用户名: 密码: 验证码:
气流分配式牧草播种机关键部件优化与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牧草种子特殊的生长特性和物理特性,以及草地土壤状况有别于大田作物土壤状况,国内现有播种机对牧草种子播种适应性较差。针对这一问题,论文根据牧草种子播种工艺流程,对气流分配式牧草播种机的总体布局、功能结构、电子监测系统和关键部件的主要技术参数进行了设计与优化,并进行了不同牧草种子的播种试验验证。
     主要研究内容如下:
     1)通过对牧草种子主要物理特性的系统分析,设计了一种中央外槽轮装置集中向分配器供料的排种机构,可以根据不同种子类型,精确控制排种量,克服了传统独立式外槽轮排种器播牧草种子时,稳定性差、堵塞、架空等问题。
     2)设计了单体仿形多连杆开沟镇压机构,应用Adams分析软件,对其进行了运动学分析以及仿真模拟,设计出与机架铰接的平行四连杆-拉簧结构,保证了开沟器在不平整地面保持最佳入土角,提升了开沟器作业质量;开沟深度由开沟器弹簧来精确控制,每组开沟器都有独立的安全拉簧,通过对开沟器弹簧的设计,得出选用材料为油淬火碳素弹簧钢丝B类,钢丝直径d=8mm,圈数n=241/4圈,中径D=41.7mm。
     3)为了保证均匀一致的破茬深度,设计了装有独立安全大压簧的波纹圆盘破茬器,通过对破茬器压力弹簧的设计,得出选用材料油淬火碳素弹簧钢丝B类,钢丝直径d=15mm,圈数n=14圈,中径D=60mm;通过磨损试验和扫描电镜(SEM)分析,对不同材料常用波纹圆盘破茬刀进行组织性能分析和耐磨性评价,结果显示,65Mn钢在磨损过程中发生形变诱导相变,而被加工硬化,提高其耐磨性。
     4)利用Ansys软件对整机机架进行有限元分析,在不增加重量的前提下,进行了结构优化,提高了整机强度和刚度。
     5)完成了播种机测控系统的设计,对风机转速、工作速度、播种面积等参数的采集分析,实现对播种机工作状态的监控。
     6)完成了气流分配式牧草播种机性能试验和生产试验。结果表明,开沟深度和宽度测定结果全部合格;浅松深度稳定性测定结果全部合格;浅松层膨松度为63%;滑移率为3.7%;各行排量一致性变异系数分别为:苜蓿3.41%,披碱草6.04%;总排量稳定性变异系数分别为:苜蓿1.6%,披碱草3.77%;苜蓿破碎率0.92%,披碱草破碎率1.61%,以上数据均达到国家标准要求。
Growth characteristics and physical properties of forage seeds are specific. The grassland soil conditions are different from crops to crops. The existing domestic seeders have low adaptability for forage seed. According to the forage seed sowing process, it this paper, the following parts of the seeder were designed and optimized:the air distributing type forage seeder's overall layout, functional structure, electronic monitoring systemsk, and the main technical parameters of critical components, respectively.
     The main contents of this study are as follows:
     1) Through the system analysis of the forage seed's main physical characteristics, a kind of seeding mechanism which concentrately fed to the distributor through central outer sheave was designed. The seeding mechanism can control the amount of the different types of the seeds precisely. It can overcome the problems of poor stability, congestion, overhead and other issues unlike the old stand-alone outside sheave seeder sowing forage seed.
     2) A single profiling multi-link ditching repressive mechanism was designed and analyzed by ADAMS analysis software. A parallelogram linkage-Tension spring structure hinged with rack was designed to maintain optimum buried angle and enhance the quality of opener operations. Opener depth was precisely controlled by the opener spring. Each group opener had its own security extension spring. The oil carbon spring steel hardened class B was chosen through designing the opener spring, its wire diameter was8mm, the number of turns was24.25circles, the pitch diameter D was41.7mm.
     3) In order to ensure a uniform depth of broking stubble, a corrugated disc stubble broking device equipped with a large independent safety spring was designed. The oil carbon spring steel hardened class B was chosen through designing the opener spring, its wire diameter was15mm, the number of turns was14circles, the pitch diameter D was60mm. Through the abrasion test and SEM analysis, the analysis of microstructure and properties and the abrasive resistance evaluation of the common corrugated disc breaking stubble knife with different materials were studied:The results showed that65Mn steel occurred deformation and was work-hardened to improve the wear resistance.
     4) The finite element of the machine frame was analyzed by using ANSYS software. The structure was optimized to improve the overall strength and stiffness without increasing the weight.
     5) The design of the seeder monitoring system was completed, and the parameters of the fan speed, working speed, plantings to monitor the planter working condition were collected and analyzed.
     6) The air distributing forage seeder performance experiment and production experiment were completed. The results showed that the measurement results of depth and width of opener were qualified. The measurement results of loose shallow depths of stability were qualified, loose shallow layer bulkiness was63%; slip rate was3.7%; each line displacement consistency variation coefficients of Alfalfa and Elymus were3.41%and6.04%, respectively. Total displacement stability variation coefficients were of Alfalfa and Elymus were1.6%and3.77%, respectively. The broken rate of Alfalfa seed was0.92%and the Elymus was1.61%.
引文
[1]贾玉斌.尽快发展我国牧草种子收获和加工机具[J].农村牧区机械化,2001(4):14.
    [2]徐万宝.草地生产机械化[M].呼和浩特:内蒙古人民出版社.2002,43-83.
    [3]徐万宝,郭跃.德国的草地改良技术考察见闻[J].畜牧业机械化,2002,2:12.
    [4]徐万宝,常全伍.三种草地改良机械化工艺的分析[J].中国农业机械化论坛,2002,1:111.
    [5]杜玉珍,许毅红,赵钢.天然草地改良效果的研究[J].黑龙江畜牧兽医,2004,8:59.
    [6]李进.对西部生态环境建设的思考[J].现代商贸工业,2008,20(3):88-89.
    [7]侯元香,罗德.退耕还林工程在改善西部生态环境的作用分析[J].防护林科技,2008(3):47-49.
    [8]马志广,陈敏.草地改良理论、方法和趋势[J].中国草地,1994, (4):63-66
    [9]石凡涛,马久,边林泉,等.天然草地改良方法及工艺[J].青海畜牧业,2004,(1):9-11.
    [10]徐万宝,联华,张春友.我国草地改良机械的研究与发展[J].中国草地,1997,(2):71-75.
    [11]李良臣,柯建武,呼和.盐碱化草牧场改良试验报告[J].内蒙古草业,2003,15(4):36-37.
    [12]闫志坚,陈敏,安渊,等.大针茅+羊草退化草场改良技术的研究[J].中国草地,2002,2(3):7-14.
    [13]陈自胜,赵明清,孙中心.羊草草地松土施肥效果的研究[J].中国草地,1992,(2):28-32
    [14]李绍良,陈有君,关世英,等.土壤退化与草地退化关系的研究[J].干旱区资源与环境,2002,16(1):92-95
    [15]阎志坚,王育青,安渊.北方半干旱区弃耕地草场补播技术[J].中国草地,1999,(5):19-24.
    [16]韩建国,李鸿祥,马春晖,等.施肥对草木樨生产性能的影响[J].草业学报,2000,9(1):15-26.
    [17]徐双才,黄琦,吴应松,等.不同钙镁磷肥用量对混播放牧草地的影响[J].草地科学,2000,17:13-17.
    [18]胥晓刚,张新全,吴彦奇.我国草坪草引种选育若干问题的探讨[J].中国草地,1999,(1):57-61.
    [19]李军芳.浅谈草原改良机械化技术[J].青海农技推广,2001,3:52.
    [20]苏日娜,岳军,魏君泽,等.草地免耕松播技术试验[J].中国草地,2005,27(2):77-80.
    [21]王宇峰.对赤峰市机械化草原改良技术的探讨[J].农村牧区机械化,2000,1:12-13.
    [22]苏日娜.牧草免耕补播机关键作业指标及其影响因素[J].农机质量与监督,2006,(1):32-33.
    [23]蒋德明,贺山峰,曹成有,等.翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响[J].中国草地学报.2006,28(4):18-23.
    [24]卜繁超,姚文军.天然草地机械化补播改良技术及配套机具[J].2002,(5):10-12.
    [25]徐萌生.草原改良刍议[J].农业机械学报,1990,5:100-102.
    [26]李新贵,周振江,张春华.草甸草原机械改良[J].黑龙江畜牧兽医,1995,1:19-21.
    [27]阿布利孜.草原改良机械化现状与发展特点[J].新疆农机化,2001,4:37-39.
    [28]Burgess, C.P, Chapman, R, Singleton, P.L, Thom, E.R. Shallow mechanical loosening of a soil under dairy cattle grazing:effects on soil and pasture[J]. New Zealand Journal of Agricultural Research.2000,43 (2):279-290.
    [29]Luten, W, Roozeboom, L., Klooster, J.J. The effect of sowing depth and compaction on the development of perennial ryegrass[J]. Bedrijfsontwikkeling.1976,7 (3):175-178.
    [30]Carter, M.R., Kunelius, H.T. Influence of non-inversion loosening on permanent pasture productivity[J]. Canadian Journal of Soil Science.1998,78 (1):37-239.
    [31]Harrison, D.F., Cameron, K.C., McLaren, R.G. Effects of subsoil loosening on soil physical properties, plant root growth, and pasture yield[J]. New Zealand Journal of Agricultural Research.1994,37 (4):559-567.
    [32]Novak J. Evaluating no-tillage reseeding compared to other technologies of grassland management[J]. Acta-Fytotechnica (Slovakia).1997, (52):83-89.
    [33]W.L.Lowther, R.F.Horrell, W.J.Fraser. Effectiveness of a strip seeder direct drill for pasture establishment[J].Soil & Tillage Research,1996, (36):161-174.
    [34]王振华,李中华.新型气力输送式免耕播种机的排种性能分析[c].中国农业机械学会2008年学术年会论文集,2008:113-115.
    [35]Visalakshi, M. Sireesha, A. Performance of drum seeder in direct sown paddy under puddled condition. Journal of Research ANGRAU; 2013.41(2):16-20.
    [36]Jiang Kai Zhang Qian Wang Xiu. Design and test on self-cleaning seeding head for mechanism suction. Transactions of the Chinese Society of Agricultural Engineering; 2013.29(20):18-23.
    [37]Chen ShuFa Zhang ShiPing Chen JinSong Li YaoMing. Design and experiment on the curtain-fall and narrow air-suction board precision seeder for tray raising seedlings. Journal of Yunnan Agricultural University; 2012.27(6):893-898.
    [38]D. Karayel, Z.B. Barut, A.Ozmerzi. Mathematical Modelling of Vacuum Pressure on a Precision Seeder[J]. Biosystems Engineering,2004,87 (4),437-444.
    [39]Walsh R F. Manually operable grass seeder:U.S. Patent 4,206,714[P].1980-6-10.
    [40]Wales N S. SOD SEEDERS:U.S. Patent 3,633,522[P].1972.
    t41] Goulter V H. SEED SOWER OR OTHER DISTRIBUTING DEVICE:U.S. Patent 3,482,735[P]. 1969-12-9.
    [42]Dobson A J, Dobson G M, Zerner D T. Seed sower having apertured pick-up member:U.S. Patent 4,239,126[P].1980-12-16.
    [43]Pogue G E. Aerator and seeder for untilled pasture land:U.S. Patent 5,611,291 [P].1997-3-18.
    [44]侯敏杰,侯敏莉,冯爱莲.9MB-2.4型牧草播种机的特点分析[J].农村牧区机械化,2003,02:23-24.
    [45]高海棠.滚筒式牧草播种机设计中需要注意的几个方面[J].农机使用与维修,2006,04:46.
    [46]赵德金,崔永汉,朴香兰.精密排种器检测装置的现状与发展趋势[J].农机化研究,2006,07:5-7.
    [47]丁元法,肖继军,张晓辉.精密播种机的现状与发展趋势[J].山东农机,2001,06:3-5.
    [48]王景立.精密播种机覆土与镇压过程对种子触土后位置控制的研究[D].吉林大学,2012.
    [49]吴玉枫.免耕牧草播种机[J].国外畜牧学.草原与牧草,1985,06:43.
    [50]张学林.牧草免耕播种机械设计与试验研究[J].农机使用与维修,2012,05:39-40.
    [51]杨松华,孙裕晶,马成林,赵慧玲.气力轮式精密排种器参数优化[J].农业工程学报,2008,02:116-120.
    [52]赵希范,张忠银,王松英,罗景德,李长军.气力牧草播种机[J].现代化农业,1998,07:34.
    [53]张红卫.小颗粒作物播种机的研究设计[J].农业机械,2005,07:118.
    [54]M. Anantachara, Prasanna G.V. Kumarb, T. Guruswamya.Neural network prediction of performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters[J]. Computers and Electronics in Agriculture,2010,72,87-98.
    [55]王冶.亚麻牧草播种机:中国,200420018340.9[P].2005-01-19.
    [56]中国农业大学.一种自走式牧草小区播种作业机械:中国,201120286067.8[P].2012-05-20
    [57]甘肃农业大学.小硬实种子无级精量条播机:中国,201210275587.8[P].2012-11-07
    [58]内蒙古农业大学机械厂.气吸式免耕播种机:中国201220479950.3[P].2013-04-10
    [59]中国农业机械化科学研究院海拉尔试验站.一种牧草直播机:中国,CN200420013286.9[P].2006-05-24
    [60]王志强,初尔庄,冯爱莲等.9MSB—2.1型牧草免耕松土补播机的研究与应用[J].农村牧区机械化,2002(04):47-48.
    [61]侯敏杰,侯敏莉,冯爱莲.9MB-2.4型牧草播种机的特点分析[J].农村牧区机械化,2003(02):23-24.
    [62]陶桂香,衣淑娟,2BMY-5型牧草免耕播种与液体施肥机的研制[M].中国上海,2010:5.
    [63]刘立晶,刘昱程.牧草兔耕精量播种机的研制[J].农业机械,2006(08):139-140.
    [64]沈卫强,阿布力孜,李东海等.牧草播种机具简况及发展建议[J].新疆农机化,2002(04):29-30.
    [65]包海玲,董海峰,霍建春.退化草地牧草免耕松土补播与撒播镇压式播种技术在喷灌条件下的对比试验.[J].青海农牧业,2010(02):30-31;
    [66]彭鸿嘉.六种牧草种子大小和播种深度对出苗的影响,[J].草业科学.2001,18(6):30-35.
    [67]张磊,阿不力孜,马伟等.奇台红豆草牧草和种子生产的播种量和密度试验.[J].草原与草坪.2008,5:31-35.
    [68]杨义成,龙忠福,卢敏.威宁草芦与豆科牧草混播种间竞争初探.[J].贵州农业科学.2008.36,(1):70-73;
    [69]郑月男,尚书旗,杨然兵等.连政国柔性精密播种技术的研究.[J].农机化研究.2010,32(11).237-242.
    [70]杨世昆,苏正范.饲草生产机械与设备[M].中国农业出版社.2009.6:73-75.
    [71]王全喜.油菜种子制丸工艺选择与技术研究[D].中国农业大学.2013.5:10.
    [72]吴占合,王淑霞,于文祥,等.实施机械化保护性耕作牧草补播技术相关条件的分析与探讨[J].农村牧区机械化,2003,(1):6-8.
    [73]王宇峰.对赤峰市机械化草原改良技术的探讨[J].农村牧区机械化,2000,1:12-13.
    [74]白晓虎,张祖立.基于ADAMS的播种机仿形机构运动仿真[J].农机化研究,2009,31(3):40-42.
    [75]马永财,张伟,李玉清,等.播种机单体两种仿形机构的研究[J].农机化研究,2011, (8):101-103.
    [76]陈立周,张英会,吴清,等.机械优化设计[M].上海:上海科学技术出版社,1982.
    [77]赵学笃.农机优化设计[M].北京:机械土业出版社,1986.
    [78]Perucci P, Casucci C, Dumontet S. Animproved method to evaluate the o-diphenol oxidase activity of soil[J]. Soil Biology & Biochemistry,2000,32:1927-1933.
    [79]塔拉甫·敖汗.SB-2.4型草原松土补播机的几项改进措施[J].新疆农机化,2003, (5):18-19.
    [80]中国农业机械化科学研究院(实用机械设计手册)编写组.实用机械设计手册[M].北京:中国农业机械出版社,1998:397-399.
    [81]卜繁超,姚文军.天然草地机械化补播改良技术及配套机具[J].2002, (5):10-12.
    [82]苏日娜.牧草免耕补播机关键作业指标及其影响因素[J].农机质量与监督,2006,(1):32-33.
    [83]AB卢里耶,AA格罗姆勃切夫斯基.农业机械的设计和计算[M].袁佳平等译.北京:中国农业机械出版社,1983.
    [84]GB/T 1239.6-92,圆柱螺旋弹簧设计计算[S].
    [85]杨世昆,苏正范主编.饲草生产机械与设备[M].北京:中国农业出版社,2009:125
    [86]王宇峰.对赤峰市机械化草原改良技术的探讨[J].农村牧区机械化,2000,1:12-13.
    [87]赵永卫,朱秀梅.新疆干旱区荒漠草地补播技术研究初探[J].草食家畜,2006,(2):50-51.
    [88]苏日娜,赵宏杰,刘晓民,等.内蒙古保护性建设牧草补播试验研究[J].农村牧区机械化,2003,(4):11-12.
    [89]周良墉.一种新型牧草播种收获机械[J].农业机械化与电气化,2002, (1):36.
    [90]周良墉.三种新型牧草播种收获机械[J].农村实用工程技术,2002, (6):19.
    [91]苏日娜.谈牧草补播机械化技术的应用[J].农村牧区机械化,2002, (4):72-73.
    [92]中国农业机械化科学研究院.农业机械设计手册(下册)[M].北京:中国农业科学技术出版社.2007,991-992.
    [93]中国农业机械化科学研究院.农业机械设计手册(上册)[M].北京:中国农业科学技术出版社.2007,413--414.
    [94]高东明.牵引式往复割草压扁机设计及优化:[博士学位论文].北京:中国农业大学,2013.
    [95]Dongming Gao Decheng Wang Guanghui Wang. Topology optimization of conditioner suspension for mower conditioner considering multiple loads [J]. mathematical and computer modeling, 2013,58(3-4):489-496.
    [96]王振华,李文广,翟改霞,等.基于单片机控制的气力式免耕播种机监控系统[J].农业机械学报.2013,44(增刊1):56-60.
    [97]陈进,吕世杰,李耀明,等.基于PLC的联合收获机作业流程故障诊断方法研究[J].农业机械学报.2011,11(增刊):112-116.
    [98]赵树磊,谢吉华,刘永峰.基于霍尔传感器的电机测速装置[J].江苏电器,2008,28(10):53-56.
    [99]蒙文舜,杨运经,刘云鹏.电容传感器的原理及应用[J].现代电子技术,2003,07:78-81.
    [100]吴正民.PIC单片机特点及应用时的注意事项[J].实验室研究与探索,2003,06:79-82+97.
    [101]丁芝琴.基于霍尔传感器的电机测速装置设计[J].农机化研究,2010(5):81-83.
    [102]Zev Naveh, Lieberman. Landscape Ecology[M]. Theory and Application, Second Edition, Springer-verlag,1994.
    [103]王瑛.91SB-2.4型草原松土补播机在新疆新源县完成中试[J].农机科技推广,2002, (4):8.
    [104]崔志刚,韩晓义.松土补播改良退化草场的效果试验[J].畜牧兽医杂志,2005,24(5):15-16.
    [105]王志强,初尔庄,冯爱莲,等.9MSB-2.1型牧草免耕松土补播机的研究与应用[J].农村牧区机械化,2002,(4):47-48.
    [106]兰秀英,阿布力孜,贡献.9SB-2.4型草原松土补播机研制与推广[J].新疆农机化,2005,(4):21-22.
    [107]陈广夫,蒋立宏,蒋景纯,等.鄂温克旗带状补播改良退化草甸草原技术试验研究[J].内蒙古草业,2005,17(4):63-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700