用户名: 密码: 验证码:
嘌呤衍生物及环磷酯前体药物的合成和生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘌呤本身不存在于自然界中,但其衍生物在自然界分布很广。嘌呤与特定的嘧啶碱基一起时是DNA和RNA的组成部分,生命过程中非常重要。近年来,嘌呤衍生物因其具有重要的生理学和药理学性质而成为一类重要的药物,药物化学家研究开发了一大批具有抗肿瘤和抗病毒(尤其是抗艾滋病)作用的核苷类似物,使嘌呤化学发展迅速。除了嘌呤环的9位接入糖基合成核苷类药物以外,嘌呤母环中可以作为分子修饰的位置还有2,6,8三个位置,在这些位置引入某些取代基团后,所得的嘌呤衍生物具有抗病毒、抗癌、抗寄生虫等重要的生物医学活性,例如,以‘'Reversine"为代表的一类嘌呤2,6位R-NH-取代的衍生物显示了非常好的生物活性。因此,嘌呤环的结构修饰及药物活性研究一直是人们研究嘌呤类化合物的重点。
     设计并合成了12个2-取代苯胺基-6-环己胺基嘌呤(化合物33a-331)和4个2-取代苯胺基-6-正丁胺基嘌呤(化合物34a-34d),以及9个6-芳胺基嘌呤衍生物(化合物63a~63i)。研究了嘌呤2,6位取代衍生物的合成方法,探索出了一条产率高、反应条件温和、产物易纯化的合成路线;将微波辐射方法应用于嘌呤衍生物的合成中,探索了‘'Reversine"及其衍生物的微波辅助合成,通过微波辐射快速的合成了嘌呤6位取代衍生物40~44、47及2位取代衍生物化合物32a和"Reversine",为嘌呤衍生物的合成探索出了一条更为快速的合成方法。研究了嘌呤2位、6位连有不同的烷胺基、取代苯胺基、(4-吗啉基)苯胺基化合物对肿瘤细胞的抑制活性,结果表明,2-[(4-苄氧基)苯胺基]-6-环己胺基嘌呤(化合物33g)、2-(4-氯苯胺基)-6-正丁胺基嘌呤(化合物34b)和2-[4-(4-吗啉基)苯胺基]-6-(4-羟基)苯胺基]嘌呤(化合物63i)具有较好的活性,其对肝脏肿瘤细胞Be1-7402的IC50值分别为13.0μM、40.8μM和27.7μM。
     设计了一组新颖的2位含有糖基苯氧苷修饰的嘌呤衍生物,研究了四种糖基供体(葡萄糖、半乳糖、乳糖、木糖)与嘌呤环连接顺序,并成功的合成了一组2-[(4-糖基)苯胺基]-6-环己胺基嘌呤衍生物。活性研究结果显示,该组化合物中糖基为葡萄糖基(化合物36)、半乳糖基(化合物37)、木糖(化合物39)基时均具有一定的的抗肿瘤活性,其对肝脏肿瘤细胞Bel-7402的IC50值分别为82.8μM、38.2μM和75.3μM。
     设计了一组6位含有硫原子的嘌呤衍生物(62b-62g)和-个嘌呤9位含有硫原子取代衍生物(45),探索了合成方法。生物活性研究结果显示,化合物62b、62c具有一定的抗肿瘤活性,其1μM浓度时对肝脏肿瘤细胞Bel-7402的抑制率分别为54.71%和66.86%,为进一步研究嘌呤衍生物奠定了基础。
     前体药物经过体内代谢后可以增加药物的生物利用度,加强靶向性,降低药物的毒性和副作用。以HepDirect前药为代表的,是新一代以核苷为基础的一类1,3-二醇环磷酸前药,显示出了有效的不增加细胞毒性的抗HIV病毒活性,并具有良好的化学及酶稳定性。癌症的化学治疗近年来取得迅猛发展,喜树碱衍生物、紫杉醇以及维生素甲类化合物抗癌治疗作用的证实被誉为90年代抗癌药物的三大发现。由于喜树碱(Campothecin,简称CPT)不溶于水,其钠盐毒副作用较大,所以研究者们对喜树碱的结构改造进行了广泛研究。本文研究了10-羟基喜树碱环磷酸酯前药的合成路线,以取代苯乙酮为起始原料,经酮酯缩合、还原、硅醚化及手性拆分等7步反应得到目标化合物喜树碱的环磷酯前药;探索了手性中间体1-芳基-1,3-丙二醇的手性合成方法,以烷基咪唑-L-脯氨酸盐手性离子液体为手性试剂,探索手性诱导还原方法合成1-芳基-1,3-丙二醇,产物的光学纯度达到了82%。
     所合成的42个目标化合物中39个为未见文献报道的新化合物,所有化合物均经核磁共振(1H NMR、13C NMR)口质谱(MS)进行了结构鉴定。
Purine does not exist in nature, but its derivatives are widely distributed in nature. Purine are the part of DNA and RNA bounding with specific pyrimidine. They exert the important function in the biological processes. Purine and its derivatives are a class of important pharmaceutical compounds with their significant physiological and pharmacological properties. Many nucleoside analogues have been investigated for their antiviral(especially anti-Aids) and anticancer activities. There are three position can be substituted for purine, except nucleoside drugs with glycosylation at9-position. The2,6or8-position substituted purine derivatives have been shown to have biological activitys of antiviral, antitumor, anti-parasite, and so on. A series of2,6-substituted purine derivatives by R-NH, typically "Reversine", have been shown excellent biological activity.Therefore, the structure modification of purine ring and pharmaceutical activity evaluation has been the focus of the study of purine compounds.
     In this dissertation, twelve compounds of2-substituted anilino-6-cyclohexylamino purine (compounds33a~331), four compounds of2-substituted anilino-6-n-butylamino-purine (compounds34a-34d), and nine compounds of6-arylamino purine derivatives (compounds63a-63i) were designed and synthesized. The synthetic methods with a high yield, mild reaction conditions and the purified product of2,6-disubstituted purine derivatives were explored. The microwave radiation were used for the synthesis of purine derivatives. A practical synthesis of2-substituted derivative compounds32a,"Reversine"(32e) and6-substituted purine derivatives40~44,47by microwave radiation rapid were investigated. The synthesized compounds of purine derivatives bonding with different alkylamino-, substituted anilino-, morpholino anilino-were evaluated for their inhibitory activities against liver cancer cell lines of Bel-7402. Moderate antitumor activity were exhibited of2-(4-benzyl-O-phenylamino)-6-cyclohexylamino-purine (compound33g),2-(4- chloro-phenylamino)-6-n-butylamino-purine (compound34b) and2-(4-morpholinoamino)-6-(4-chloro-phenylamino)-purine(compound63i). Their IC50values against liver tumor cell line Bel-7402were13.0μM,40.8μM and27.7μM respectively.
     A group of novel modified purine derivatives containing phenoxy glycosides were designed and synthsized in this dissertation. Four kinds of glycosylation donor (glucose, galactose, lactose, xylose) were bonding with purine ring at2-position in available order of reaction. Four2-(4-O-glyco-phenylamino)-6-(cyclohexylamino) purine derivatives (compounds36~39) were synthesized successfully. Moderate antitumor activity were exhibited, based the sugar group of glucose group (compound36), and galactose (compound37), xylose (compound39). Their IC50values against liver tumor cell line Bel-7402were82.8μM,38.2μM and75.3μM respectively.
     Six purine derivatives containing a sulfur atom at6-position(compounds62b-62g) or9-position (compounds45) were designed and synthesized. Moderate antitumor activity were exhibited of compound62b and62c, with54.71%and66.86%inhibition rate respectively at1μM concentration against liver tumor cell line Bel-7402. The strategy of the synthesis were explored for the developing of purine derivatives.
     Prodrugs has been reported to increase the bioavailability, enhance targeting, reduce the toxicity and side effects of drugs. Typically the prodrug, HepDirect, a class of novel cyclic1-aryk-1,3-propanyl phosphonate prodrug dased nucleoside is attributed to the effective anti-HIV activity, and good chemical and enzyme stability, does not increase the cytotoxicity. The pharmacotherapy of cancer is progressing rapidly and new anti-cancer drugs is emerging prominently. The anti-cancer drugs of Camptothecin, Paclitaxel and Vitamin A have been believed to be the most important discovery in the90's. Campothecin cannot be dissolved in water. The clinical therapeutic of the sodium salt of Campothecin indicated the high toxicity and side effects. So, the structural transformation of Camptothecin were investigate widely. The cyclic phosphate prodrugs of Camptothecin were prepared from10-hydroxycamptothecin by condensation of ketoester reduction, silicon etherified and chiral separation reaction in this dissertation. The chiral synthesis methods of the chiral intermediate1-aryl-1,3-propanediol were explored.1-Aryl-1,3-propanediol were prepared by chiral reduction reaction in chiral ionic liquid alkylimidazole-L-proline salts. The optical purity of the product was82%.
     Forty-two target compounds, including thirty-nine novel compounds, were synthesized. Their structures were determined by1H NMR,13C NMR and MS.
引文
[1]Michael Trostler, Alison Delier, Jeff Beckman, et al. Discrimination between Right and Wrong Purine dNTPs by DNA Polymerase I from Bacillus stearothermophilus[J]. Biochemistry,2009,48 (21),4633-4641.
    [2]Jane N. Kim, Kenneth F. Blount, Izabela Puskarz, et al. Design and Antimicrobial Action of Purine Analogues That Bind Guanine Riboswitches[J]. ACS Chem Biol,2009,4 (11), 915-927.
    [3]Wen-Li Gao, Ning Li, Min-Hua Zong. Highly regioselective synthesis of undecylenic acid esters of purine nucleosides catalyzed by Candida antarctica lipase B [J]. Biotechnology Letters,2011,33 (11):2233-2240.
    [4]Matthias D, Karen M, Rob D V, et al. Design, Synthesis, and Antiviral Evaluation of Purine-β-lactam and Purine-aminopropanol Hybrids[J]. J Med Chem,2012,55:5637-5641.
    [5]Cai Hancheng, Yin Duanzhi, Zhang Lan, et al. Synthesis of 2-Amino-6-fluoro- 9-(4-hydroxy-3-hydroxymethylbutyl)-purine [J]. Chinese Journal of Organic Chemistry, 2006,26(12):1709-1713.
    [6]J R Hwu, SY Lin, S C Tsay, et al. Coumarin-Purine Ribofuranoside Conjugates as New Agents against Hepatitis C Virus[J]. J Med Chem,2011,54:2114-2126.
    [7]Wang L, Cherian C, Desmoulin S K, et al. Synthesis and Biological Activity of 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Inhibitors of de Novo Purine Biosynthesis with Selectivity for Cellular Uptake by High Affinity Folate Receptors and the Proton-Coupled Folate Transporter over the Reduced Folate Carrier[J]. J Med Chem,2012, 55:1758-1770.
    [8]Agteresch HJ, Burgers SA, van der Gaast A, et al. Randomized clinical trial of adenosine 5'-triphosphate on tumor growth and survial in advanced lung cancer patients[J]. Anticancer Drugs,2003,14(8):639-644.
    [9]Httta Y, Takahashi M, Enomoto Y, et al. Adenosine triphosphate(ATP) enhance the antitumor effect of etposide (VP16) in lung cancer cells[J]. Oncol Rep,2004,12:1139-1142.
    [10]Conigrave AD, Weyden L. Extracellular ATP-dependent suppression of proliferation and induction of differentiation of human HL-60 leukemia cells by distinct mechanisms [J]. Biochem Pharmcol,2000,60(11):1585-1591.
    [11]Ashieigh E.G., Christine E.A. Probing the ATP Ribose-Binding Cyclin-Dependent Knasesl and 2 with O6-Substituted Guanine Der[J]. J. Med. Chem.,2002,45:3381-3393.
    [12]Ian R. Hardcastle, Christine E. Arris, Johanne Bentley, et al. N2-Substituted O6-Cyclohexylmethylguanine Derivatives:Potent Inhibitors of Cyclin-Dependent Kinases 1 and 2[J]. J. Med. Chem.,2004,47,3710-3722.
    [13]Ji-Quan wang, Xiangshu Fei. Synthesis of 2-amino-6-(4-[11C] methoxyphenylthio)-9-[2-(PhosPhonomethoxy)ethyl] Purine bis(2,2,2-triuoroethyl) ester as a novel potential PET gene reporter probe for HBV and HSV-tk in cancers[J].Bioorg, Med.Chem.2005, 13:549-556.
    [14]VirginieB., Michel L. Cyclin-dependent kinase(CDK) inhibitors:development of a general strategy for the construction of 2,6,9-trisubstituted purine libraries. Part2.[J].Tetrahedron Letters.2001,42,8165-8167.
    [15]Virginie B, MichelL. Traceless solid-phasesynthesis of 2,6,9-trisubstituted purines from resin bound 6-thiopurines.[J].Tetrahedron,2002,58:7911-7923.
    [16]Svjetlana Prekupec, Drazenka Svedruzic, Tatjana Gazivoda, et al. Synthesis and Biological Evaluation of Iodinated and Fluorinated 9-(2-Hydroxypropyl) and 9-(2-Hydroxyethoxy) methyl Purine Nucleoside Analogues[J]. J. Med. Chem.,2003,46(26):5763.
    [17]Farina. P., Petrucciani L., Colombo, P., et al. EP1464708, Chem, Abstr.2004,141,313035.
    [18]陆鸿飞,韩光范,陆明.嘌呤6位含氟基团取代衍生物的合成[J].有机化学,2008,28(8):1462-1466.
    [19]陆鸿飞,陆明.6-取代胺基嘌呤衍生物的制备及抗菌活性研究[J].中国医药工业杂志,2009,40(12):358-360.
    [20]Estep, K. G., Josef, K. A, Bacon, E. R, et al. Synthesis and Structure-Activity Relationship of 6-Heterocyclic-Substituted Purines as Inactivation Modifiers of Cardiac Sodium Channels[J]. J. Med. Chem.1995,38,2582-2595.
    [21]Hocek,M., Masoji'dkova', M. Holy'A. Synthesis of Acyclic Nucleotide Analogues Derived from 6-Hetarylpurines via Cross-Coupling Reactions of 9-[2-(Diethoxyphosphonylmethoxy) ethyl]-6-iodopurine with Hetaryl Organometallic Reagents. Collect. Czech[J]. Chem. Commun.1997,62,136-146.
    [22]Hirota, K., Kitade, Y., Kanbe, Y.. et al. Convenient Method for the Synthesis of C-Alkylated Purine Nucleosides:Palladium-Catalyzed Cross-Coupling Reaction of Halopurine Nucleosides with Trialkylaluminums[J]. J. Org. Chem.,1992,57,5268-5270.
    [23]Jiangqiong Liu, Zlatko Janeba, Morris J. Robins. SNAr Iodination of 6-Chloropurine Nucleosides:Aromatic Finkelstein Reactions at Temperatures Below-40℃[J]. Org. Lett., 2004,6(17),2917-2919.
    [24]Michal Hocek, Antonn Hol, Ivan Votruba, et al.. Synthesis and Cytostatic Activity of Substituted 6-Phenylpurine Bases and Nucleosides:Application of the Suzuki-Miyaura Cross-Coupling Reactions of 6-Chloropurine Derivatives with Phenylboronic Acids[J]. J. Med. Chem.,2000,43 (9),1817-1825.
    [25]Jiangqiong Liu, Morris J. Robins. Azoles as Suzuki Cross-Coupling Leaving Groups: Syntheses of 6-Arylpurine 2'-Deoxynucleosides and Nucleosides from 6-(Imidazol-l-yl)-and 6-(1,2,4-Triazol-4-yl) purineDerivativesl [J]. Organic Letters,2004,6(19):3421-3423.
    [26]陆鸿飞,章丽娟,陆明.嘌呤2位卤素取代衍生物的合成[J]. Chinese Journal of Applied Chemistry.2006,23(10):1156-1158.
    [27]Deghati, P.Y.F., Wanner, M.J., Koomen, G-J. Regioselective nitration of purine nucleosides: synthesis of 2-nitroadenosine and 2-nitroinosine[J]. Tetrahedron Lett.2000,41:1291-1295.
    [28]Boris R., Melle K. The Mechanism of Selective Purine C-Nitration Revealed:NMR Studies Demonstrate Formation and Radical Rearrangement of an N'-Nitramine Iniermediate[J]. J.Am.Chem.Soc.,2005,127:5957-5963.
    [29]刘福胜,于世涛,葛晓萍,等.2位取代嘌呤衍生物的合成研究[J].高等学校化学报.2003,24(9):1592-1598.
    [30]刘福胜,于世涛,解从霞,等.8-位取代嘌呤衍生物的合成与机理研[J].青岛科技大学学报.2005,26(2):95-97.
    [31]陆鸿飞,唐丛焕,张雷,等.2-氯-6-芳基取代嘌呤衍生物的合成[J].江苏科技大学学报.2009,23(4):358-360.
    [32]Lech Ciszewski, Liladhar Waykole, Mahavir Prashad, et al. A Practical Synthesis of 2-Arylamino-6-alkylaminopurines from 2,6-Dichloropurine[J]. Organic Process Research & Development,2006,10,799-802.
    [33]Akinaga, S., Sugiyama, K., Akiyama. T. UCN-01 (7-hydroxystaurospurine) and other indolocarbazole compounds:a newgeneration of anti-cancer agents for the new century[J]. Anti-Cancer Drug Des.2000,15,43-52.
    [34]De Azevedo W. F., Mueller-Dieckmann H.-J., Schulze-Gahmen, et al. Structural basis for the specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase[J]. Proc. Natl. Acad. Sci. U.S.A.1996,93,2735-2740.
    [35]Kim K. S., Sack J. S., Tokarski J. S., et al. Thio- and oxoflavopiridols, cyclin-dependent kinase 1-selective inhibitors:Synthesis and biological effects[J]. J. Med. Chem.,2000,43, 4126-4134.
    [36]Gray N. S., Wodicka L., Thunnissen, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors [J]. Science,1998,281,533-538.
    [37]Meijer L., Raymond E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials[J]. Acc. Chem.Res.2003.
    [38]Schow S. R., Mackman, R. L.; Blum, C. L., et al. Synthesis and activity of 2,6,9-trisubstituted purines. Bioorg[J]. Med. Chem. Lett.,1997,7,2697-2702.
    [39]Imbach P., Capraro H.-G., Furet P., et al.2,6,9-Trisubstituted purines:Optimization towards highly potent and selective CDK1 inhibitors[J]. Bioorg. Med. Chem. Lett.1999,9,91-96.
    [40]Legraverend M., Tunnah P., Noble M., et al. Cyclindependent kinase inhibition by new C-2 alkynylated purine derivatives and molecular structure of a CDK2-inhibitor complex[J]. J. Med. Chem.2000,43,1282-1292.
    [41]Dreyer M. K., Borcherding D. R., Dumont J. A., et al. Crystal structure of human cyclin-dependent kinase 2 in complex with the adenine derivative H717[J]. J. Med. Chem.2001,44, 524-530.
    [42]Sausville E. A. Complexities in the development of cyclindependent kinase inhibitor drugs[J]. Trends Mol. Med.2002,8 (Suppl.4), S32-S37.
    [43]Meijer L., Raymond E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials[J]. Ace. Chem. Res.2003,36,417-425.
    [44]De Azevedo W.F., Leclerc S., Meijer L. Et al. J. Biochem.1997,243,518-526.
    [45]Vesely J., Havlicek L., Strnad M., et al. J. Biochem.1994,224,771-776.
    [46]Borcherding D.R., Shum P.W., Weintraub P.M.. Bioorg Med.Chem. Lett. Manuscript in preparation.
    [47]Shum P.W.,Weintraub P.M., Le T.B., et al. Bioorg Med.Chem. Lett. Manuscript inpreparation.
    [48]Dreyer M.K., Borcherding D.R., Dumont J.A., et al. Proteins, submitted for publication.
    [49]Shum P.W., Weintraub P.M., Le T.B., et al. Bioorg Med.Chem. Lett. Manuscript in preparation.
    [50]P. W. Shum N. P., Peet P. M., Weintraub T. B. Le,et al. The design and synthesis of purine inhibirors of CDK2. III[J]. Nucleosides, Nucleotides & Nucleic ACIDS,2001,20(4-7), 1067-1078.
    [51]Arris C. E., Boyle F. T., Calvert A. H.,et al. Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles[J]. J. Med. Chem.2000,43,2797-2804.
    [52]Davies T. G, Bentley J., Arris C. E., et al. Structure-based design of a potent purine-based cyclindependent kinase inhibitor[J]. Nat. Struct. Biol.2002,43(9):745-749.
    [53]Florence Popowycz, Guy Fournet, et al. Pyrazolo[1,5-a]-1,3,5-triazine as a Purine Bioisostere: Access to Potent Cyclin-Dependent Kinase Inhibitor (R)-Roscovitine Analogue[J]. J. Med. Chem.,2009,52 (3):655-663.
    [54]Fernanda G. B., Elaine S. C., Magnum O. M., et al. Synthesis and biological evaluation of some 6-substituted purines[J]. European Journal of Medicinal Chemistry,2007,42,530-537.
    [55]Krug E. C., Marr J. J., Berens R. L. Purine Metabolism in Toxoplasma gondii[J]. J. Biol. Chem.1989,264,10601-10607.
    [56]Kouni M. H. Potential chemotherapeutic targets in the purine metabolism of parasites[J]. Pharmacol Ther.2003,99,283-309.
    [57]Wong S, Remington. J. S. Biology of Toxoplasma gondii[J]. AIDS,1993,7,299-316.
    [58]Iltzsch M. H., Uber S. S., Tankersley, K. O., et al. Structure activity relationship for the binding of nucleoside ligands to adenosine kinase from Toxoplasma gondii[J]. Biochem. Pharmacol.1995,49,1501-1512.
    [59]Kouni M. H., Guarcello V., Al Safarjalani O. N., et al. Metabolism and selective toxicity of 6-Nitrobenzylinosine in Toxoplasma gondii. Antimicrob[J]. Agents Chemother.1999,43, 2437-2443.
    [60]Al Safarjalani O. N., Naguib F. N. M., Kouni M. H. Uptake of nitrobenzylthioinosine and purine a-l-nucleosides by intracellular Toxoplasma gondii[J]. Antimicrob. Agents Chemother. 2003,47,3247-3251.
    [61]Vikas Yadav, Chung K. Chu, Reem H. Rais, et al.. Naguib Synthesis Biological Activity and Molecular Modeling of 6-Benzylthioinosine Analogues as Subversive Substrates of Toxoplasma gondii Adenosine Kinase[J] J. Med. Chem.,2004,47(8):1987-1996.
    [62]Amol Guptea, John K. Buolamwini, Vikas Yadav, et al.6-Benzylthioinosine analogues: Promising anti-toxoplasmicagents as inhibitors of the mammalian nucleoside transporter ENT1(es)[J]. Biochemicalpharmacology,2005,71,69-73.
    [63]Young Ah Kim, Ashoke Sharon, Chung K. Chu, et al. Structure Activity Relationships of 7-Deaza-6-benzylthioinosine Analogues as Ligands of Toxoplasma gondii Adenosine Kinase[J]. J. Med. Chem.,2008,51(13):3934-3945.
    [64]Bakkestuen A. K., Gundersen L.-L., Langli G., et al.9-Benzylpurines with Inhibitory Activity against Mycobacterium tuberculosis[J]. Bioorg. Med. Chem. Lett.2000,10,1207-1210.
    [65]Lise-Lotte Gundersen, Jon Nissen-Meyer, Bjrn Spilsberg. Synthesis and Antimycobacterial Activity of 6-Arylpurines:The Requirements for the N-9 Substituent in Active Antimycobacterial Purines[J]. J. Med. Chem.,2002,45 (6):1383-1386.
    [66]Bodiang C. K. Issue facing TB control (2.1) Tuberculosis control in refugee populations:A focus on developing countries[J]. Scot. Med. J.2000,45,25-28.
    [67]Ashish K. Pathak, Vibha Pathak, Lainne E. Seitz, et al. Antimycobacterial Agents.1. Thio Analogues of Purine[J]. J. Med. Chem.2004,47,273-276.
    [68]Svjetlana Prekupec, Draenka Svedrui, Tatjana Gazivoda, et al. Synthesis and Biological Evaluation of Iodinated and Fluorinated 9-(2-Hydroxypropyl) and 9-(2-Hydroxyethoxy)methyl Purine Nucleoside Analogues[J]. J. Med. Chem.,2003,46 (26): 5763-5772.
    [69]陈奕,丁健.热休克蛋白90——癌症治疗的新靶点[J].癌症,2004,23(8):968-974.
    [70]Jolly C, Morimoto RI. Role of heat shock response and cell death[J]. J Natl Cancer Inst, 2000,92:1564-1572.
    [71]Martin KJ, Kritzman BM, Price LM, et al. Linking gene expression patterns to therapeutic groups in breast cancer[J]. Cancer Res,2000,60,2232-2238.
    [72]Conroy SE, Latchman DS. Do heat proteins have a role in breast cancer[J]. Br J Cancer,1996, 74,717-721.
    [73]Kawanishi K, Shiozaki H, Doki Y, et al. Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus [J]. Cancer,1999,85, 1649-1657.
    [74]Ciocca DR, Fuqua SA, Lock-Lim S, et al. Response of human breast cancer cels to heat shock and chemotherapeutic drugs[J]. Cancer Res,1992,5,3648-3654.
    [75]Jameel A, Skilton RA. Clinical and biological significance of HSP 89a in human breast cancer[J]. Int J Cancer,1992,50,409-415.
    [76]Kasibhatla S. R., Hong K., Zhang L., et al. Purine analogs having Hsp90 inhibiting activity[J]. USPatent Publication Number US 05/0049263,2005.
    [77]Kasibhatla S. R., Hong K., Boehm M. F., et al.2-Aminopurine analogs having Hsp90-inhibiting activity[J]. US Patent Publication Number US 7,138,401,2006.
    [78]Chiosis G., Lucas B., Huezo H., et al. Development of purine-scaffold small molecule inhibitors of Hsp90[J]. Curr. Cancer Drug Targets,2003,3,371-376.
    [79]Llauger L., He H., Kim J., et al. Evaluation of 8-arylsulfanyl,8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90[J]. J. Med.Chem., 2005,48,2892-2905.
    [80]Chiosis G, Timaul M. N., Lucas B., et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells[J]. Chem.Biol.2001,8,289-299.
    [81]Biamonte M. A., Shi J., Hong K., et al. Orally active purine-based inhibitors of Hsp90[J]. J. Med. Chem.,2006,49,817-828.
    [82]He H., Zatorska D., Kim J., et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90[J]. J. Med. Chem.,2006,49,381-390.
    [83]Srinivas R. Kasibhatla, Kevin Hong, Marco A. Biamonte, et al. Rationally Designed High-Affinity 2-Amino-6-halopurine Heat Shock Protein 90 Inhibitors That Exhibit Potent Antitumor Activity[J]. J. Med. Chem.,2007,50 (12):2767-2778.
    [84]Van Draannen N A, Tisadle M, Parry N R, et al. Antimicrob. Agent Chemother,1994,38, 868-871.
    [85]McGrath N., Anderson N. E., Croxson M. C., et al. Herpes simplex encephalitis treated with acyclovir:Diagnosis and long-term outcome[J]. J. Neurol. Neurosurg. Psychiat.1997,63, 321-326.
    [86]Andrzej M., Annalisa V., Andrea L.. Inhibition of Herpes Simplex Virus Thymidine Kinases by 2-Phenylamino-6-oxopurines and Related Compounds:Structure-Activity Relationships and Antiherpetic Activity in Vivo[J]. J. Med. Chem.,2005,48 (11),3919-3929.
    [87]Ohno M., Gao Z. G., Van Rompaey P., et al. Modulation of adenosine receptor affinity and intrinsic efficacy in nucleosides substituted at the 2-position[J]. Bioorg. Med. Chem.,2004, 12,2995-3007.
    [88]Tchilibon S., Kim S. K., Gao Z. G, et al. Exploring distal regions of the A3 adenosine receptor binding site:Sterically constrained N6-(2-phenylethyl)adenosine derivatives as potent ligands[J]. Bioorg. Med. Chem. Lett.,2004,12,2021-2034.
    [89]Gao Z. G., Blaustein J. B., Gross A. S., et al. N6-Substituted adenosine derivatives: Selectivity, efficacy and species differences at A3 adenosine receptors[J]. Biochem. Pharm. 2003,65,1675-1684.
    [90]Martin P. L., Wysocki R. J. Jr., Barrett R. J., et al. Characterization of 8-(N-methylisopropyl) amino-N6-(5'-endohydroxy-endonorbornyl)-9-methyladenine (WRC- 0571), a highly potent and selective, nonxanthine antagonist of A1 adenosine receptors[J]. J. Pharmacol. Exp. Ther. 1996,276,490-9.
    [91]Anderson Kenneth C, Mitsiades Nicholas, Negri Joseph, et al. Use of Reversine and Analogs for Treatment of Cancer[P]. US.060535.2008.05.22.
    [92]Anna Morena D Alise, Giovanni Amabile, Mariangela Iovino, et al. Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells[J]. Molecular Cancer Therapeutics,2008,7(5):1140-1149.
    [93]Bruce G., Szczepankiewicz Jeffrey J., Rohde Ravi Kurukulasuriya. Pyrazolo[1,5-a]-1,3,5-triazine as a Purine Bioisostere:Access to Potent Cyclin-Dependent Kinase Inhibitor (R)-RoscovitineAnalogue[J]. J. Med. Chem.2009,52:655-663.
    [94]Andrzej Manikowski, Annalisa Verri, Andrea Lossani, et al. Inhibition of Herpes Simplex Virus Thymidine Kinases by 2-Phenylamino-6-oxopurines and Related Compounds: Structure-Activity Relationships and Antiherpetic Activity in Vivo[J]. J. Med. Chem.,2005, 48,3919-3929.
    [95]Meliss8a Perreira, Jian-kang Jiang, Athena M. Klutz, et al. "Reversine" and Its 2-Substituted Adenine Derivatives as Potent and Selective A3 Adenosine Receptor Antagonists[J]. J. Med. Chem.2005,48,4910-4918.
    [96]Bruce E. Maryanoff, Michael J. Costanzo, Samuel O. Nortey, et al. Structure-Activity Studies on Anticonvulsant Sugar Sulfamates Related to Topiramate. Enhanced Potency with Cyclic Sulfate Derivatives[J]. J. Med. Chem.,1998,41 (8):1315-1343.
    [97]Ai J. Lin, Liang Quan Li, Steven L. Andersen, et al Antimalarial activity of new dihydroartemisinin derivatives.5. Sugar analogs[J]. J. Med. Chem.,1992,35 (9):1639-1642.
    [98]Anthony R. Porcari, Roger G. Ptak, Katherine Z. Borysko, et al. Deoxy Sugar Analogues of Triciribine:□Correlation of Antiviral and Antiproliferative Activity with Intracellular Phosphorylation[J]. J. Med. Chem.,2000,43 (12):2438-2448.
    [99]Singh P L. Hingorani, Trivedi G. K. Drivatives of Substitutd Propionic Acid as Antiinflammatory Agents[J]. Indian J. Chem,1998,27B:498-500.
    [100]Lerchen H G, Bruch K V. Synthesis of 20(s)-camptothecin glycocon-jugates:impact of the side chain of the ester-linked amino acid on epimerization during the acylation reaction and on hydroyitic stability of the final glycoconjugates[J]. J Parkt Chem,2000,324(8):753-761.
    [101]赵育,李春霞,玉坤宇,等.几种喜树碱-糖缀合物的合成及其抗肿瘤活性研究[J].中国海洋大学学报,2007,37(5):733-739.
    [102]彭涛,王林,韩凤昭,等.红景天苷糖碳苷类似物的合成及心肌保护活性研究[J].中国药物化学杂志,2009,19(2):89-92.
    [103]Ana C. Araujo, Amelia P. Rauter, Francesco Nicotra, et al. Sugar-Based Enantiomeric and Conformationally Constrained Pyrrolo[2,1-c][1,4]-Benzodiazepines as Potential GABAA Ligands[J]. J. Med. Chem.,2011,54 (5):1266-1275.
    [104]Michael E. Jung, Eric C. Yang, Binh T. Vu, et al. Glycosylation of Fluoroquinolones through Direct and Oxygenated Polymethylene Linkages as a Sugar-Mediated Active Transport System for Antimicrobials[J]. J. Med. Chem.,1999,42 (19):3899-3909.
    [105]Susanne Wielert-Badt, Jiann-Trzuo Lin, Mike Lorenz, et al. Probing the Conformation of the Sugar Transport Inhibitor Phlorizin by 2D-NMR, Molecular Dynamics Studies, and Pharmacophore Analysis[J]. J. Med. Chem.,2000,43 (9):1692-1698.
    [106]Gemma Arsequell, Mariona Salvatella, Gregorio Valencia, et al. Rodriguez. Synthesis, Conformation, and Biological Characterization of a Sugar Derivative of Morphine that is a Potent, Long-Lasting, and Nontolerant Antinociceptive[J]. J. Med. Chem.,2009,52 (9): 2656-2666.
    [107]Diane E. Gingrich, Shi X. Yang, George W. Gessner, et al. Synthesis, Modeling, and In Vitro Activity of (3'S)-epi-K-252a Analogues. Elucidating the Stereochemical Requirements of the 3'-Sugar Alcohol on trkA Tyrosine Kinase Activity[J]. J. Med. Chem.,2005,48 (11): 3776-3783.
    [108]Gedye R, Smith F, Westanay K, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letters,1986,27(3):279-282.
    [109]贾建洪,陈彬.微波在杂环类化合物合成中的研究进展[J].浙江工业大学学报,2009,37(1):36-42.
    [110]Ling-Kuen Huang, Yen-Chih Cherng, Yann-Ru Cheng, et al. An efficient synthesis of substituted cytosines and purines under focused microwave irradiation[J]. Tetrahedron,2007, 63,5323-5327.
    [111]渠桂荣,张志广,郭海明,等.微波辐射下8-溴腺苷及其衍生物的绿色合成[J].合成化学,2005,15(2):195-197.
    [112]李玉文,李英霞,张伟,等.一锅法制备全乙酰吡喃溴代糖[J].有机化学(Chinese Journal of Organic Chemistry),2004,24,4:438-439.
    [113]陈勇,韩国防,刘惠英.相转移催化法合成糖苷化合物[J].化学研究与应用,2005,17(4):501-503.
    [114]Ishikawa Yoshiko Miura, Kanagawa Chieri Shibata, Aichi Kazukiyo Kobayashi. Glycopeptide and Temperature-Responsive Micelles[P]. US2008/0023859 A1,2008,1,31
    [115]Lei Yu, Mingchuan Huang, Peng G Wang, et al. Cross-Linked Surface-Grafted Glycopolymer for Multivalent Recognition of Lectin[J]. Anal. Chem.2007,79,8979-8986.
    [116]Maria T. Fiorini, Chris Abell. Solution-Phase Synthesis of 2,6,9-Trisubstituted Purines[J]. Tetrahedron Letters,1998,39,1827-1830.
    [117]Sheng Ding, Nathanael S. Gray, Xu Wu, et al. A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries[J]. J. Am. Chem. Soc.,2002,124 (8),1594-1596
    [118]应安国,陈新志,叶伟东,等.微波促进离子液体相反应在有机合成中的应用[J].化学进展,2008,20(11):1642-1649.
    [119]Lan A. O Neil, Kathryn M. Hamilton. A Novel Method for the Coupling of Nucleoside Bases with Tetramethylene Suphoxide[J]. Letters,1992,10,791-792.
    [120]吴松平,古国榜.亚砜衍生物α-十二烷-四氢噻吩亚砜的合成[J].华南理工大学学报(自然科学版),2001,29(11):51-54.
    [121]Hamid Golchoubian, Farideh Hosseinpoor. Effective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide under Transition-Metal-Free Conditions[J]. Molecules,2007,12, 304-311.
    [122]Rajendra P. T, Raghunandan Y, Robin E. L. et al. Synthesis and Evaluation of Cyclic Secondary Amine Substituted Phenyl and Benzyl Nitrofuranyl Amides as Novel Antituberculosis Agents[J]. J. Med. Chem.2005,48,8261-8269.
    [123]L K Huang, Y C Cherng, Y R Cheng, et al. An efficient synthesis of substituted cytosines and purines under focused microwave irradiation[J]. Tetrahedron,2007,63,5323-5327.
    [124]徐常龙,詹寿发,柳闽生,等.糖溴代衍生物的合成[J].精细石油化工,2008,25(1):25-27.
    [125]徐顺,凌勋利,刘宏民,等.香草酸糖酯的合成研究,化学研究与应用[J].2006,18(7),2006,870-873.
    [126]李雯,刘宏民,尤启冬.对乙酰氨基酚葡萄糖苷及其类似物的合成[J].中国药科大学学报,2004,35(5):397-400.
    [127]Yoshiko Miura, Chieri Shibata, Kazukyo Kobayashi. Glycopeptides and Temperature-Responsive micelles:US,20080023859[P].2008,1,31.
    [128]R. Sariri, G. Khalili. Synthesis of Purine Antiviral Agents, Hypoxanthine and 6-Mercaptopurine[J]. Russian Journal of Organic Chemistry,2002,38(7):1053-1055.
    [129]Young Ah Kim, Ashoke Sharon, Chung K, et al. Structure#Activity Relationshipsof 7-Deaza-6-benzylthioinosine Analogues as Ligands of Toxoplasma gondii Adenosine Kinase[J]. Medicinal Chemistry.2008,51(13):3934-3945.
    [130]Albert, Adrien. Chemical Aspects of Selective Toxicity[J]. Nature,1958,182(4633): 421-423.
    [131]应雪,陈文,姚新成,等.肝靶向前体药物的研究进展[J].中国药房,2006,17(5):381-384.
    [132]宣坚钢.紫杉醇前体药物及其研究进展[J].世界临床药物,2009,30(10):620-624.
    [133]Niethammer A, Gaedicke C, Lode HN, et al. Synthesis and preclinical characterization of a paclitaxel prodrug with improved antitumor activity and water solubility[J]. Bioconjug Chem,2001,12(3):414-420.
    [134]Sugahara S, Kiajki M. Paclitaxel delivery systems:the use of aminoacid linkers in the conjugation of paolitaxel with carboxymethyldextran to create predrugs[J]. Blol Pharm Bull, 2002,25(5):632-641.
    [135]Yuzeng Liang, Janarthanan Narayanasamy, Raymond F. Schinazi, et al. Phosphoramidate and phosphate prodrugs of (-)-β-D-(2R,4R)-dioxolane-thymine:Synthesis, anti-HIV activity and stability studies[J]. Bioorganic & Medicinal Chemistry,2006,14,2178-2189.
    [136]Scott J., Hecker K., Raja Reddy, et al. Liver-Targeted Prodrugs of 2□-C-Methyladenosine for Therapy of Hepatitis C Virus Infection[J]. J. Med. Chem.2007,50,3891-3896.
    [137]K. Raja Reddy, Michael C., Matelich Bheemarao G. Ugarkar, et al. Pradefovir:A Prodrug That Targets Adefovir to the Liver for the Treatment of Hepatitis B[J]. J. Med. Chem.,2008, 51,666-676.
    [138]Serge H. Boyer, Zhili Sun, Hongjian Jiang, et al. Synthesis and Characterization of a Novel Liver-Targeted Prodrug of Cytosine-1-β-D-arabinofuranoside Monophosphate for the Treatment of Hepatocellular Carcinoma[J]. J. Med. Chem.2006,49,7711-7720.
    [139]牟松,罗猛,祖元刚,等.喜树碱及其衍生物结构修饰及构效关系的研究[J].中国药学杂志,2006,41(11):804-806.
    [140]韩锐主编.抗癌药物研究与实验技术[M].北京:北京医科大学、中国协和医科大学联合出版社,1997:3-47.
    [141]方岩雄,熊绪杰,吕钱江,等.喜树碱衍生物的合成研究进展[J].合成化学,2003,11(2):119-123.
    [142]周云隆,尤启冬,李玉艳,等.喜树碱及其衍生物的合成[J].中国医药工业杂志,2001,32(8):375-380.
    [143]Mark D., Erion K., Raja Reddy Serge H. Boyer, et al. Design, Synthesis, and Characterization of a Series of Cytochrome P450 3A-Activated Prodrugs (HepDirect Prodrugs) Useful for Targeting Phosph(on)ate-Based Drugs to the Liver[J]. J. Am. Chem. Soc.2004,126,5154-5163.
    [144]Tai S. K. Reversible, Room-Temperature, Chiral Ionic Liquids. Amidinium Carbamates Derived from Amidines and Amino-Acid Esters with Carbon Dioxide[J]. Chem. Mater, 2007,19,4761-4768.
    [145]Enders F. Ionic liquids:solvents for the electrodeposition of metals and semiconductors[J]. Chem physchem,2002,3(2):144-154.
    [146]马海兵.离子液体的合成表征、表征及应用[D].山东:山东师范大学,2007.
    [147]Wikes J. S., Zaworotko M. J. Air and water Stablel-Ethyl-3-methylimidazolium Based Ionic Liquids[J]. Chemical Soeiety Chemical Communications,1992,13:965-967.
    [148]Howarth J., Hanlon K., Fayne D., et al. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in the Diels-Alder Reaction[J]. Tetrahedro Lett.,1997,38,3097-3100.
    [149]Earle M. J., McCormac P. B., Seddon K. R.. The Heck Reaction in Ionic Liquids:A Multiphasic Catalyst System[J]. Green Chem.,1999,1,23-25.
    [150]Bao W., Wang Z., Li Y. J.. Activity-Guided Isolation of Novel Norwithanolides from Deprea subtriflora with Potential Cancer Chemopreventive Activity[J]. Org. Chem.,2003,68, 591-593.
    [151]闻立新,向自伟,宗乾收,等.手性咪唑酯类离子液体的合成及其物理性能[J].合成化学.2011,4,600-604.
    [152]Thanh G. V., Pegot B., Loupy A. Eur. Solvent-Free Microwave-Assisted Preparation of Chiral Ionic Liquids from (-)-N-Methylephedrine [J]. Org. Chem.,2004,1112-1116.
    [153]David K., Bwambok, Santhosh K. et al. Amino Acid-Based Fluorescent Chiral Ionic Liquid for Enantiomeric Recognition [J]. Anal. Chem,2010,82:5028-5037.
    [154]自金芳,仲崇民.从天然氨基酸合成手性离子液体[J].黑龙江科技信息,2010,13:65-66.
    [155]肖玲.手性离子液体的制备及其用于D、L-色氨酸拆分的研究[D].北京:北京化工大学硕士学位论文,2011.
    [156]Seebach D, Oei H A. Mechanism of Electrochemical Pinacolization. The FirstAsymmetric Synthesis in a chiralMedium[J]. Angew. Chem. Int. Ed. Engl,1975,14:634-636.
    [157]于雅琴.新型三氮唑吡啶盐负载的脯氨酸手性离子液体的合成和表征[J].天津师范大学学报,2009,29(4):47-50.
    [158]Wang C. F., Zheng Y. F., Cai S. L. The effect of Chiral solvent and various of chiral organic salts on the asymmetric hydrogention of methyl acetoacetate over an improved tartaric acid modified raney nickel catalystReact Kinet[J]. Catal. Lett,2008,95(1),129-134.
    [159]Bukuo Ni, Allan D. Headley, Guigen Li. Design and Synthesis of C-2 Substituted Chiral Imidazolium Ionic Liquids from Amino Acid Derivatives[J]. J.Org. Chem.2005,70: 10600-10602.
    [160]黄仰青,苏桂发,覃开云.手性离子液体研究进展[J].化学研究与应用,2006,18(10):1142-1151.
    [161]Bregeon D., Levillainl J., Guillen F.. Thiazolinium and imidazolium chiral ionic liquids derived from natural amino acid derivatives [J]. Netherlands,2008,35:175-184.
    [162]Ding J., Desikan V., Han X., et al. Use of Chiral Ionic Liquids as Solvents for the Enantioselective Photoisomerization of Dibenzobicyclo[2.2.2]-Octatrienes[J]. Org. Lett., 2005,7(2):335-337.
    [163]Howarth J., Hanlon K., Fayne D. et. al. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in the Diels-Alder Reaction[J]. Tetrahed. Lett.,1997,38,3097-3100.
    [164]Bica K., Gmeiner G., Reichel C. et. al. Microwave-assisted synthesis of camphor-derived chiral imidazolium ionic liquids and their application in diastereoselective Diels-Alder reaction[J]. Synthesis,2007,9,1333-1338.
    [165]Khan N. H., Prasetyanto E. A., Kim Y. K. et. al. Chiral Cu(II) Complexes as Recyclable Catalysts for AsymmetricNitroaldol (Henry) Reaction in Ionic Liquids as Greener Reaction Media[J]. Catal Lett,2010,140:189-196.
    [166]Miao W., Chan T. H.. Ionic-Liquid-Supported Organocatalyst:Efficient and Recyclable IonicLiquid Anchored Proline for Asymmetric Aldol Reaction[J]. Adv. Synth. Catal.,2006, 348,1711-1718.
    [167]Abdol Reza Hajipur, Fatemeh Karimi. Synthesis Of novel chiral ionic liquid and its application in reduction of prochiral ketones to the corresponding chiral alcohols using NaBH4[J]. Synthetic Communications,2010,40,1784-1793.
    [168]Kathlia A. De Castro, Jungnam Ko, Daejong Park, et al. Reduction of Ethyl Benzoylacetate and Selective Protection of 2-(3-Hydroxy-l-phenylpropyl)-4-methylphenol:A New and Facile Synthesis of Tolterodine [J]. Organic Process Research & Development,2007,11, 918-921.
    [169]Fukumoto K., Yoshizawa M., Ohno H.. Room Temperature Ionic Liquids from 20 Natural Amino Acids[J]. Chem. Soc,2005,127,2398-2399.
    [170]Martyn J., Earle, Paul B., et al. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures[J]. Green Chemistry,1999,23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700