用户名: 密码: 验证码:
有序介孔金属氧化物的制备、改性及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球能源短缺、环境污染问题日益严峻的大背景下,利用高效、洁净、低能耗、无二次污染的光催化技术成为研究的热点。目前,科学家们正在努力探索高效可见光型催化材料的开发。其中,有序介孔金属氧化物材料以其高的比表面积、规则有序的孔道结构、孔径大小可调及内表面可修饰等特点而备受青睐。随着有序介孔金属氧化物催化功能化、孔道尺寸调变、原位谱学表征和分子设计等关键问题的解决,许多具有不同形貌特征、介孔结构、骨架成分的有序介孔材料被成功合成并广泛应用于催化、传感、能源等领域,促进了光催化技术的创新。本文选取极具潜力的金属氧化物光催化剂为研究对象,探讨了有序介孔金属氧化物的制备方法及其介孔结构的形成机理。系统研究了可见光条件下有序介孔金属氧化物的光催化性能及其潜在的应用价值,为开发高性能可见光型催化剂,拓展其在太阳能转换及环境领域的应用提供新思路和基础理论参考,主要研究内容如下:
     (1)以介孔二氧化硅(KIT-6)为硬模板,磷钨酸为前驱物,用硬模板法制备WO3-SiO2复合材料,再利用氢氟酸(HF)除去二氧化硅,制得介孔三氧化钨(m-WO3)光催化剂。在可见光条件下,以IO-3作为电子受体,铂修饰的介孔三氧化钨光催化分解水产氧量达276.1mol·g-1,是纳米三氧化钨(c-WO3)的3.5倍。因此,有序介孔WO3的规则孔道结构利于光生载流子在其表面的传输与分离,降低光生电子-空穴对的复合几率,提高了可见光催化性能。
     (2)以有序介孔WO3(m-WO3)和还原石墨烯氧化物(RGO)为原料采用紫外光协助照射法合成了m-WO3-RGO复合型光催化剂。复合材料中的m-WO3与RGO的有效结合促进了载流子的分离和产氧量的提高。在可见光照射下,m-WO3-RGO-6光催化剂的产氧量可达437.3μmol·g-1,为m-WO3的5.1倍。光催化活性的增强可以归咎于作为固态电子受体的RGO,促进了光生电子-空穴对的传输和分离,有效抑制了电子-空穴对在复合材料中的复合。这种新型介孔金属氧化物/石墨烯复合材料表现出稳定、优异的光催化活性,为开发可见光型光催化剂提供了新的思路。
     (3)采用软模板法,以尿素为氮源,通过简单的固态反应法合成了氮掺杂有序介孔五氧化二铌光催化剂。介孔五氧化二铌的有序孔道结构利于N元素有效掺入其晶格内部。氮掺杂后介孔五氧化二铌光催化剂的吸收带边由3.1eV降至2.61eV,对应的光响应范围由400nm拓展至475nm。以0.5wt%Pt作为助催化剂,可见光下照射5h后,1.53%氮掺杂介孔五氧化二铌的催化产氢量为介孔五氧化二铌的3.4倍。在光催化反应中,有序介孔结构可以提供更多的活性位,加速体系内的电子-空穴对在其表面的转移和分离,大大提高了可见光催化活性。
     (4)以硝酸铈为铈源,介孔二氧化硅(KIT-6)为模板,采用硬模板法制备了介孔二氧化铈(m-CeO2)。通过浸渍法合成了铋掺杂介孔二氧化铈(m-CeO2/Bi)光催化剂。m-CeO2/Bi光催化剂具有完整的晶型和规则的孔道结构,有利于光生电子和空穴的分离,同时Bi的掺入降低了催化剂的带隙能,有效提高了可见光催化性能。在可见光(λ>420nm)条件下,以对氯苯酚(4-CP)为目标污染物,考察了m-CeO2/Bi光催化剂的催化性能。2%Bi掺杂的m-CeO2/Bi光催化剂性能最佳,光照4h可将4-CP降解91%以上,催化剂经5次循环使用后,其光催化活性基本保持不变。
How to utilize photocatalytic technique with high efficiency, low energy consumption,clean and no secondary pollution properties become a hot issue in the context of theuniversal crisis of energy shortage and environmental pollution. Recently, scientists aremaking great efforts to probe into the way to explore the highly efficient visible lightphotocatalytic materials. Among them, the ordered mesoporous metal oxides with highspecific surface area, ordered pore structure, adjustable aperture and the modified internalsurface are gaining popularity by the researchers. Many different morphologies,mesoporous structure and skeleton composition of ordered mesoporous structure have beensuccessful prepared and widely used in catalysis, sensing, energy and other fields,combining with the critical issues settlement of ordered mesoporous metal oxides ofcatalytic function, pore size adjustment, in-situ spectroscopic characterization andmolecular design, thereby promoted the development of photocatalytic technology. In thispaper, we discuss the preparation of mesoporous metal oxides and formation mechanism ofmesoporous structure. At the same time, the photocatalytic properties and potentialapplications of the mesoporous metal oxide photocatalysts have been systematicallyinvestigated under visible light irradiation. This study will contribute to the development ofnovel photocatalyst with high performance, and provide a new idea in the field of solarenergy conversion and basic theories of reference, the main research contents are asfollows:
     (1) Three-dimensionally ordered mesoporous WO3was successfully synthesized by ahydrothermal method using mesoporous silica KIT-6as a hard template andphosphotungstic acid as a precursor. Investigations of optical and photoelectrochemicalproperties showed that the mesoporous WO3was a n-type semiconductor with a band gapof2.6eV and demonstrated prompt, steady, and reproducible photocurrent responsesduring repeated on/off cycles of visible light illumination (λ>420nm). The mesoporous WO3modified by platinum nanoparticles could be used as a stable photocatalyst forphotoinducing O2evolution. Under visible light irradiation, the average O2evolution ratereached to34.5μmol g-1h-1with the presence of an electron acceptor of IO-3. This workdemonstrated a potential application of using mesoporous WO3modified by platinumnanoparticles as a novel photocatalyst in the field of solar energy conversion.
     (2) We report the synthesis, characterization, and photocatalysis of a novel composite,composed of high-ordered mesoporous WO3(m-WO3) and reduced graphene oxide(RGO). The superior contact between two moieties in the composites facilitates the chargecarrier separation and the evolution of oxygen. Under visible light irradiation, the amountof oxygen evolution from the optimized photocatalyst containing ca.6wt%RGO reachedto437.3μmol·g1, which was5.1times as high as that from m-WO3. The enhancement ofphotocatalytic activity could be ascribed to that RGO acts herein as a solid-state electronmediator, promoting the charge transportation and separation, as well as suppressing theelectron-hole recombination in the composite. This study might provide a prototype forconstructing a novel photocatalytic system by hybridizing graphene with a mesoporoussemiconductor for solar energy conversion.
     (3) The high-ordered N-doped mesoporous niobium oxide (NMNb) was prepared viaa facile solid state reaction method using urea as a nitrogen source. The inheritedmesoporous structure of NMNb making the N dopants effective incorporated in lattice ofmesoporous niobium oxide (MNb), result in a significant enhanced visible light response,corresponding to a reduced band gap of2.61eV. Subsequently, the optimized hydrogengeneration efficiency over N-doped MNb photocatalyst was14.8times as high as that fromN-P25under5h visible light irradiation with0.5wt%Pt as a cocatalyst. The improvedphotocatalytic activity of NMNb was mainly due to the ordered mesostructure could offermore active sites for the photocatalytic reaction, as well as accelerate the photogeneratedelectron-hole pairs transfer and separation. It is hoped that this study could promoteincreasing interest in designing N doped diverse structure of semiconductor photocatalystsfor solar water splitting.
     (4) Mesoporous cerium oxides were prepared by a hard templating method usingmesoporous silica dioxide (KIT-6) as the hard template, cerium nitrate as the source ofcerium. The photodegradation activity of m-CeO2/Bi powders was evaluated by using4-chlorophenol (4-CP) as pollutant targets under visible light irradiation (λ>420nm). The results demonstrate that the m-CeO2/Bi photocatalyst equipped with high crystallinity andcontinuous pore channels, which benefit for the electron-hole pairs separation.Simultaneously, doped Bi could reduce the bandgap of the m-CeO2photocatalyst, therebyeffectively improve the visible light photocatalytic properties. The photodegradation yieldof4-CP was beyond91%under visible light irradiation for four hours. The photocatalystcan be recycled several times without losing its photocatalytic activity.
引文
[1] IUPAC Manual of symbols and terminology. PureAppl. Chem.1972;31:578-680.
    [2] Beck J C, Vartuli J C, Roth W J. A family of mesoporous molecular sieves prepared with liquidcrystal templates. J. Am. Chem. Soc.1992;114:10834-10843.
    [3] Kresge C T, Leonowicz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by aliquid-crystal template mechanism. Nature1992;59:710-712.
    [4] Zhang Z T, Han Y, Xiao F S. Mesoporous aluminosilicates with ordered hexagonal structure, strongacidity, and extraordinary hydrothermal stability at high temperatures. J. Am. Chem. Soc.2001;123:5014-5021.
    [5] Corma A, Fornes V. Acidity and stability of MCM-41crystalline aluminosilicates. J. Catal.1994;148:569-574.
    [6] Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporousniobium oxide molecular sieves. Inorg. Chem.1996;35:3126-3136.
    [7] Antonelli D M, Ying J Y. Mesoporous materials. Curr. Opin. Colloid Interface Sci.1996;1:523-532.
    [8] Ciesla U, Schüth F. Ordered mesoporous materials. Microporous Mesoporous Mater.1999;27:131-180.
    [9] Huo Q, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R, Petroff PM, Schuth F, StuckyG D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature1994;368:317-338.
    [10] Sayari A, Liu P. Non-silica periodic mesostructured materials: recent progress. Microporous Mater.1997;12:149-226.
    [11] Soler-Illia G J d A A, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design texturedmaterials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures.Chem. Rev.2002;102:4093-4231.
    [12] Hoffmann F, Cornelius M, Morell J. Silica-Based Mesoporous Organic-Inorganic HybridMaterials.Angew. Chem. Int. Ed.2006;45:3216-3251.
    [13] Chen F X, Huang L M, Quanzhi Li. Synthesis of MCM-48using mixed cationic-anionicsurfactants as templates. Chem. Mater.1997;9:2685-2686.
    [14]翟尚儒,蒲敏,张晔.合成高产率分子筛MCM-48.物理化学学报2003;19:3016-3020.
    [15]蔡强,张慧波,林文勇,庞文琴. MCM-48介孔分子筛的合成研究.高等学校化学学报1999;20(5):675-679.
    [16] Huo Q S, Margolese D I, Ciesla U. Generalized synthesis of periodic surfactant/inorganiccomposite materials. Nature1994;368:317-321.
    [17] Pantazis C C, Pomonis P J. Mesostructure design via poly(acrylic acid)-CnTAB complexes: a newroute for SBA-1mesoporous silica. Chem. Mater.2003;15(12):2299-2300.
    [18] Ryoo R, Ko C H, Kruk M. Block-copolymer-templated ordered mesoporous silica: array ofuniform mesopores or mesopore-micropore network. J. Phys. Chem. B2000;104:11465-11471.
    [19] Galarneau A, Renzo F C D, Fajula F. Thermal and mechanical stability of micelle-templated silicasupports for catalysis. Catal. Today2001;68:191-200.
    [20] Wang L, Qi T, Zhang Y. Morphosynthesis route to large-pore SBA-15microspheres. MicroporousMesoporous Mater.2006;91:156-160.
    [21] Che S, Lund K, Tatsumi T, Direct observation of3D mesoporous structure by scanning electronmicroscopy (SEM). SBA-15silica and CMK-5carbon. Angew. Chem. Int. Ed.2003;42:2182-2185.
    [22] Ryoo R, Kim J M, Ko C H, Disordered molecular sieve with branched mesoporous channelnetwork. J. Phys. Chem.1996;100:17718-17721.
    [23] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.2003;17:2136-2137.
    [24] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionicpolyethylene oxide surfactants. Science1995;269:1242-1244.
    [25] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science1995;267:865-867.
    [26] Inagaki S, Koiwai A, Suzuki N. Syntheses of highly ordered mesoporous materials, FSM-16,derived from kanemite. Bull. Chem. Soc. Jpn.1996;69:1449-1457.
    [27] Jansen J C, Shan Z, Marchese L. A new templating method for three-dimensional mesoporenetworks. Chem. Commun.2001;8:713-714.
    [28] Zhao D Y, Feng J L, Huo Q S, Melosh N. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores. Science1998;279:548-552.
    [29] Zhao D Y, Huo Q S, Fang J L. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am.Chem. Soc.1998;120;6024-6036
    [30] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J. Phys. Chem. B1999;103:7743-7746.
    [31] Kleitz F, Hei Choi S, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.2003;2136-2137.
    [32] Jo C, Kim K, Ryoo R. Syntheses of high quality KIT-6and SBA-15mesoporous silicas usinglow-cost water glass, through rapid quenching of silicate structure in acidic solution. MicroporousMesoporous Mater.2009;124:45-51.
    [33] Vinu A, Gokulakrishnan N, Balasubramanian V V, Alam S, Kapoor M P, Ariga K, Mori T.Three-dimensional ultralarge-pore Ia3d mesoporous silica with various pore diameters and theirapplication in biomolecule immobilization. Chem. Eur. J.2008;14:11529-11538.
    [34] Kleitz F, Bérubé F o, Guillet-Nicolas R m, Yang C M, Thommes M. Probing adsorption, porecondensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6silica. J. Phys. Chem. C2010;114:9344-9355.
    [35] Schüth F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater.2001;13:3184-3195.
    [36] He X, Antonell D. Recent advances in synthesis and applications of transition metal containingmesoporous molecular sieves. Angew. Chem. Int. Ed.2002;41:214-229.
    [37] Wan Y, Yang H F, Zhao D Y.“Host-guest” chemistry in the synthesis of ordered nonsiliceousmesoporous materials. Acc. Chem. Res.2006;39:423-432.
    [38] Boettcher S W, Fan J, Tsung C K, Shi Q, Stucky G D. Harnessing the sol-gel process for theassembly of non-silicate mesostructured oxide materials. Acc. Chem. Res.2007;40:784-792.
    [39] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses oflarge-pore mesoporous metal oxides with semicrystalline frameworks. Nature1998;396:152-155.
    [40] Yuan Q, Liu Q, Song W G, Feng W, Pu W L, Sun L D, Zhang Y W, Yan C H. Ordered mesoporousCe1-xZrxO2solid solutions with crystalline walls. J. Am. Chem. Soc.2007;129:6698-6699.
    [41] Yuan Q, Yin A X, Luo C, Sun L D, Zhang Y W, Duan W T, Liu H C, Yan C H. Facile synthesis forordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc.2008;130:3465-3472.
    [42] Li L L, Duan W T, Yuan Q, Li Z X, Duan H H, Yan C H. Hierarchical γ-Al2O3monoliths withhighly ordered2D hexagonal meso-pores in macroporous walls. Chem. Commun.2009;6174-6176.
    [43] Li Y, Tan B, Wu Y. Mesoporous Co3O4Nanowire Arrays for Lithium Ion Batteries with HighCapacity and Rate Capability. Nano Lett.2007;8:265-2670.
    [44] Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou X W. Growth of ultrathin mesoporous Co3O4nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ.Sci.2012;5:7883-7887.
    [45] Li L, Krissanasaeranee M, Pattinson S W, Stefik M, Wiesner U, Steiner U, Eder D. Enhancedphotocatalytic properties in well-ordered mesoporous WO3. Chem. Commun.2010;46:7620-7622.
    [46] Sadakane M, Sasaki K, Kunioku H, Ohtani B, Abe R, Ueda W. Preparation of3-D orderedmacroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidalcrystal template method, and their structural characterization and application as photocatalystsunder visible light irradiation. J. Mater. Chem.2010;20:1811.
    [47] Huang H, Yue Z, Song Y, Du Y, Yang P. Mesoporous tungsten oxides as photocatalysts for O2evolution under irradiation of visible light. Mater. Lett.2012;88:57-60.
    [48] Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Ordered mesoporous In2O3: synthesis bystructure replication and application as a methane gas sensor. Adv. Funct. Mater.2009;19:653-661.
    [49] Haffer S, Waitz T, Tiemann M. Mesoporous In2O3with regular morphology by nanocasting: asimple relation between defined particle shape and growth mechanism. J. Phys. Chem. C2010;114:2075-2081.
    [50] Chen X, Yu T, Fan X, Zhang H, Li Z, Ye J, Zou Z. Enhanced activity of mesoporous Nb2O5forphotocatalytic hydrogen production. Appl. Surf. Sci.2007;253:8500-8506.
    [51] Lin H Y, Yang H C, Wang W L. Synthesis of mesoporous Nb2O5photocatalysts with Pt, Au, Cuand NiO cocatalyst for water splitting. Catal. Today2011;174:106-113.
    [52] Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H. Well-ordered large-pore mesoporousanatase TiO2with remarkably high thermal stability and improved crystallinity: preparation,characterization, and photocatalytic performance. Adv. Funct. Mater.2011;21:1922-1930.
    [53] Saravanan K, Ananthanarayanan K, Balaya P. Mesoporous TiO2with high packing density forsuperior lithium storage. Energy Environ. Sci.2010;3:939-948.
    [54] Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J. MesoporousTiO2single crystals delivering enhanced mobility and optoelectronic device performance. Nature2013;495:215-219.
    [55] Zhu P, Reddy M V, Wu Y, Peng S, Yang S, Nair A S, Loh K P, Chowdari B V R, Ramakrishna S.Mesoporous SnO2agglomerates with hierarchical structures as an efficient dual-functional materialfor dye-sensitized solar cells. Chem. Commun.2012;48:10865-10867.
    [56] Yue W B. Mesoporous crystalline metal oxides. University of St.Andrews2009.
    [57] Liu H, Du X, Xing X, Wang G, Qiao S Z. Highly ordered mesoporous Cr2O3materials withenhanced performance for gas sensors and lithium ion batteries. Chem. Commun.2012;48:865-867.
    [58] Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporousCr2O3frameworks incorporating Keggin-type12-phosphotungstic acids as efficient catalysts foroxidation of benzyl alcohols. J. Mater. Chem.2012;22:6919-6927.
    [59] Ni C, Li X, Chen Z, Li H-Y H, Jia X, Shah I, Xiao J Q. Oriented polycrystalline mesoporous CeO2with enhanced pore integrity. Microporous Mesoporous Mater.2008;115:247-252.
    [60] Roggenbuck J, Sch fer H, Tsoncheva T, Minchev C, Hanss J, Tiemann M. Mesoporous CeO2:Synthesis by nanocasting, characterisation and catalytic properties. Microporous MesoporousMater.2007;101:335-341.
    [61] Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic,organic-inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci.2013;189-190:21-41.
    [62] Ciesla U, Demuth D, Leon R, Petroff P, Stucky G, Unger K, Schuth F. Surfactant controlledpreparation of mesostructured transition-metal oxide compounds. J. Chem. Soc., Chem. Commun.1994:1387-1388.
    [63] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2by a Modified sol-gelmethod. Angew. Chem. Int. Ed. in English1995;34:2014-2017.
    [64] Ciesla U, Schacht S, Stucky G D, Unger K K, Schüth F. Formation of a porous zirconium oxophosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Ed. inEnglish1996;35:541-543.
    [65] Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chem.Rev,2007;107(7):2821-2860.
    [66] Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky G D, Zhao D. Self-adjusted synthesis ofordered stable mesoporous minerals by acid-base pairs. Nature Mater.2003;2:159-163.
    [67] Shi Y F, Wan Y, Zhao D Y. Ordered mesoporous non-oxide materials. Chem. Soc. Rev.2011;40:3854-3878.
    [68] Ko C H, Ryoo R. Imaging the channels in mesoporous molecular sieves with platinum. Chem.Commun.1996;2467-2468.
    [69] Zhu K, Yue B, Zhou W, He H. Preparation of three-dimensional chromium oxide porous singlecrystals templated by SBA-15. Chem. Commun.2003;98-99.
    [70] Wang Y, Yang C M, Schmidt W, Spliethoff B, Bill E, Schüth F. Weakly ferromagnetic orderedmesoporous Co3O4synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporoussilica. Adv. Mater.2005;17:53-56.
    [71] Jiao E, Jumas J C, Wbmes M, Chadwick A V, Harrison A. Bruee P. G. Synthesis of orderedmesoporous Fe3O4and γ-Fe2O3with crystalline walls using post-template reduction/oxidation. J.Am. Chem. Soc.2006;128:12905-12909.
    [72] Jiao F, Harrison A, Jumas J-C, Chadwick A V, Kockelmann W, Bruce P G. Ordered mesoporousFe2O3with crystalline walls. J. Am. Chem. Soc.2006;128:5468-5474.
    [73] Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. Synthesis of orderedmesoporous Fe3O4and γ-Fe2O3with crystalline walls using post-template reduction/oxidation. J.Am. Chem. Soc.2006;128:12905-12909.
    [74] Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2bya post-templating reaction. Angew. Chem. Int. Ed.2005;44:6550-6553.
    [75] Polarz S, Orlov A V, Schüth F, Lu A-H. Preparation of high-surface-area zinc oxide with orderedporosity, different pore sizes, and nanocrystalline walls. Chem. Eur. J.2007;13:592-597.
    [76] Ranjit K T, Klabunde K J. Solvent effects in the hydrolysis of magnesium methoxide, and theproduction of nanocrystalline magnesium hydroxide. an aid in understanding the formation ofporous inorganic materials. Chem. Mater.2004;17:65-73.
    [77] Liu Q, Wang A, Wang X, Zhang T. Ordered crystalline alumina molecular sieves synthesized via ananocasting route. Chem. Mater.2006;18:5153-5155.
    [78] Roggenbuck J, Koch G, Tiemann M. Synthesis of mesoporous magnesium oxide by CMK-3carbonstructure replication. Chem. Mater.2006;18:4151-4156.
    [79] Waitz T, Tiemann M, Klar P J, Sann J, Stehr J, Meyer B K. Crystalline ZnO with an enhancedsurface area obtained by nanocasting. Appl. Phys. Lett.2007;90:123108-123111.
    [80] Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J. A. Infrared switching electrochromicdevices based on tungsten oxide. J. Appl. Phys.2000;88:5777-5784.
    [81] Khalack J, Ashrit P V. Tunable pseudogaps in electrochromic WO3inverted opal photonic crystals.Appl. Phys. Lett.2006;89:211112-211115.
    [82] Wang Y D, Chen Z X, Li Y F, Zhou Z L, Wu, X H. Electrical and gas-sensing properties of WO3semiconductor material. Solid State Electron.2001;45:639-644.
    [83] Jin R H, Li H X, Deng J F. Selective oxidation of cyclopentene to glutaraldehyde by H2O2over theWO3/SiO2catalyst. J. Catal.2001;203(1):75-81.
    [84] Zhu K, He H, Xie S, Zhang X, Zhou W, Jin S, Yue B. Crystalline WO3nanowires synthesized bytemplating method. Chem. Phys. Lett.2003;377:317-321.
    [85] Cui X, Zhang H, Dong X, Chen H, Zhang L, Guo L, Shi J. Electrochemical catalytic activity forthe hydrogen oxidation of mesoporous WO3and WO3/C composites. J. Mater. Chem.2008;18:3575-3580.
    [86] Rossinyol E, Arbiol J, Peiró F, Cornet A, Morante J R, Tian B, Bo T, Zhao D. Nanostructured metaloxides synthesized by hard template method for gas sensing applications. Sens. Actuators B:Chem.2005;109:57-63.
    [87] Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, Cornet A, Morante J R,Solovyov L A, Tian B, Bo T, Zhao D. Synthesis and characterization of chromium-dopedmesoporous tungsten oxide for gas sensing applications. Adv. Funct. Mater.2007;17:1801-1806.
    [88] Zhang J, Ju X, Wu Z Y, Liu T, Hu T D, Xie Y N, Zhang Z L. Structural characteristics of ceriumoxide nanocrystals prepared by the microemulsion method. Chem. Mater.2001;13:4192-4197.
    [89] Balducci G, Islam M S, Ka par J, Fornasiero P, Graziani M. Bulk reduction and oxygen migrationin the ceria-based oxides. Chem. Mater.2000;12:677-681.
    [90] Sayle T X T, Parker S C, Sayle D C. Shape of CeO2nanoparticles using simulated amorphisationand recrystallisation. Chem. Commun.2004:2438-2439.
    [91] Wang Z L, Feng X. Polyhedral shapes of CeO2nanoparticles. J. Phys. Chem. B.2003;107:13563-13566.
    [92] Shchukin D G, Caruso R A. Template synthesis and photocatalytic properties of porous metal oxidespheres formed by nanoparticle infiltration. Chem. Mater.2004;16:2287-2292.
    [93] Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics.1996;83:1-16.
    [94] Tuller H L, Nowick A S. Doped ceria as a solid oxide electrolyte. J. Electroanal. Soc.1975;122:255-259.
    [95] Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley J C, El Fallah J, Hilaire L, LeNormand F, Quemere E, Sauvion G N, Touret O. Reduction of CeO2by hydrogen. Magneticsusceptibility and fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopymeasurements. J. Chem. Soc., Faraday Trans.1991;87:1601-1609.
    [96] Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G. The synthesis and characterizationof mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J. Catal.1998;178:299-308.
    [97] Lundberg M, Sk rman B, Reine Wallenberg L. Crystallography and porosity effects of COconversion on mesoporous CeO2. Microporous Mesoporous Mater.2004;69:187-195.
    [98] Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystallineframeworks using mesoporous silica templates. Chem. Commun.2003;2138-2139.
    [99] Lai F H, Lin L M, Huang Z G. Effect of thickness on the structure, morphology and opticalproperties of sputter deposited Nb2O5flms. Appl. Surf. Sci.2006;253(4):1801-1805.
    [100] Zhu H Y, Zheng Z F, Gao X P. Structural evolution in a hydrothermal reaction between Nb2O5andNaOH solution: from Nb2O5grains to microporous Na2Nb2O6·2/3H2O fibers and NaNbO3cubes. J.Am. Chem. Soc.2006;128(7):2373-2384.
    [101] Gargi A, Reddy G B. Study of surface morphology and optical properties of Nb2O5thin films withannealing. J. Mater. Sci. Mater. Electron.2005;16(1):21-24.
    [102] Zander D, Lyubenova L. Influence of the Nb2O5distribution on the electrochemical hydrogenationof nanocrystalline magnesium. J. Alloys Compd.2007;434-435:753-755.
    [103] Dolci F, Chio M D, Baricco M, et al. Niobium pentoxide as promoter in the mixed MgH2/Nb2O5system for hydrogen storage: a multitechnique investigation of the H2uptake. J. Mater. Sci.2007;42(17):7180-7185.
    [104] Antonelli D M, Nakahira A, Ying J Y. Ligand-Assisted Liquid Crystal Templating in MesoporousNiobiumOxide Molecular Sieves. Inorg. Chem.1996;35:3126-3136.
    [105] Lee B, Lu D, Kondo J N, Domen K. Three-dimensionally ordered mesoporous niobium oxide. J.Am. Chem. Soc.2002;124:11256-11257.
    [106] Xu X, Tian B Z, Kong J L, Zhang S, Liu B H, Zhao D Y. Ordered mesoporous niobium oxide film:a novel matrix for assembling functional proteins for bioelectrochemical applications. Adv. Mater.2003;15:1932-1936.
    [107] Qurashi A, El-Maghraby E M, Yamazaki T, Shen Y, Kikuta T. A generic approach for controlledsynthesis of In2O3nanostructures for gas sensing applications. J. Alloys Compd.2009;481:L35-L39.
    [108] Wu P, Li Q, Zhao C X, Zhang D L, Chi L F, Xiao T. Synthesis and photoluminescence property ofindium oxide nanowires.Appl. Surf. Sci.2008;255:3201-3204.
    [109] Wang C, Chen D, Jiao X, Chen C. Lotus-root-like In2O3nanostructures: fabrication,characterization, and photoluminescence properties. J. Phys. Chem. C2007;111:13398-13403.
    [110] Chen X, Zhang Z, Zhang X, Liu J, Qian Y. Single-source approach to the synthesis of In2S3andIn2O3crystallites and their optical properties. Chem. Phys. Lett.2005;407:482-486.
    [111] Ali E B, Maliki H E, Bernede J C, Sahnoun M, Khelil A, Saadane O. In2O3deposited by reactiveevaporation of indium in oxygen atmosphere-influence of post-annealing treatment on optical andelectrical properties. Mater. Chem. Phys.2002;73:78-85.
    [112] Yang H, Shi Q, Tian B, Lu Q, Gao F, Xie S, Fan J, Yu C, Tu B, Zhao D. One-step nanocastingsynthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructuredframeworks. J. Am. Chem. Soc.2003;125:4724-4725.
    [113] Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S. On the formation ofnanocrystalline bimodal mesoporous In2O3prepared by surfactant-assisted templating sol-gelprocess. Microporous Mesoporous Mater.2008;109:84-90.
    [114] Vorontsov A V, Stoyanova I V, Kozlov D V, Simagina V I, Savinov E N. Kinetics of thephotocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal.2000;189:360-369.
    [115] Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Photoinduced surface reactionson TiO2and SrTiO3films: photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater.1999;12:3-5.
    [116] Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediatesin the photodecomposition of water at titanium dioxide particulate systems. J. Phys. Chem.1979;83:3146-3152.
    [117] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: Mechanismsinvolving hydroxyl radical attack. J. Catal.1990;122:178-192.
    [118] Pan L, Zou J J, Wang S, Liu X Y, Zhang X, Wang L. Morphology evolution of TiO2facets and vitalinfluences on photocatalytic activity. ACSAppl. Mater. Interfaces2012;4:1650-1655.
    [119] Nakata K, Fujishima A. TiO2photocatalysis: Design and applications. J. Photochem. Photobiol. C:Photochem. Rev.2012;13:169-189.
    [120] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009;38:253-278.
    [121] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications ofsemiconductor photocatalysis. Chem. Rev.1995;95:69-96.
    [122] Xu J J, Chen M D, Fu D G. Preparation of bismuth oxide/titania composite particles and theirphotocatalytic activity to degradation of4-chlorophenol. Trans. Nonferrous Met. Soc. China2011;21:340-345.
    [123] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972;238(5358):37-38.
    [124] Hardee K L, Bard A J. Semiconductor Electrodes: X. Photoelectrochemical behavior of severalpolycrystalline metal oxide electrodes in aqueous solutions. J. Electrochem. Soc.1977;124:215-224.
    [125] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidalTiO2films. Nature1991;353:737-740.
    [126] Navarro Yerga R M, álvarez Galván M C, del Valle F, Villoria de la Mano J A, Fierro J L G. Watersplitting on semiconductor catalysts under visible-light irradiation. ChemSusChem2009;2(6):471-485.
    [127] Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with anoxide semiconductor photocatalyst. Nature2001;414:625-627.
    [128] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasinghydrogen from water-enhancing catalytic performance holds promise for hydrogen production bywater splitting in sunlight. Nature2006;440(7082):295.
    [129] Ren Y, Ma Z, Bruce P G. Ordered mesoporous metal oxides: synthesis and applications. Chem.Soc. Rev.2012;41:4909-4927.
    [130] Ren Y, Ma Z, Qian L, Dai S, He H, Bruce P G. Ordered crystalline mesoporous oxides as catalystsfor CO oxidation. Catal. Lett.2009;131:146-154.
    [131] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J Phys. Chem.1994;98:13669-13679.
    [132] Yang P, Lu C, Hua N, Du Y. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ions forphotocatalysis. Mater. Lett.2002;57:794-801.
    [133] Zhou M H,Yu J G,Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporousTiCh powders prepared by an ultrasonic method. J. Hazardous Materials,2006;137(3):1838-1847.
    [134] Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation.Chem. Rev.2010;110(11):6503-6570.
    [135] Sato S. Photocatalytic activity of NOx-doped TiO2in the visible light region. Chem. Phys. Lett.1986;123:126-128.
    [136] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-dopedtitanium oxides. Science2001;293:269-71.
    [137] Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A, Itoh H.Fluorine-doping in titanium dioxide by ion implantation technique. Nucl. Instrum. Methods Phys.Res., Sect. B.2003;206:254-262.
    [138] Liu G, Wang X, Wang L, Chen Z, Li F, Lu G Q, Cheng H M. Drastically enhanced photocatalyticactivity in nitrogen doped mesoporous TiO2with abundant surface states. J Colloid Interface Sci.2009;334:171-175.
    [139] Reyes-Garcia E A, Sun Y, Raftery D. Solid-state characterization of the nuclear and electronicenvironments in a boron-fluoride co-doped TiO2visible-light photocatalyst. J. Phys. Chem. C2007;111(45):17146-17154.
    [140] Lim M, Zhou Y, Wood B, Guo Y, Wang L, Rudolph V. Fluorine and carbon codoped macroporoustitania microspheres: highly effective photocatalyst for the destruction of airborne styrene undervisible light. J. Phys. Chem. C2008;112(49):19655-19661.
    [141] Anderson C, Bard A J. An improved photocatalyst of TiO2/SiO2prepared by a sol-gel synthesis. J.Phys. Chem.1995;99:9882-9985.
    [142] Kang M G, Han H-E, Kim K-J. Enhanced photodecomposition of4-chlorophenol in aqueoussolution by deposition of CdS on TiO2.J. Photochem. Photobiol.,A: Chem.1999;125:119-125.
    [143] Xu F, Yuan Y, Han H, Wu D, Gao Z, Jiang K. Synthesis of ZnO/CdS hierarchical heterostructurewith enhanced photocatalytic efficiency under nature sunlight. CrystEngComm2012;14:3615-3622.
    [144] Paramasivam I, Nah Y C, Das C, Shrestha N K, Schmuki P. WO3/TiO2nanotubes with stronglyenhanced photocatalytic activity. Chem. Eur. J.2010;16:8993-8997.
    [145] Chen W, Ruan H, Hu Y, Li D, Chen Z, Xian J, Chen J, Fu X, Shao Y, Zheng Y. One-steppreparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties.CrystEngComm2012;14:6295-6305.
    [146] Bedja I, Kamat P V. Capped semiconductor colloids. synthesis and photoelectrochemical behaviorof TiO2capped SnO2nanocrystallites. J. Phys. Chem.1995;99:9182-9188.
    [147] Qian S, Wang C, Liu W, Zhu Y, Yao W, Lu X. An enhanced CdS/TiO2photocatalyst with highstability and activity: Effect of mesoporous substrate and bifunctional linking molecule. J. Mater.Chem.2011;21:4945-4952.
    [148]王振兴,丁士文,张美红,张玉卓.自组装合成纳米复合TiO2-ZnO介孔材料及其光催化性能.化学学报2005;63(3):243-248.
    [149] Kamat P V. Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticleson a two-dimensional carbon support. J. Phys. Chem. Letters.2010;1(2):520-527.
    [150] Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ. Sci.2011;4(4):1113-1132.
    [151] Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev.2012;41:782-796.
    [152] Rao C, Sood A, Subrahmanyam K, Govindaraj A. Graphene: the new two-dimensionalnanomaterial.Angew. Chem. Int. Ed.2009;48(42):7752-7777.
    [153] Pasricha R, Gupta S, Srivastava AK. A facile and novel synthesis of Ag-graphene-basednanocomposites. Small2009;5(20):2253-2259.
    [154] Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. Palladium nanoparticles ongraphite oxide and its functionalized graphene derivatives as highly active catalysts for theSuzuki-Miyaura coupling reaction. J. Am. Chem. Soc.2009;131(23):8262-8270.
    [155] Wang G, Wang B, Wang X, Park J, Dou S, Ahn H. Sn/graphene nanocomposite with3Darchitecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem.2009;19(44):8378-8384.
    [156] Lee J K, Smith K B, Hayner C M, Kung H H. Silicon nanoparticles-graphene paper composites forLi ion battery anodes. Chem. Commun.2010;46(12):2025-2027.
    [157] Su J, Cao M, Ren L, Hu C. Fe3O4-Graphene nanocomposites with improved lithium storage andmagnetism properties. J. Phys. Chem. C2011;115(30):14469-14477.
    [158] Li B, Cao H, Yin G, Lu Y, Yin J. Cu2O@reduced graphene oxide composite for removal ofcontaminants from water and supercapacitors. J. Mater. Chem.2011;21:10645-10648.
    [159] Xu C, Wang X, Zhu J, Yang X, Lu L. Deposition of Co3O4nanoparticles onto exfoliated graphiteoxide sheets. J. Mater. Chem.2008;18(46):5625-5629.
    [160] Zhu C, Wang P, Wang L, Han L, Dong S. Facile synthesis of two-dimensional graphene/SnO2/Ptternary hybrid nanomaterials and their catalytic properties. Nanoscale2011;3:4376-4382.
    [161] Du D, Liu J, Zhang X, Cui X, Lin Y. One-step electrochemical deposition of a graphene-ZrO2nanocomposite: preparation, characterization and application for detection of organophosphorusagents. J. Mater. Chem.2011;21(22):8032-8037.
    [162] Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D. Synthesis of WO3@graphene composite forenhanced photocatalytic oxygen evolution from water. RSC Adv.2012;2:1356-1363.
    [163] Pan S, Liu X, Wang X. Preparation of Ag2S graphene nanocomposite from a single sourceprecursor and its surface-enhanced Raman scattering and photoluminescent activity. Mater.Charact.2011;62(11):1094-10101.
    [164] Wang H W, Hu Z A, Chang Y Q, Chen Y L, Wu H Y, Zhang Z Y, Design and synthesis of NiCo2O4reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem.2011;21:10504-10511.
    [165] Ng Y H, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4photocatalyst for an enhanced photoelectrochemical water splitting. J Phys. Chem. Lett.2010;1(17):2607-2612.
    [166] Mukherji A, Seger B, Lu G Q, Wang L. Nitrogen doped Sr2Ta2O7coupled with graphene sheets asphotocatalysts for increased photocatalytic hydrogen production. ACS Nano2011;5(5):3483-3492.
    [167] Xiong Z, Zhang L L, Ma J, Zhao X S. Photocatalytic degradation of dyes over graphene-goldnanocomposites under visible light irradiation. Chem. Commun.2010;46(33):6099-6101.
    [168] Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on atwo-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide. NanoLett.2010;10(2):577-583.
    [169] Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles inethanol. Carbon2011;49(1):11-18.
    [170] Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as ahighly efficient visible-light plasmonic photocatalyst.ACS Nano2011;5:4529-4536.
    [171] Zhu M, Chen P, Liu M. Sunlight-driven plasmonic photocatalysts based on Ag/AgClnanostructures synthesized via an oil-in-water medium: enhanced catalytic performance bymorphology selection. J. Mater. Chem.2011;21:16413-16419.
    [172] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong J R. Highly efficient visible-light-drivenphotocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem.Soc.2011;133:10878-10884.
    [173] Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. Hierarchically orderedmacro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced chargerecombination, and their enhanced photocatalytic activities. ACS Nano2010;5:590-596.
    [174] Okura I, Kusunoki S, Kim-Thuan N, Kobayashi M. Comparison of activities for hydrogenevolution from water of hydrogenase and colloidal platinum. J. Chem. Soc., Chem. Commun.1981;56-57.
    [175]胥利先,桑丽霞,马重芳,鹿院卫,王峰,李群伟,戴洪兴,何洪,孙继红.介孔InVO4光催化剂的合成及其光催化分解水的性能.催化学报2006;27(2):100-102.
    [176] Chen X, Mao SS. Titanium Dioxide nanomaterials:synthesis, properties, modifications, andapplications. Chem. Rev.2007;107(7):2891-2959.
    [177] Deveau P A, Arsac F, Thivel P X, Ferronato C, Delpech F, Chovelon J M, Kaluzny P, Monnet C.Different methods in TiO2photodegradation mechanism studies: Gaseous and TiO2-adsorbedphases. J. Hazard. Mater.2007;144:692-697.
    [178] Meichtry J M, Rivera V, Di Iorio Y, Rodriguez H B, Roman E S, Grela M A, Litter M I.Photoreduction of Cr(VI) using hydroxoaluminiumtri-carboxymonoamide phthalocyanineadsorbed on TiO2. Photochem. Photobiol. Sci.2009;8:604-612.
    [179] Tamai H, Katsu N, Ono K, Yasuda H. Simple preparation of TiO2particles dispersed activatedcarbons and their photo-sterilization activity. J. Mater. Sci.2002;37:3175-3180.
    [180] Liu G, Zhao Y, Sun C, Li F, Lu G Q, Cheng H-M. Synergistic effects of B/N doping on thevisible-light photocatalytic activity of mesoporous TiO2. Angew. Chem. Int. Ed.2008;47:4516-4520.
    [181] Xu J S, Zhu Y J. α-Fe2O3hierarchically nanostructured mesoporous microspheres: Surfactant-freesolvothermal combined with heat treatment synthesis, photocatalytic activity and magneticproperty. CrystEngComm2012;14:2702-2710.
    [182]黄晓东,白守礼,李殿卿,罗瑞贤,陈霭璠,刘炯权.ZnO-SnO2纳米复合氧化物的制备、表征及其气敏性质的研究.无机化学学报2005;21(8):1143-1148.
    [183] Lee D, Lee J, Kim J, Kim J, Na H. B, Kim B, Shin C.-H, Kwak J. H, Dohnalkova A, Grate J. W,Hyeon T, Kim H S. Simple fabrication of a highly sensitive and fast glucose biosensor usingenzymes immobilized in mesocellular carbon foam. Adv. Mater.2005;17(23):2828-2833
    [184] Luo J Y, Zhang J J, Xia Y Y. Highly electrochemical reaction of lithium in the orderedmesoporosus β-MnO2. Chem. Mater.2006;18:5618-5623.
    [185] Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizesas catalyst supports in direct methanol fuel cell. J. Phys. Chem. B2004;108:7074-7079.
    [186] Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Hierarchically mesostructured doped CeO2withpotential for solar-cell use. Nature Mater.2004;3:394-397.
    [1] Sing K S W, Everett D, Haul R A. Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity. Pure and Applied Chemistry,1985;57(4):603619.
    [2]刘粤惠,刘平安. X射线衍射分析原理与应用.北京:化学工业出版社.2003
    [3] Huang H, Yue Z, Song Y, Du Y, Yang P. Mesoporous tungsten oxides as photocatalysts for O2evolution under irradiation of visible light. Materials Letters.2012;88:57-60.
    [4] Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S. High-yield production of grapheneby liquid-phase exfoliation of graphite. Nature Nano.2008;3(9):563-8.
    [5] Khan U, O'Neill A, Lotya M, De S, Coleman JN. High-Concentration Solvent Exfoliation ofGraphene. Small.2010;6(7):864-71.
    [6] Mukherji, A.; Seger, B.; Lu, G. Q.; Wang, L. TiO2-Graphene Nanocomposites. UV-AssistedPhotocatalytic Reduction of Graphene Oxide. ACS Nano.2011;5,3483-34
    [1] Fujishima A, Hondo K. Electrochemical photolysis of water on semiconductor electrode. Nature,1972;37:238-245.
    [2] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry andPhotobiology C:Photochemistry Reviews,2000;1:1-21.
    [3] Zhang T Y, Shao H F, Zhao J C. Effect of TiO2loading on the photocatalytic degradation of dyesunder concentrating solar irradiation. Acta Energiae Solaris Sinica,2005;26:19-22.
    [4] Wang B, Sha J P, Yang Y G. Development of the preparation and application of nano-TiO2asphotocatalysis. Chem. Industry Times,2006;20:74-77.
    [5] Zhu L, Song H J. Application of TiO2photocatalytic technology in the treatment of wastewater.Science and Technology of Overseas Building Materials,2006;27:92-93,97.
    [6] Micha T.Scaling properties in photocatalysis. Catal. Today,2000;58:151-159.
    [7] Sung S M, Choi J R, Hah H J. Comparison of Ag deposition effects on the photocatalytic activityof nanoparticulate TiO2undervisible and UV light irradiation. Photochem. Photobio. A:Chem,2004;163:37-44.
    [8] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009;38:253-278.
    [9] Khan S, Al-Shahry M. Efficient photochemical water splitting by a chemically modified n-TiO2.Science2002;297:2243-2245.
    [10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode Nature1972;238:37-38.
    [11] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-dopedtitanium oxides. Science2001;293:269-71.
    [12] Yang P, Lu C, Hua N P, Du Y K. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ionsfor photocatalysis. Mater. Lett.2002;57:794-801.
    [13] Erbs W, Desilvestro J, Borgarello E, Graetzel M. Visible-light-induced oxygen generation fromaqueous dispersions of tungsten(VI) oxide. J. Phys. Chem.1984;88:4001-4006.
    [14] Chen X Y, Yu T, Fan X X, Zhang H T, Li ZS, Ye J H. Enhanced activity of mesoporous Nb2O5forphotocatalytic hydrogen production. Appl. Surf. Sci.2007;253:8500-8506.
    [15] Bamwenda R G, Arakawa H. The visible light induced photocatalytic activity of tungsten trioxidepowders. Appl. Catal. A: General2001;210:181-191.
    [16] Guo J J, Li Y, Zhu SM, Chen Z X, Liu Q L, Zhang D. Synthesis of WO3@Graphene composite forenhanced photocatalytic oxygen evolution from water. RSC Advances2012;2:1356-1363.
    [17] Gratian R B, Hironori A. The visible light induced photocatalytic activity of tungsten trioxidepowders. Appl. Catal. A,2001;210:181-191
    [18] Gao Y L, Chen Q Y, Yin Z L. Influence of Oxygen Vacancies of WO3on Photocatalytic Activityfor O2Evolution. Chinese J. Inorg. Chem.,2005;121:1510-1514
    [19] Sayama K, Yoshida R, Kusama H. Photocatalytic decomposition of water into H2and O2by atwo-step photoexcitation reaction using a WO3suspension catalyst and an Fe3+/Fe2+redox system.Chem. Phy. Lett.,1997;277:387-391
    [20] Bamwenda G R, Arakawa H. The photoinduced evolution of O2and H2from a WO3aqueoussuspension in the presence of Ce4+/Ce3+. Solar Energy Materials&Solar Cells,2001;70:1-13
    [21] Zhu L F, She J C, Luo J Y, Deng S Z, Chen J, Xu N S. Study of physical and chemical processesof H2sensing of Pt-coated WO3nanowire films. J. Phys. Chem. C,2010;114:15504-15509.
    [22] Xi G C, Ye J H, Ma Q, Su N, Bai H, and Wang C, In Situ Growth of Metal Particles on3DUrchin-like WO3Nanostructures. J. Am. Chem. Soc.,2012;134(15):6508-6511
    [23] Xiang Q, Meng G F, Zhao H B, Zhang Y, Li H, Ma W J and Xu J Q. Au Nanoparticle ModifiedWO3Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing. J. Phys.Chem. C,2010;114(5):2049-2055.
    [24] Cui X Z, Zhang H, Dong X P, Chen H R, Zhang L X, Guo L M. Electrochemical catalytic activityfor the hydrogen oxidation of mesoporous WO3and WO3/C composites. J. Mater. Chem.2008;18:3575-3580.
    [25] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N. Mesoporous titania spheres with tunablechamber stucture and enhanced photocatalytic activity. J. Am. Chem. Soc.2007;129:8406-8407.
    [26] Yu J C, Wang X, Fu X. Pore-wall chemistry and photocatalytic activity of mesoporous titaniamolecular sieve films. Chem. Mater.2004;16:1523-1530.
    [27] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable,mesoporous silica structures. J. Am. Chem. Soc.1998;120:6024-6036.
    [28] Cui X Z, Shi J L, Chen H R, Zhang L X, Guo L M. Platinum/mesoporous WO3as a carbon-freeelectrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B2008;112:12024-12031.
    [29] Ravikovitch P I, Neimark A V, Relations between Structural Parameters and AdsorptionCharacterization of Templated Nanoporous Materials with Cubic Symmetry, Langmuir2000;16:2419-2423.
    [30] Kleitz F, Choi S H, Ryoo R, Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes Electronic supplementary information(ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns duringformation of the cubic phase.Chem. Commun.2003;2136.
    [31] Wang F, Lu G X. High performance rare earth oxides LnOx(Ln=La, Ce, Nd, Sm andDy)-modified Pt/SiO2catalysts for CO oxidation in the presence of H2. J. Power. Sources2008;181:120-126.
    [32] Purwanto A, Widiyandari H, Ogi T, Okuyama K. Role of particle size for platinum-loadedtungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation. Catal.Commun.2011;12:525-529.
    [33] Kominami H, Yabutani K-i, Yamamoto T, Kera Y, Ohtani B. Novel solvothermal synthesis ofniobium(v) oxide powders and their photocatalytic activity in aqueous suspensions. J. Mater.Chem.2001;11:3222-3227.
    [34] Ismail AA, Bahnemann DW. Mesostructured Pt/TiO2Nanocomposites as Highly ActivePhotocatalysts for the Photooxidation of Dichloroacetic Acid. J. Phys. Chem. C2011;115:5784-91.
    [35] Kim J, Lee C W. Platinized WO3as an environmental photocatalyst that generates OH radicalsunder visible light. Environ. Sci.&Techn.2010;44:6849-6854.
    [36] Zhao Z G, Miyauchi M. Nanoporous-Walled Tungsten Oxide Nanotubes as Highly ActiveVisible-Light-Driven Photocatalysts. Angew. Chem. Int. Ed.2008;47:7051-7055.
    [1] Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972;238:37.
    [2] Hu, J. S., Ren, L. L., Guo, Y. G., Liang, H. P., Cao, A. M., Wan, L. J., Bai, C. L. Mass productionand high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem., Int. Ed.2005;44:1269.
    [3] Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W. Environmental Applications ofSemiconductor Photocatalysis. Chem. Rev.1995;95:69.
    [4] Niishiro, R., Konta, R., Kato, H., Chun, W. J., Asakura, K., Kudo, A. Photocatalytic O2evolutionof rhodium and antimony-codoped rutile-type TiO2under visible light irradiation. J. Phy. Chem. C2007;111:17420.
    [5] Duonghong, D., Gratzel, M. Colloidal TiO2particles as oxygen carriers in photochemical watercleavage systems. J. Chem. Soc., Chem. Commun.1984;0:1597.
    [6] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. Visible-light photocatalysis innitrogen-doped titanium oxides. Science2001;293:269.
    [7] Karakitsou, K. E., Verykios, X. E. Effects of altervalent cation doping of titania on its performanceas a photocatalyst for water cleavage. J. Phys. Chem.1993;97:1184.
    [8] Yang, P., Lu, C., Hua, N., Du, Y. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ionsfor photocatalysis. Mater. Lett.2002;57:794.
    [9] Zhang H., Lv X. J., Li Y. M., Wang Y. Li J. H., P25-Graphene Composite as a High PerformancePhotocatalyst. ACS Nano2009;4:380.
    [10] Wang J. H., Liang S., Ma L., Ding S. J. Yu, X. F., Zhou L., Wang Q. Q.,One-pot synthesis ofCdS-reduced graphene oxide3D composites with enhanced photocatalytic properties.CrystEngComm,2014;16:399.
    [11] Kavitha M. K., John H., Gopinath P. and Philip R. Synthesis of reduced graphene oxide-ZnOhybrid with enhanced optical limiting properties. J. Mater. Chem. C2013;1:3669.
    [12] Zhou M. J., Yan J. H.,, Cui P., Synthesis andenhanced photocatalytic performance of WO3nanorods@graphene nanocomposites. Mater. Lett.2012;89:258.
    [13] Zhao, Z. G., Miyauchi, M. Nanoporous-Walled Tungsten Oxide Nanotubes as Highly ActiveVisible-Light-Driven Photocatalysts. Angew. Chem., Int. Ed.2008;47:7051.
    [14] Bamwenda, G. R., Arakawa, H. The visible light induced photocatalytic activity of tungstentrioxide powders. Appl. Catal. A-Gen.2001;210:181.
    [15] Arai, T., Horiguchi, M., Yanagida, M., Gunji, T., Sugihara, H., Sayama, K. Reaction mechanismand activity of WO3-catalyzed photodegradation of organic substances promoted by a CuOcocatalyst. J. Phys. Chem. C2009;113:6602.
    [16] Erbs, W., Desilvestro, J., Borgarello, E., Graetzel, M. Visible-light-induced oxygen generationfrom aqueous dispersions of tungsten (VI) oxide. J. Phys. Chem.1984;88:4001.
    [17] Liu, R., Lin, Y., Chou, L. Y., Sheehan, S. W., He, W., Zhang, F., Hou, H. J. M., Wang, D. Wang.Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with anoxygen-evolving catalyst. Angew. Chem., Int. Ed.2011;50:499.
    [18] Abe, R., Takami, H., Murakami, N., Ohtani, B. Pristine simple oxides as visible light drivenphotocatalysts: highly efficient decomposition of organic compounds over platinum-loadedtungsten oxide. J. Am. Chem. Soc.2008;130:77801.
    [19] Sadakane, M., Sasaki, K., Kunioku, H., Ohtani, B., Abe, R., Ueda, W. Preparation of3-D orderedmacroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidalcrystal template method, and their structural characterization and application as photocatalystsunder visible light irradiation. J. Mater. Chem.2010;20:1811.
    [20] Li, L., Krissanasaeranee, M., Pattinson, S. W., Stefik, M., Wiesner, U., Steiner, U., Eder, D.Enhanced photocatalytic properties in well-ordered mesoporous WO3. Chem. Commun.2010;46:7620.
    [21] Ren, Y., Ma, Z., Bruce, P. G. Bruce. Ordered mesoporous metal oxides: synthesis and applications.Chem. Soc. Rev.2012;41:4909.
    [22] Huang, H., Yue, Z., Song, Y., Du, Y., Yang, P. Mesoporous tungsten oxides as photocatalysts forO2evolution under irradiation of visible light. Mater. Lett.2012;88:57.
    [23] Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater.2007;6:183.
    [24] Dato, A., Radmilovic, V., Lee, Z., Phillips, J., Frenklach, M. Substrate-free gas-phase synthesis ofgraphene sheets. Nano Lett.2008;8:2012.
    [25] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. Superiorthermal conductivity of single-layer graphene. Nano Lett.2008;8:902.
    [26] Si, Y., Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater.2008,20,6792.
    [27] Scheuermann, G. M., Rumi, L., Steurer, P., Bannwarth, W., Mu lhaupt, R. Palladium nanoparticleson graphite oxide and its functionalized graphene derivatives as highly active catalysts for thesuzuki-miyaura coupling reaction. J. Am. Chem. Soc.2009;131:8262.
    [28] Williams, G., Seger, B., Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalyticreduction of graphene oxide. ACS Nano2008;2:1487.
    [29] Guo, J., Li, Y., Zhu, S., Chen, Z., Liu, Q., Zhang, D., Moon, W.-J., Song, D. M. Synthesis ofWO3@Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv.2012;2:1356.
    [30] Zhu, M., Li, Z., Xiao, B., Lu, Y., Du, Y., Yang, P., Wang, X., Surfactant assistance inimprovement of photocatalytic hydrogen production with the porphyrin noncovalentlyfunctionalized graphene nanocomposite. ACS Appl. Mater. Interfaces2013;5:1732.
    [31] Sahoo N. G., Pan Y. Z., Li L. and Chan S. H. Graphene-based materials for energy conversion.Adv. Mater.2012;24:4203.
    [32] Xiang, Q., Yu, J., Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev.2012;41:782.
    [33] Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., Balkus, K. J. Hydrothermalsynthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity. ACSCatal.2012;2:949.
    [34] An, X., Yu, J. C., Wang, Y., Hu, Y., Yu, X., Zhang, G. WO3nanorods/graphene nanocompositesfor high-efficiency visible-light-driven photocatalysis and NO2gas sensing. J. Mater. Chem.2012;22:8525.
    [35] Luo, Q. P., Yu, X. Y., Lei, B. X., Chen, H. Y., Kuang, D. B., Su, C. Y. Reduced GrapheneOxide-Hierarchical ZnO Hollow Sphere Composites with enhanced photocurrent andphotocatalytic activity. J. Phys. Chem. C,2012;116:8111.
    [36] Du J., Lai X. Y., Yang N. L., Zhai J., Kisailus D., Su F. B., Wang D., Jiang L. HierarchicallyOrdered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, ReducedCharge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano,2011;5(1):590-596.
    [37] Jiao, K., Zhang, B., Yue, B., Ren, Y., Liu, S., Yan, S., Dickinson, C., Zhou, W., He, H. Growth ofporous single-crystal Cr2O3in a3-D mesopore system. Chem. Commun.2005,0,5618
    [38] Xiang, Q., Yu, J., Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-productionactivity of graphene/C3N4composites. J. Phys. Chem. C,2011;115:7355.
    [39] Kleitz, F., Hei Choi, S., Ryoo, R. Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.2003;0:2136.
    [40] Kang, E., An, S., Yoon, S., Kim, J. K., Lee, J. Ordered mesoporous WO3-Xpossessingelectronically conductive framework comparable to carbon framework toward long-term stablecathode supports for fuel cells. J. Mater. Chem.2010;20:7416.
    [41] Yoon, S., Kang, E., Kim, J. K., Lee, C. W., Lee, J. Development of High-PerformanceSupercapacitor Electrodes Using Novel Ordered Mesoporous Tungsten Oxide Materials with HighElectrical Conductivity. Chem. Commun.2011;47:1021.
    [42] Qin, J., Cao, M., Li, N., Hu, C. Graphene-wrapped WO3nanoparticles with improvedperformances in electrical conductivity and gas sensing properties. J. Mater. Chem.2011;21:17167.
    [43] Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'homme, R. K., Aksay, I. A., Car, R. Raman spectraof graphite oxide and functionalized graphene sheets. Nano Lett.2007;8:36.
    [44] Bai, X., Wang, L., Zong, R., Lv, Y., Sun, Y., Zhu, Y. Performance enhancement of ZnOphotocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir,2013;29:3097.
    [45] Zhang, J., Yu, J., Jaroniec, M., Gong, J. R. Noble metal-free reduced graphene oxide-ZnxCd1-xSnanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett.2012;12:4584.
    [46] Xiang, Q., Yu, J., Jaroniec, M. Synergetic effect of MoS2and graphene as cocatalysts for enhancedphotocatalytic H2production activity of TiO2nanoparticles. J. Am. Chem. Soc.2012;134:6575.
    [47] Zhu, M S., Dong, Y P., Xiao, B., Du, Y K., Yang, P., Wang, X M. Enhanced photocatalytichydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxidehybrid. J. Mater. Chem.2012;22:23773.
    [48] Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J. R. Highly efficient visible-light-drivenphotocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem.Soc.2011;133:10878
    [1] Kudo, A., Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009;38:253-278.
    [2] Chen, X. B., Shen, S. H., GuoL. J., Mao, S. S. Semiconductor-based photocatalytic hydrogengeneration. Chem. Rev.2010;110:6503-6570.
    [3] Maeda, K., Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J.Phys. Chem. Lett.2010;1:2655-2661.
    [4] Zhang, J., Du, P. W., Schneider, J., Jarosz P., Eisenberg, R. Photogeneration of Hydrogen fromWater Using an Integrated System Based on TiO2and Platinum (II) Diimine Dithiolate Sensitizers.J. Am. Chem. Soc.2007;129:7726-7727.
    [5] Khan, S. U. M., Al-Shahry, M., Ingler, W. B. Efficient Photochemical Water Splitting by aChemically Modified n-TiO2. Science2002;297:2243-2245.
    [6] Park, J. H., Kim, S., Bard, A. J. Novel Carbon-Doped TiO2Nanotube Arrays with High AspectRatios for Efficient Solar Water Splitting. Nano Lett.2005;6:24-28.
    [7] Furukawa, S., Ohno, Y., Shishido, T., Teramura, K., Tanaka, T. Selective Amine Oxidation UsingNb2O5Photocatalyst and O2. ACS Catal.2011;1:1150-1153.
    [8] Ge, S. X., Jia, H. M., Zhao, H. X., Zheng, Z., Zhang, L. Z. First observation of visible lightphotocatalytic activity of carbon modified Nb2O5nanostructures J. Mater. Chem.2010;20:3052-3058.
    [9] Yang, X. Y., Wolcott, A., Wang, G. M., Sobo, A., Fitzmorris, R. C., Qian, F., Zhang, J. Z., Li, Y.Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett.2009;9:2331-2336.
    [10] Wolcott, A., Smith, W. A., Kuykendall, T. R., Zhao, Y. P., Zhang, J. Z. PhotoelectrochemicalStudy of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. Adv.Funct. Mater.2009;19:1849-1856.
    [11] Li, Q., Meng, H., Zhou, P., Zheng, Y. Q., Wang, J., Yu, J. G., Gong, J. R. Electronic Surface LevelPositions of WO3Thin Films for Photoelectrochemical Hydrogen Production. ACS Catal.2013;3:882-889.
    [12] Zong, X., Yan, H. J., Wu, G. P., Ma, G. J., Wen, F. Y., Wang, L., Li, C. NanostructuredWO3-BiVO4Heterojunction Films for Efficient Photoelectrochemical Water Splitting. J. Am.Chem. Soc.2008;130:7176-7177.
    [13] Lin, H. Y., Huang, H. C., Wang, W. L. Preparation of mesoporous In-Nb mixed oxides and itsapplication in photocatalytic water splitting for hydrogen production. Micropor. Mesopor. Mat.2008;115:568-575.
    [14] Esteves, A., Oliveira, L., Ramalho, T., Goncalves, M., Anastacio, A., Carvalho, H. New materialsbased on modified synthetic Nb2O5as photocatalyst for oxidation of organic contaminants. Catal.Commun.2008;10:330-332.
    [15] Lin, H. Y., Yang, H. C., Wang, W. L. Synthesis of mesoporous Nb2O5photocatalysts with Pt, Au,Cu and NiO cocatalyst for water splitting. Catal. Today2011;174:106-113.
    [16] Ullah, R., Sun, H. Q., Ang, H. M., Tadé, M. O., Wang, S. B. Comparative Investigation ofPhotocatalytic Degradation of Toluene on Nitrogen Doped Ta2O5and Nb2O5Nanoparticles. Ind.Eng. Chem. Res.2013;52:3320-3328.
    [17] Li, X. K., Kikugawa, N., Ye, J. H. Nitrogen-doped Lamellar Niobic Acid with VisibleLight-responsive Photocatalytic Activity. Adv. Mater.2008;20:3816-3819.
    [18] Shi, H. F., Li, X. K., Iwai, H., Zou, Z. G., Ye, J. H.2-Propanol photodegradation overnitrogen-doped NaNbO3powders under visible-light irradiation. J. Phys. Chem. Solids2009;70:931-935.
    [19] Wang, R. W., Zhu, Y. F., Qiu, Y. F., Leung, C. F., He, J., Liu, G. J., Lau, T. C. Synthesis ofnitrogen-doped KNbO3nanocubes with high photocatalytic activity for water splitting anddegradation of organic pollutants under visible light. Chem. Eng. J.2013;226:123-130.
    [20] Sato S. Photocatalytic activity of NOx-doped TiO2in the visible light region. Chem. Phy. Leet.1986;123:126-128.
    [21] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides. Science2001;293:269.
    [22] Okumura, K., Tomiyama, T., Shirakawa, S., Ishida, S., Sanada, T., Arao, M., Niwa, M.Hydrothermal synthesis and catalysis of Nb2O5-WOxnanofiber crystal. J. Mater. Chem.2011;21:229-235.
    [23] Shima, H., Tanaka, M., Imai, H., Yokoi, T., Tatsumi, T., Kondo, J. N. IR Observation of SelectiveOxidation of Cyclohexene with H2O2over Mesoporous Nb2O5. J. Phys. Chem. C2009;113:21693-21699.
    [24] Chen, X. Y., Yu, T., Fan, X. X., Zhang, H. T., Li, Z. S., Ye, J. H., Zou, Z. G. Enhanced activity ofmesoporous Nb2O5for photocatalytic hydrogen production. Appl. Surf. Sci.2007;253:8500-8506.
    [25] Song, L. Y., Feng, D., Fredin, N. J., Yager, K. G., Jones, R. L., Wu, Q. Y., Zhao, D. Y., Vogt, B.D. Challenges in Fabrication ofMesoporous Carbon Films with Ordered Cylindrical Pores viaPhenolic Oligomer Self-Assembly with Triblock Copolymers. ACS Nano2010;4:189-198.
    [26] Katou, T., Lu, D. L., Kondo, J. N., Domen, K. Synthesis of2D-hexagonally ordered mesoporousniobium and tantalum mixed oxide. J. Mater. Chem.2002;12:1480-1483.
    [27] Lee, B., Lu, D. L., Kondo, J. N., Domen, K. Three-Dimensionally Ordered Mesoporous NiobiumOxide. J. Am. Chem. Soc.2002;124:11256-11257.
    [28] Liu, S. H., Wu, J. R. Nitrogen-doped ordered mesoporous carbons as electrocatalysts formethanol-tolerant oxygen reduction in acid solution Int. J. Hydrogen. Energ.2011;36:87-93.
    [29] Hao, H. Y., Zhang, J. L. The study of Iron (III) and nitrogen co-doped mesoporous TiO2photocatalysts: synthesis, characterization and activity. Micropor. Mesopor. Mat.2009;121:52-57.
    [30] Wang, J. G., Bian, Z. F., Zhu, J., Li, H. X. Ordered mesoporous TiO2with exposed (001) facetsand enhanced activity in photocatalytic selective oxidation of alcohols. J. Mater. Chem. A2013;1:1296-1302.
    [31] Furukawa, S., Shishido, T., Teramura, K., Tanaka, Photocatalytic Oxidation of Alcohols over TiO2Covered with Nb2O5T. ACS Catal.2012;2:175-179.
    [32] Etacheri, V., Seery, M. K., Hinder, S. J., Pillai, S. C. Highly Visible Light Active TiO2-xNxHeterojunction Photocatalyst. Chem. Mater.2010;22:3843-3853.
    [33] Madhusudan, P., Ran, J., Zhang, J., Yu, J. G., Liu, G. Novel urea assisted hydrothermal synthesisof hierarchical BiVO4-Bi2O2CO3nanocomposites with enhanced visible-light photocatalyticactivity. Appl. Catal. B: Environ.2011;110:286-295.
    [34] Sathish, M., Viswanathan, B., Viswanath, R. P., Gopinath, C. S. Synthesis, Characterization,Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst Chem.Mater.2005;17:6349-6353.
    [35] Liu, S. H., Syu, H. R. One-step fabrication of N-doped mesoporous TiO2nanoparticles byself-assembly for photocatalytic water splitting under visible light. Appl. Energ.2012;100:148-154.
    [36] Gra a, M. P. F., Meireles, A., Nico, C., Valente, M. A. Nb2O5nanosize powders prepared bysol-gel-Structure, morphology and dielectric properties. J. Alloy. Compd.2013;553:177-182.
    [37] Wang, J. W., Zhu, W., Zhang, Y. Q., Liu, S. X. An Efficient Two-Step Technique forNitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition ofMethylene Blue J. Phys. Chem. C2007;111:1010-1014.
    [38] Babu, V. J., Kumar, M. K., Nair, A. S., Kheng, T. L., Allakhverdiev, S. I., Ramakrishna, S. Visiblelight photocatalytic water splitting for hydrogen production from N-TiO2rice grain shapedelectrospun nanostructures. Int. J. Hydrogen. Energ.2012;37:8897-8904.
    [39] Li, Q., Guo, B. D., Yu, J. G., Ran, J. R., Zhang, B. H., Yan, H. J., Gong, J. R. Highly EfficientVisible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated GrapheneNanosheets. J. Am. Chem. Soc.2011;133:10878-10884.
    [40] Arney, D., Maggard, P. A. Effect of Platelet-Shaped Surfaces and Silver-Cation Exchange on thePhotocatalytic Hydrogen Production of RbLaNb2O7. ACS Catal.2012;2:1711-1717.
    [1] Corma A, Atienzar P, Garcia H, et al. Hierarchically mesostructured doped CeO2with potential forsolar-cell use. Nature Materials2004;3:394-397.
    [2] Ji P F, Zhang J L, Chen F, et al. Ordered mesoporous CeO2synthesized by nanocasting from cubicIa3d mesoporous MCM-48silica: formation, characterization and photocatalytic activity. Journalof Physical Chemistry C2008;112:17809-17813.
    [3] Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics.1996;83:1-16.
    [4]栾宝平.不同形貌微/纳米氧化铈的制备及光催化性能的研究.上海师范大学2011.
    [5]朱哲民,王燕华.Zn掺杂TiO2的制备及其光催化降解甲基橙性能.工业催化2009;17:64-68
    [6]梁晓明,张苏敏.低温醇解法制备Bi掺杂TiO2光催化剂.海南师范大学学报(自然科学版)2011;24:422-424
    [7]包南,刘峰,张锋,等.铁掺杂二氧化钛纳米晶的超声模板法制备及其光催化活性.功能材料与器件学报,2008;14:462-466
    [8] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titaniumoxides. Science,2001;293:269-271.
    [9] Khan S U M, Al-Shahry M, Ingler W B, et al. Efficient photochemical water splitting by achemically modified n-TiO2. Science,2002;297:2243-2245.
    [10] Yuan Z Y, Idakiev V, Tabakova T, et.al. Mesoporous and nanostructured CeO2as supports ofnano-sized gold catalysts for low-temperature water-gas shift reaction. Catalysis Today,2008;131:203-210.
    [11] Sun C W, Xie Z, Xia C R, et.al. Investigations of mesoporous CeO2-Ru as a reforming catalystlayer for solid oxide fuel cells. Electrochemistry Communications,2006;8:833-838.
    [12] Sun C W, Sun J, Xiao G L, et.al. Mesoscale organization of nearly monodisperse flowerlike ceriamicrospheres. Journal of Physics and Chemistry B2006;110:13445-13452.
    [13] Zhang G J, Shen Z R, Liu M, et al. Synthesis and characterization of mesoporous ceria withhierarchical nanoarchitecture controlled by amino acids. Journal of Physics and Chemistry B2006;110:25782-25790.
    [14]赵旭,罗来涛,刘成文,等.模板剂和制备条件对介孔CeO2材料性能的影响.化学研究与应用2007;19:858-862.
    [15] Luo L T, Wang J X, Zhao X, et al. Template synthesis and characterization of mesoporous CeO2and Ru-loaded mesoporous CeO2. Indian Journal of Chemistry2009;48:327-332.
    [16] Shen W H, Dong X P, Zhu Y F, et al. Mesoporous CeO2and CuO-loaded mesoporous CeO2:Synthesis, characterization, and CO catalytic oxidation property. Microporous and MesoporousMaterials2005;85:157-162.
    [17] Roggenbuck J, Sch fer H, Tsoncheva T, et al. Mesoporous CeO2: synthesis by nanocasting,characterisation and catalytic properties. Microporous and Mesoporous Materials2007;101:335-341.
    [18] Wang Y J, Ma J M, Luo M F, et al. Preparation of high-surface area nano-CeO2by templateassisted precipitation method. Journal of Rare Earths2007;25:58-62.
    [19] Murcia-López S, Hidalgo M C, Navío J A, et al. Synthesis, characterization and photocatalyticactivity of Bi-doped TiO2photocatalysts under simulated solar irradiation. Applied Catalysis A:General2011;404:59-67.
    [20] Huang H, Yue, Z K, Song Y J, et al. Mesoporous tungsten oxides as photocatalysts for O2evolution under irradiation of visible light. Materials Letters2012;88:57-60.
    [21] Sing K S W, Everett D, Haul R A, et al. Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity. Pure and Applied Chemistry1985;57:603619.
    [22] Zuo H S, Sun J, Deng K J, et al. Preparation and characterization of Bi3+-TiO2and itsphotocatalytic activity. Chem. Eng. Technol2007;30:577-582.
    [23] Kleitz F, Hei Choi S, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications2003;17:2136-2137.
    [24] Liu Y D, Xin F, Wang F M, et al. Synthesis, characterization, and activities of visible light-drivenBi2O3-TiO2composite photocatalysts. Journal ofAlloys and Compounds2010;498:179-184.
    [25] Wan L M, Cui X Z, Chen H R, et al. Synthesis of ordered mesoporous CuO/CeO2composite viaco-nanocasting replication method and its improved reactivity towards hydrogen. MaterialsLetters2010;64:1379-1382.
    [26] Hu Y, Cao Y T, Wang P X, et al. A new perspective for effect of Bi on the photocatalytic activityof Bi-doped TiO2. Applied Catalysis B: Environmental2012;125:294-303.
    [27] Ohtani, B. Photocatalysis Ato Z-What we know and what we do not know in a scientific sense.Journal of Photochemistry and Photobiology C: Photochemistry Reviews2010;11(4):157-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700