羊草(Leymus chinensis)草原的影响.中国沙漠,2008,(02):312-317.
    汤俊兵,肖燕,安树青.根茎克隆植物生态学研究进展.生态学报,2010,(11):3028-3036.
    聂素梅,王育青,杨志伟.浅耕翻改良退化草场的技术.中国草地,1991,(04):31-34.
    赵明清,陈一昊,任宪涛.退化羊草草场松耙施肥补播效果研究.现代农业科技,2013,(02):273-276.
    邹元春,吕宪国,姜明.湿地克隆植物根茎对变境适应的表型可塑性.湿地科学,2007,5(4):305-310.
    闫志坚,陈敏,安渊,等.大针茅+羊草退化草场改良技术的研究.中国草地,2002,(03):8-15.
    陈玉福,董鸣.毛乌素沙地景观的植被与土壤特征空间格局及其相关分析.植物生态学报,2001,(03):265-269.
    陈玉福,董鸣.毛乌素沙地群落动态中克隆和非克隆植物作用的比较.植物生态学报,2002,(03):377-380.
    韩贵清,王顺明,王玉林,等.天然草场培育改良措施的对比试验.黑龙江畜牧兽医,1990,(02):20-21.
    颜宏,赵伟,尹尚军,等.羊草对不同盐碱胁迫的生理响应.草业学报,2006,(06):49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700