用户名: 密码: 验证码:
鲐鱼多肽的抗氧化活性与抗疲劳作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋低值鱼类产量高,蛋白质含量丰富,利用低值鱼制备特定的生物活性肽具有重要意义。本文以蛋白质含量丰富的鲐鱼为原料,利用酶解技术、超滤分级技术优化制备抗氧化活性肽,研究其抗氧化活性的稳定性,并采用离子交换层析和凝胶过滤层析技术对目标多肽进行分离纯化,采用体外化学模型和动物模型相结合的方法评价目标肽段的抗氧化活性和抗疲劳功效,初步探讨其抗氧化活性与抗疲劳作用的关系。主要研究结果如下:
     1.确定了鲐鱼多肽的最佳酶解工艺:鲐鱼是一种高蛋白(粗蛋白含量为16.40%)、低脂肪的原料,其氨基酸种类丰富,尤其是与抗氧化活性有关的氨基酸,如谷氨酸、亮氨酸、赖氨酸含量较高,是一种制备抗氧化肽的优质原料。采用胰蛋白酶、酸性蛋白酶、木瓜蛋白酶、风味蛋白酶和中性蛋白酶水解鲐鱼鱼肉,综合比较了各水解产物的水解度、氮素回收率、DPPH自由基清除能力以及相对分子质量分布,最终确认中性蛋白酶为最佳用酶。在单因素实验基础上进行响应面优化实验,得到最佳条件为:加酶量1726.85U/g,pH值7.0,酶解温度39.55℃,酶解时间5.5h,液固比25:1。在最优条件下验证其DPPH自由基清除率为78.43%0.32,接近预测值79.19%。
     2.鲐鱼多肽的分离纯化技术研究:采用超滤法对鲐鱼多肽(MPH)进行分级得到5个组分,抗氧化活性表明,分子量小于2.5kDa的三个组分(MPH-III,MPH-IV和MPH-V)抗氧化活性较高。离子交换色谱能够依据电荷数量的差异、凝胶色谱根据分子量大小的差异可对不同多肽进行有效的分离。本文采用SPSephadex C-25阳离子交换色谱和Sephadex G-25凝胶色谱依据电荷和分子量对MPHs (<2.5kDa)进行分离纯化研究,通过高效液相色谱分析,发现分子量为1664Da的多肽对DPPH自由基和羟自由基清除能力最强。
     3.鲐鱼多肽的稳定性研究:研究发现,鲐鱼低分子量的多肽热稳定性非常好,即使在100℃高温处理后也不会降低其抗氧化活性;冻融次数和紫外线照射对MPHs的DPPH自由基和羟自由基清除能力无显著性影响(P<0.05);pH值对MPHs抗氧化活性影响较大,随着pH值增大,其DPPH自由基和羟自由基清除能力降低,当pH值为9.2时,MPHs的DPPH自由基清除率减少89%;MPHs对金属离子敏感,特别是Fe2+、Fe3+、Zn2+和Cu2+能显著降低MPHs的抗氧化活性,尤其是Fe2+和Fe3+浓度达到5mM时,其DPPH自由基清除率仅为1.1%和0.6%,Cu2+浓度达到5mM时则完全抑制了MPHs的DPPH自由基清除能力,而K+、Mg2+对MPHs抗氧化活性影响不显著(P<0.05)。
     4.鲐鱼多肽的抗疲劳功效评价:对分级得到的鲐鱼多肽MPHs进行了体内抗疲劳功效评价,结果表明:MPHs对小鼠体重和生长无影响,可提高小鼠肝脏系数、脾脏系数和胸腺系数,具有一定的免疫能力;MPHs能显著延长小鼠力竭游泳时间,MPHs低、中、高剂量组分别为对照组的2.8、3.0和4.8倍,其浓度与小鼠游泳时间呈正相关性;与对照组相比,MPHs各剂量组分别增加肝糖原含量33%50%,降低小鼠体内的乳酸、血尿素氮和丙二醛含量14%19%、16%17%和16%31%;,抗氧化物酶体系SOD和GSH-Px的活力分别提高11%15%和9%13%,表明MPHs具有一定的体内抗氧化活性。MPHs各剂量组中GSH-Px的活力与小鼠力竭游泳时间之间的相关系数达到0.912,说明MPHs在具有体内抗氧化活性的同时,还具有抗疲劳作用,两者之间具有很好的相关性。
Marine low-value fishes had high productivity and high protein content, it wouldbe of great importance in processing the low-value fishes into special bioactivepeptides. In our study, the antioxidant active peptides were prepared from mackerelprotein which with high protein content through enzymatic technology andultrafiltration. Their antioxidant activity stabilities were also studied, andion-exchange chromatography and gel filtration chromatography were used toseparate and purify the target peptides. Finally, chemical models in vitro and animalmodels in vivo were used to evaluate the antioxidant activity and antifatigue effect oftarget peptides, and the relationship between antioxidant activity and antifatigue effectof target peptides were discussed. The research results of this study were as follows:
     1. Determine the optimum enzymatic hydrolysis technology of mackerel peptides:Mackerel was a material with high protein content (16.40%), low fat content and avariety of amino acids, especially Glu, Lys and Leu which had been reported tocontribute greatly to the potency of antioxidant peptides, had high content. Themackerel was appropriate to prepare antioxidant peptides. Five kinds of proteases, i.e.trypsin, acid protease, papain, flavourzymeand neutrase were used for hydrolysis toproduce the mackerel protein hydrolysate, considering the degree of hydrolysis,nitrogen recovery, DPPH radical scavenging activity and the relative molecularweight distributions, neutrase was the best enzyme for the hydrolysis. On the basis ofsingle factor experiment, the suggested hydrolysis conditions were performed by theresponse surface methodology (RSM): enzyme concentration1726.85U/g,pH7.00,temperature39.55℃, time5.50h and water to substrate at25:1. Themaximum DPPH scavenging activity was78.43%0.32, which was similar to theexperimental value of79.19%.
     2. The research on the separation and purification of mackerel peptides: TheMPH was fractionated into five portions using ultrafiltration, the results of antioxidantactivities showed that the MPHs with molecular weight below2.5kDa (MPH-III, MPH-IV and MPH-V) exhibited higher antioxidant activities. Ion-exchangechromatography separated the peptides on the basis of different number of charge andgel filtration chromatography separated the peptides on the different size of molecularweight. Finally, the MPHs (<2.5kDa) was isolated and purified through SP SephadexC-25ion-exchange chromatography and Sephadex G-25gel filtration chromatography,respectively, and the peptide which had the highest DPPH radicals and hydroxylradicals scavenging activities was identified as the molecular weight of1664Da usingHPLC.
     3. The stabilities of mackerel peptides: The antioxidant activity stabilities ofMPHs were investigated, and the results showed that the mackerel protein peptideshad good stabilities of temperature even though the high temperature of100℃could not reduce their antioxidant activities. In addition, the freeze-melt frequencyand UV had no significant effect on DPPH radicals and hydroxyl radicals scavengingactivities of MPHs (P<0.05). The MPHs had bad stabilities of pH, the DPPH radicalsand hydroxyl radicals scavenging activities of MPHs were reduced with the pH valuewas increase, when the pH value was9.2, the DPPH scavenging activity wasdecreased by89%. The MPHs was sensitive to metal ions, especially Fe2+、Fe3+、Zn2+and Cu2+could significantly decreased the antioxidant activities of MPHs, especiallywhen the concentrations of Fe2+and Fe3+were5mM, the DPPH scavenging activitieswere only1.1%and0.6%,respectively. while when the Cu2+with concentration of5mM could completely inhibited the DPPH scavenging activity of MPHs, on the otherhand, the K+、Mg2+had no significant effect on the antioxidant activities of MPHs(P<0.05).
     4. The evaluation on antifatigue effect of mackerel peptides: the antifatigue effectsof MPHs were evaluated and the results showed that the MPHs had no effect on bodyweight and growth of mice, and could increase the viscera index of mice. The MPHscould significantly prolong the exhaustion swimming time, the MPHs-H, MPHs-Mand MPHs-L groups were4.8-fold,2.8-fold and3.0-fold of the control group, and allMPHs groups were showed a dose-dependent behavior; the liver glycogen level was markedly increased by3335%and the BUN (1617%), LA (1419%) and MDA(1631%) levels were decreased in MPHs groups compared to that of the controlgroup. The activities of SOD and GSH-Px were increased by1115%and913%,respectively, the result showed that the MPHs had in vitro antioxidant activities. Inaddition, the correlation coefficient between the activity of GSH-Px and exhaustionswimming time was0.912, which indicated that the in vivo antioxidant activities ofMPHs had a good relationship with their antifatigue effect.
引文
[1] AHMED Z, DONKOR O, STREET W A, et al. Proteolytic activities in fillets of selectedunderutilized Australian fish species [J]. Food Chemistry,2013,140(1-2):238-244.
    [2] HUANG H W, LIU K M. Bycatch and discards by Taiwanese large-scale tuna longline fleetsin the Indian Ocean [J]. Fisheries Research,2010,106(3):261-270.
    [3] GEIRSFOTTIR M, SIGURGUSLADOTTIR S, HAMAGUCHI P Y, et al. EnzymaticHydrolysis of Blue Whiting (Micromesistius poutassou); Functional and Bioactive Properties[J]. Journal of Food Science,2011,76(1): C14-C20.
    [4] MAZORRA MANZANO M A, PACHEVO AGUILAR R, RAMITRZ SUAREZ J C, et al.Pacific whiting (Merluccius productus) underutilization in the Gulf of California: Muscleautolytic activity characterization [J]. Food Chemistry,2008,107(1):106-111.
    [5] AHMED Z, DONKOR O N, STREET W A, et al. Activity of Endogenous Muscle Proteasesfrom4Australian Underutilized Fish Species as Affected by Ionic Strength, pH, andTemperature [J]. Journal of Food Science,2013,78(12): C1858-C1864.
    [6] MEDENIEKS L, VASIJEVIC T. Underutilised fish as sources of bioactive peptides withpotential health benefits [J]. Food Australia,2008,60(12):581-588.
    [7] ALEXANDRATOS N B J. World agriculture towards2030/2050: the2012revision. ESAworking paper Nr.12-03. Rome: FAO.2012[C].
    [8] VENUGOPAL V, SHAHIDI F. Value-added products from underutilized fish species [J].Critical Reviews in Food Science and Nutrition,1995,35(5):431-453.
    [9] LEE C M. Surimi processing from lean fish. In Seafoods: Chemistry, Processing Technologyand Quality[J]. Springer US,1994:263-287.
    [10]钱名全.鱼品加工下脚料的综合利用(上)[J].湖南农业,2004(2):21-21.
    [11] SHAHIDI F, VENUGOPAL V. Solubilization and Thermostability of Water Dispersions ofMuscle Structural Proteins of Atlantic Herring (Clupea-Harengus)[J]. Journal ofAgricultural and Food Chemistry.1994,42(7):1440-1446.
    [12] REN J, ZHAO M, SHI J, et al. Optimization of antioxidant peptide production from grasscarp sarcoplasmic protein using response surface methodology [J]. LWT-Food Science andTechnology.2008,41(9):1624-1632.
    [13] NAQASH S Y, NAZEER R A. Optimization of enzymatic hydrolysis conditions for theproduction of antioxidant peptides from muscles of Nemipterus japonicus and Exocoetusvolitans using response surface methodology [J]. Amino Acids.2012,43(1):337-345.
    [14] AMIZA M A, NURUL ASHIKIN S, FAAZAZ A L. Optimization of enzymatic proteinhydrolysis from silver catfish (Pangasius sp.) frame [J]. International Food Research Journal.2011,18:775-781.
    [15]郑伟,石伟勇.低值鱼高值化研究进展综述.中国水产,2005(9):70-71.
    [16]孔繁东,李跃,祖国仁,等.低值鱼及下脚料的加工与综合利用[J].中国酿造,2008,27(24):21-24.
    [17]张崟,朱志伟,曾庆孝.鱼骨利用的研究现状.食品研究与开发,2007,28(9):182-185.
    [18]徐琳.鲐鱼,鲭鱼的深加工.广州食品工业科技,2001,17(4):25-29.
    [19]张健雄,叶清如.利用鲐鱼下脚料加工浓缩鱼蛋白[J].现代渔业信息,1991,6(8):22-26.
    [20]陈海桂,王阳光.酶解鲐鱼蛋白制取功能性鱼蛋白粉加工工艺研究[J].现代农业科技,2008(20):227-228.
    [21] WU H C, CHEN H M, SHIAU C Y. Free amino acids and peptides as related to antioxidantproperties in protein hydrolysates of mackerel (Scomber austriasicus)[J]. Food ResearchInternational,2003,36(9-10):949-957.
    [22] WANG P F, HUANG G R, JIANG J X. Optimization of Hydrolysis Conditions for theProduction of Iron-Binding Peptides from Mackerel Processing Byproducts [J]. AdvanceJournal of Food Science and Technology,2013,5(7):921-925.
    [23]陈冀胜.海洋药物研究开发漫谈[J].中国医学科学院学报,2001,23(5):415-417
    [24] BABARCZY E, SZABO G, TELEGDY G. Effects of secretin on acute and chronic effects ofmorphine [J]. Pharmacology Biochemistry and Behavior.1995,51(2–3):469-472.
    [25] IMPERATORE C, AIELLO A, D'ANIELLO F, et al. New Bioactive Alkyl Sulfates fromMediterranean Tunicates [J]. Molecules,2012,17(11):12642-12650.
    [26]林伟锋,赵谋明,程朝阳.海洋生物活性肽的制备及其研究状况[J].食品工业科技,2003,24(9):90-93.
    [27] FUSETANI N, MATSUNAGA S. Bioactive Sponge Peptides [J]. Chemical Reviews,1993,93(5):1793-1806.
    [28] DUPONT S, CARRE MLOUKA A, DESCARREGA F, et al. Diversity and biologicalactivities of the bacterial community associated with the marine sponge Phorbas tenacior(Porifera, Demospongiae)[J]. Letters in Applied Microbiology,2014,58(1):42-52.
    [29] FRAZAO B, VASCONCELOS V, ANTUNES A. Sea Anemone (Cnidaria, Anthozoa,Actiniaria) Toxins: An Overview [J]. Marine Drugs,2012,10(8):1812-1851.
    [30] SAMARAKOON K, JEON Y J. Bio-functionalities of proteins derived from marine algae-Areview [J]. Food Research International,2012,48(2):948-960.
    [31] OREN Z, SHAI Y. A class of highly potent antibacterial peptides derived from pardaxin, apore-forming peptide isolated from Moses sole fish Pardachirus marmoratus [J]. EuropeanJournal of Biochemistry,1996,237(1):303-310.
    [32] FERNANDES J M O, SMITH V J. A novel antimicrobial function for a ribosomal peptidefrom rainbow trout skin [J]. Biochemical and Biophysical Research Communications,2002,296(1):167-171.
    [33] MENDIS E, RAJAPAKESE N, BYUN H G, et.al. Investigation of jumbo squid (Dosidicusgigas) skin gelatin peptides for their in vitro antioxidant effects [J]. Life Sciences,2005,77(17):2166-2178.
    [34] LADRAT C, VERREZ BAGNIS V, NOEL J, et al. In vitro proteolysis of myofibrillar andsarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): effects ofcathepsins B, D and L [J]. Food Chemistry,2003,81(4):517-525.
    [35] KRISTINSSON H G, RASCO B A. Fish Protein Hydrolysates: Production, Biochemical, andFunctional Properties. Critical Reviews In Food Science and Nutrition,2000,40(1):43-81.
    [36] VARELTZIS K. Fish proteins from unexploited and underdeveloped sources [J].Developments in Food Science,2000,41:133-159.
    [37] JEON Y J, BYUN H G, KIM S K. Improvement of functional properties of cod frame proteinhydrolysates using ultrafiltration membranes [J]. Process Biochemistry,2000,35(5):471-478.
    [38] SATHIVEL S, BECHTEL P J, BABBITT J, et al. Biochemical and functional properties ofherring (Clupea harengus), byproduct hydrolysates [J]. Journal of Food Science,2003,68(7):2196-2200.
    [39] MENDIS E, RAJAPAKSE N, KIM S K. Antioxidant properties of a radical-scavengingpeptide purified from enzymatically prepared fish skin gelatin hydrolysate [J]. Journal ofAgricultural of Food Chemistry,2005,53(3):581-587.
    [40] Byun, H. G.; Kim, S. K. Purification and characterization of angiotensin I converting enzyme(ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. ProcessBiochem.2001,36(12):1155-1162.
    [41] KHANTAPHANT S, BENJAKUL S. Comparative study on the proteases from fish pyloriccaeca and the use for production of gelatin hydrolysate with antioxidative activity [J].Comparative Biochemistry and Physiology B Biochemistry&Molecular Biology,2008,151(4):410-419.
    [42] RAJAPAKSE N, JUNG W K, MENDIS E, et al. A novel anticoagulant purified from fishprotein hydrolysate inhibits factor XIIa and platelet aggregation [J]. Life Sciences,2005,76(22):2607-2619.
    [43] MORIMURA S, NAGATA H, UEMURA Y, et al. Development of an effective process fromlivestock and for utilization of collagen fish waste [J]. Process Biochemistry,2002,37(12):1403-1412.
    [44] KAWAMURA Y, TAKANE T, SATAKE M, et al. Physiologically Active Peptide Motif inProteins-Peptide Inhibitors of Ace from the Hydrolysates of Antarctic Krill Muscle Protein[J]. Jarq-Japan Agricultural Research Quarterly,1992,26(3):210-213.
    [45] RAJAPAKSE N, MENDIS E, JUNG W K, et al. Purification of a radical scavenging peptidefrom fermented mussel sauce and its antioxidant properties [J]. Food Research International,2005,38(2):175-182.
    [46] SUETSUNA K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus)muscle [J]. Marine Biotechnology,2000,2(1):5-10.
    [47] LIU Z Y, DONG S Y, XU J, et al. Production of cysteine-rich antimicrobial peptide bydigestion of oyster (Crassostrea gigas) with alcalase and bromelin [J]. Food Control,2008,19(3):231-235.
    [48] LEE T G, MARUYAMA S. Isolation of HIV-1protease-inhibiting peptides from thermolysinhydrolysate of oyster proteins [J]. Biochemical and Biophysical Research Communications,1998,253(3):604-608.
    [49] CUDENNEC B, RAVALLEC PLE R, COUROIS E, et al. Peptides from fish and crustaceanby-products hydrolysates stimulate cholecystokinin release in STC-1cells [J]. FoodChemistry,2008,111(4):970-975.
    [50] BENJAKUL S, BINSAN W, VISESSANGUAN W, et al. Effects of Flavourzyme on Yieldand Some Biological Activities of Mungoong, an Extract Paste from the Cephalothorax ofWhite Shrimp [J]. Journal of Food Science,2009,74(2): S73-S80.
    [51] SANZ Y, FADDA S, VIGNOLO G, et al. Hydrolysis of muscle myofibrillar proteins byLactobacillus curvatus and Lactobacillus sake [J]. International Journal of FoodMicrobiology,1999,53(2):115-125.
    [52]陈冀胜.海洋生物毒素与海洋药物[J].科学,2012,64(3):17-20.
    [53] SHAHIDI F, ZHONG Y. Bioactive peptides [J]. Journal of Aoac International,2008,91(4):914-931.
    [54] OVISSIPOUR M, ABEDIAN KENARI A, MOTAMEDZADEGAN A, et al. Optimization ofEnzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares)[J].Food and Bioprocess Technology,2010,5(2):696-705.
    [55] AHN C B, JE J Y, CHO Y S. Antioxidant and anti-inflammatory peptide fraction fromsalmon byproduct protein hydrolysates by peptic hydrolysis [J]. Food Research International,2012,49(1):92-98.
    [56] KIM S K, JEON Y J, BYEUN H G, et al. Enzymatic recovery of cod frame proteins withcrude proteinase from tuna pyloric caeca [J]. Fisheries Science.1997,63(3):421-427.
    [57] CHO C W, LEE D Y, KIM C W. Concentration and purification of soluble pectin frommandarin peels using crossflow microfiltration system [J]. Carbohydrate Polymers,2003,54(1):21-26.
    [58] XU Z, LI L, WU F, et al. The application of the modified PVDF ultrafiltration membranes infurther purification of Ginkgo biloba extraction [J]. Journal of Membrane Science,2005,255(1):125-131.
    [59] SEREEWATTHANAWUT I, BAPTISTA I, BOAM A, et al. Nanofiltration process for thenutritional enrichment and refining of rice bran oil [J]. Journal of Food Engineering,2011,102(1):16-24.
    [60] JEON Y J, BYUN H G, KIM S K. Improvement of functional properties of cod frame proteinhydrolysates using ultrafiltration membranes [J]. Process Biochemistry,1999,35(5):471-478.
    [61] DONG X P, ZHU B W, ZHAO H X, et al. Preparation and in vitro antioxidant activity ofenzymatic hydrolysates from oyster (Crassostrea talienwhannensis) meat [J]. InternationalJournal of Food Science and Technology,2010,45(5):978-984.
    [62] REN Q, XING H, BAO Z, et al. Recent Advances in Separation of Bioactive NaturalProducts [J]. Chinese Journal of Chemical Engineering,2013,21(9):937-952.
    [63] COLIGAN J E,科林根,慎涛.精编蛋白质科学实验指南[J].科学出版社,2007.
    [64]史伟,禹婷.蛋白质的层析分离[J].内蒙古农业科技,2011(1):110-112.
    [65]林伟锋.可控酶解从海洋鱼蛋白中制备生物活性肽的研究[D].广州:华南理工大学,2003.
    [66] JAI GANESH R, NAZEER R A, SAMPATH KUMAR N S. Purification and identification ofantioxidant peptide from black pomfret, Parastromateus niger (Bloch,1975) viscera proteinhydrolysate [J]. Food Science and Biotechnology,2011,20(4):1087-1094.
    [67] BOUGATEF A, NEDJAR ARROUME N, et al. Purification and identification of novelantioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita)by-products proteins [J]. Food Chemistry,2010,118(3):559-565.
    [68] SAMPHTH KUMAR N S, NAZEER R A, JAIGANESH R. Purification and identification ofantioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel(Magalaspis cordyla) and croaker (Otolithes ruber)[J]. Amino Acids,2012,42(5):1641-1649.
    [69]萨仁娜,毕力夫,苏秀兰.生物多肽的色谱分离[J].内蒙古医学院学报,2005,26(4):309-312.
    [70]游丽君.泥鳅蛋白抗氧化肽的分离纯化及抗疲劳,抗癌功效研究[D]:广州:华南理工大学博士学位论文,2010.
    [71]刘艺,孙迎基,张奕华,等.反相制备色谱分离酪丝亮肽拟似物[J].药物生物技术,2006,13(4):271-273.
    [72]周杏琴,冯凤琴.反相高效液相制备色谱分离酪蛋白磷酸肽[J].分析仪器,2002(4):19-21.
    [73] ZHANG Y, DUAN X, ZHUANG Y. Purification and characterization of novel antioxidantpeptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin [J].Peptides,2012,38(1):13-21.
    [74] CHEN N, YANG H, SUN Y, et al. Purification and identification of antioxidant peptidesfrom walnut (Juglans regia L.) protein hydrolysates [J]. Peptides,2012,38(2):344-349.
    [75] YU B P. Cellular Defenses against Damage from Reactive Oxygen Species [J]. PhysiologicalReviews,1995,75(1):139.
    [76] KRAPFENBAUER K, ENGIDAWORK E, CAIRNS N, et al. Aberrant expression ofperoxiredoxin subtypes in neurodegenerative disorders [J]. Brain Research,2003,967(1-2):152-160.
    [77] GERONIKAKI A A, GAVALAS A M. Antioxidants and inflammatory disease: syntheticand natural antioxidants with anti-inflammatory activity [J]. Combinatorial chemistry&HighThroughput Screening,2006,9(6):425-442.
    [78] MARTINON F, MAYOR A, TSCHOPP J. The Inflammasomes: Guardians of the Body [J].Annual Review of Immunology,2009,27:229-265.
    [79] DAVALOS A, MIGUEL M, BARTOLOME B, et al. Antioxidant activity of peptides derivedfrom egg white proteins by enzymatic hydrolysis [J]. Journal of Food Protection,2004,67(9):1939-1944.
    [80] DI BERNARDINI R, HARNEDY P, BOLTON D, et al. Antioxidant and antimicrobialpeptidic hydrolysates from muscle protein sources and by-products [J]. Food Chemistry,2011,124(4):1296-1307.
    [81] DESAGHER S, GLOWINSKI J, PREMONT J. Astrocytes protect neurons from hydrogenperoxide toxicity [J]. Journal of Neuroscience,1996,16(8):2553-2562.
    [82] MENDIS E, RAJAPAKSE N, KIM S K. Antioxidant properties of a radical-scavengingpeptide purified from enzymatically prepared fish skin gelatin hydrolysate [J]. Journal ofAgricultural and Food Chemistry,2005,53(3):581-587.
    [83] JE J Y, QIQN Z J, BYUN H G, et al. Purification and characterization of an antioxidantpeptide obtained from tuna backbone protein by enzymatic hydrolysis [J]. ProcessBiochemitry,2007,42(5):840-846.
    [84] AMAROWICZ R, SHAHIDI F. Antioxidant activity of peptide fractions of capelin proteinhydrolysates [J]. Food Chemistry,1997,58(4):355-359.
    [85] QIAN Z J, JING W K, BYUN H G,et al. Protective effect of an antioxidative peptide purifiedfrom gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNAdamage [J]. Bioresource Technology,2008,99(9):3365-3371.
    [86] SHEIH I, WU T K, FANG T J. Antioxidant properties of a new antioxidative peptide fromalgae protein waste hydrolysate in different oxidation systems [J]. Bioresource Technology,2009,100(13):3419-3425.
    [87] RAJAPAKSE N, MENDIS E, BYUN H G, et al. Purification and in vitro antioxidativeeffects of giant squid muscle peptides on free radical-mediated oxidative systems [J]. TheJournal of Nutritional Biochemistry,2005,16(9):562-569.
    [88] VAN LOON L J, SARIS W H, KRUIJSHOOP M, et al. Maximizing postexercise muscleglycogen synthesis: carbohydrate supplementation and the application of amino acid orprotein hydrolysate mixtures [J]. The American Journal of Clinical Nutrition,2000,72(1):106-111.
    [89] NIKAWA T, IKEMOTO M, SAKAI T, et al. Effects of a soy protein diet onexercise-induced muscle protein catabolism in rats [J]. Nutrition,2002,18(6):490-495.
    [90] HONGYAN Z. Anti-fatigue Effect of Corn Peptide [J]. Chinese Cereals and Oils Association,2005,1,008.
    [91] KIM E K, OH H J, KIM Y S, et al. Purification of a novel peptide derived from Mytiluscoruscus and in vitro/in vivo evaluation of its bioactive properties [J]. Fish&ShellfishImmunology,2013,34(5):1078-1084.
    [92]彭汶铎;陈启亮.海马酶法提取物的抗疲劳作用[J].中国食品卫生杂志,2005,7(5):404-407.
    [93]卢连华,周景洋,颜燕,等.海参肽对小鼠免疫调节及抗疲劳能力的影响[J].山东医药,2009,49(25):35-37.
    [94]赵玉红,孔保华,张立钢.鱼肽的抗疲劳功能研究[J].东北农业大学学报,2005,36(4):490-493.
    [95] BYUN H G, KIM S K. Purification and characterization of angiotensin I converting enzyme(ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. ProcessBiochemistry,2001,36(12):1155-1162.
    [96] JE J Y, PARK P J, KWON J Y, et al. A novel angiotensin I converting enzyme inhibitorypeptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate [J].Journal of Agricultural and Food Chemistry,2004,52(26):7842-7845.
    [97] RAGHAVAN S, KRISTINSSON H G. ACE-inhibitory activity of tilapia proteinhydrolysates [J]. Food Chemistry,2009,117(4):582-588.
    [98] FAHMI A, MORIMURA S, GUO H C, et al. Production of angiotensin I converting enzymeinhibitory peptides from sea bream scales [J]. Process Biochemistry,2004,39(10):1195-1200.
    [99] QIAN Z J, JE J Y, KIM S K. Antihypertensive effect of angiotensin I convertingenzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus [J].Journal of Agricultural and Food Chemistry,2007,55(21):8398-8403.
    [100] WANG J, HU J, CUI J, et al. Purification and identification of a ACE inhibitory peptidefrom oyster proteins hydrolysate and the antihypertensive effect of hydrolysate inspontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [101] WU H, HE H L, CHEN X L, et al. Purification and identification of novelangiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate [J].Process Biochemistry,2008,43(4):457-461.
    [102] HASAN M F, KOBAYASHI Y, KUMADA Y, et al. ACE inhibitory activity andcharacteristics of tri-peptides obtained from bonito protein [J]. Journal of ChemicalEngineering of Japan,2007,40(1):59-62.
    [103] SHEIH I C, FANG T J,WU T K, et al. Anticancer and antioxidant activities of the peptidefraction from algae protein waste [J]. Journal of Agricultural and Food Chemistry,2009,58(2):1202-1207.
    [104] JE J Y, PARK P J, BYUN H G, et al. Angiotensin I converting enzyme (ACE) inhibitorypeptide derived from the sauce of fermented blue mussel, Mytilus edulis [J]. BioresourceTechnology,2005,96(14):1624-1629.
    [105] LEE S H, QIAN Z J, KIM S K. A novel angiotensin I converting enzyme inhibitory peptidefrom tuna frame protein hydrolysate and its antihypertensive effect in spontaneouslyhypertensive rats [J]. Food chemistry,2010,118(1):96-102.
    [106] SU Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from theskin mucus of yellow catfish (Pelteobagrus fulvidraco). Comparative biochemistry andphysiology [J]. Part B, Biochemistry&Molecular Biology,2011,158(2):149-154.
    [107] ZHANG Y X, ZOU A H, MANCHU R G, et al. Purification and antimicrobial activity ofantimicrobial protein from Brown-spotted Grouper, Epinephelus fario [J].动物学研究,2008,6:627-632.
    [108] PEREIRA M S, MELO F R, MOURAO P A. Is there a correlation between structure andanticoagulant action of sulfated galactans and sulfated fucans?[J] Glycobiology,2002,12(10):573-580.
    [109] KOYAMA T, NOGUCHI K, ANIYA Y, et al. Analysis for sites of anticoagulant action ofplancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in theblood coagulation cascade [J]. General Pharmacology: The Vascular System,1998,31(2):277-282.
    [110] JUNG W K, KIM S K. Isolation and characterisation of an anticoagulant oligopeptide fromblue mussel, Mytilus edulis [J]. Food Chemistry,2009,117(4):687-692.
    [111] RAJAPAKSE N, JUNG W K, MENDIS E, et al. A novel anticoagulant purified from fishprotein hydrolysate inhibits factor XIIa and platelet aggregation [J]. Life Sciences,2005,76(22):2607-2619.
    [112] ACHOUR A, LACHGAR A, ASTGEN A, et al. Potentialization of IL-2effects on immunecells by oyster extract (JCOE) in normal and HIV-infected individuals [J]. BiomedPharmacother,1997,51(10):427-429.
    [113] PLAZA A, GUSTCHINA E, BAKER H L, et al. Mirabamides A–D, depsipeptides from thesponge Siliquariaspongia mirabilis that inhibit HIV-1fusion [J]. Journal of Natural Products,2007,70(11):1753-1760.
    [114] ALEMAN A, PEREZ SANTIN E, BORDENAVE JUCHEREAU S, et al. Squid gelatinhydrolysates with antihypertensive, anticancer and antioxidant activity [J]. Food ResearchInternational,2011,44(4):1044-1051.
    [115] ATHUKORALA Y, KIM K N, JEON Y J. Antiproliferative and antioxidant properties of anenzymatic hydrolysate from brown alga, Ecklonia cava [J]. Food and Chemical Toxicology:an international journal published for the British Industrial Biological Research Association,2006,44(7):1065-74.
    [116] CUGENNEC B, RAVALLEC PLE R, COUROIS E, et al. Peptides from fish and crustaceanby-products hydrolysates stimulate cholecystokinin release in STC-1cells [J]. FoodChemistry,2008,111(4):970-975.
    [117] MARITIM A C, SANDERS R A, WATKINS J B. Diabetes, oxidative stress, andantioxidants: a review [J]. Journal of Biochemical and Molecular Toxicology,2003,17(1):24-38.
    [118] UCHIYAMA S, YAMAGUCHI M. Preventive effect of marine alga Sargassum horneriextract on bone loss in streptozotocin-diabetic rats in vivo [J]. Journal of Health ScienceTokyo,2003,49(2):149-155.
    [119] JUNG W K, KARAWITA R, HEO S J, et al. Recovery of a novel Ca-binding peptide fromAlaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis [J]. ProcessBiochemistry,2006,41(9):2097-2100.
    [120] JUNG W K, KIM S K. Calcium-binding peptide derived from pepsinolytic hydrolysates ofhoki (Johnius belengerii) frame [J]. European Food Research and Technology,2007,224(6):763-767.
    [121] BOOTH F W, THOMASON D B. Molecular and cellular adaptation of muscle in responseto exercise: perspectives of various models [J]. Physiology Reviews,1991,71(2):541-585.
    [122] EDWARDS R H. Human muscle function and fatigue [J]. Human muscle fatigue:Physiological Mechanisms,1981:1-18.
    [123]张卫军.运动性疲劳与恢复研究的进展[J].咸阳师范专科学校学报,2001,3:021.
    [124]陈一飞,徐维.运动性疲劳的发生机制与高压氧的应用[J].中华物理医学与康复杂志,2004,26(3):187-190.
    [125]欧阳萍.运动性疲劳发生机制及其防治对策[J].沈阳体育学院学报,2004,23(3):324-326.
    [126]代毅,金文泉,高卫.运动对自由基代谢的影响[J].成都体育学院学报,1995,21(3):65-68.
    [127] WANG J J, SHIEH M J, KUO S L, et al. Effect of red mold rice on antifatigue andexercise-related changes in lipid peroxidation in endurance exercise [J]. AppliedMicrobiology and Biotechnology,2006,70(2):247-253.
    [128] NAZEER R A, KUMAR N S S, GANESH R J. In vitro and in vivo studies on theantioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle proteinhydrolysate [J]. Peptides,2012,35(2):261-268.
    [129] DING J F, LI Y Y, XU J J, et al. Study on effect of jellyfish collagen hydrolysate onanti-fatigue and anti-oxidation [J]. Food Hydrocolloids,2011,25(5):1350-1353.
    [130] KIM K, YU K, KANG D, et al. Anti‐stress and anti-fatigue effect of fermented rice bran[J]. Phytotherapy Research,2002,16(7):700-702.
    [131] NIIHO Y, YAMAZAKI T, HOSONO T, et al. Pharmacological studies on small peptidefraction derived from soybean. The effects of small peptide fraction derived from soybean onfatigue, obesity and glycemia in mice [J]. Yakugaku Zasshi: Journal of the PharmaceuticalSociety of Japan,1993,113(4):334-342.
    [132]王梅,谷文英,黄诚.高F值寡肽混合物的制备及抗疲劳与抗缺氧作用[J].粮油食品科技,1999,7(3):6-7.
    [133]王洪涛,尹花仙,金海珠,等.海参肽对小鼠抗疲劳作用的研究[J].食品与机械,2007,23(3):89-91.
    [134]郑云郎.谷胱甘肽的生物学功能[J].生物学通报,1995,30(5):22-24.
    [135]杨少玲,李来好.抗疲劳肽的研究现状[J].湛江海洋大学学报,2007,26(6):77-82.
    [136]张梦寒,徐幸莲.肌肽对肌肉中脂类氧化抑制作用[J].肉类研究,2001(4):16-18.
    [137]杨国宇,王艳玲,王月影,等.肌肽对小鼠抗疲劳作用的试验研究[J].河南农业大学学报,2004,37(4):383-385.
    [138] YOU L J, ZHAO M M, REGENSTEIN J M, et al. In vitro antioxidant activity and in vivoanti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papaindigestion [J]. Food Chemistry,2011,124(1):188-194.
    [139] WANG L, ZHANG H L, LU R, et al. The decapeptide CMS001enhances swimmingendurance in mice [J]. Peptides,2008,29(7):1176-1182.
    [140] XIAO G Q, LI H C. Effects of inhalation of oxygen on free radical metabolism andoxidative, antioxidative capabilities of the erythrocyte after intensive exercise [J]. Researchin Sports Medicine (Print),2005,14(2):107-115.
    [141]由文华,刘青云,熊正英.自由基与运动性疲劳关系的研究进展[J].陕西师范大学继续教育学报,2007,24(2):125-128.
    [142] PAPA S. Mitochondrial oxidative phosphorylation changes in the life span. Molecularaspects and physiopathological implications [J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1996,1276(2):87-105.
    [143] DAVIES K J, QUINTANILLHA A T, BROOKS G A, et al. Free radicals and tissue damageproduced by exercise [J]. Biochemical and Biophysical Research Communications,1982,107(4):1198-1205.
    [144]丁树哲,程伯基.运动性内源自由基对大鼠心肌线粒体膜的影响[J].生物化学与生物物理学报:英文版,1991,23(4):305-310.
    [145]吕梅,张勇,李静先,等.运动性疲劳状态下线粒体膜生物学特征的研究-Ⅲ:递增负荷力竭性运动后大鼠肝线粒体膜NADH-CoQ还原酶及肝组织NAD~(+)的变化[J].中国运动医学杂志,1998,17(1):10-11.
    [146] FINAUD J, LAC G, FILAIRE E. Oxidative stress-Relationship with exercise and training[J]. Sports Medicine,2006,36(4):327-358.
    [147]芮国星.论肌肽的生物学功能及其与运动能力的关系[J].吉林体育学院学报,2005,21(2):77-77.
    [148] PAN D, GUO Y, JIANG X. Anti-Fatigue and Antioxidative Activities of Peptides Isolatedfrom Milk Proteins [J]. Journal of Food Biochemistry,2011,35(4):1130-1144.
    [149] LIU J, WANG X, ZHAO Z. Effect of whey protein hydrolysates with different molecularweight on fatigue induced by swimming exercise in mice [J]. Journal of the Science of Foodand Agriculture,2014,94(1):126-130.
    [150]林琳,李八方.鱿鱼皮胶原蛋白水解肽抗氧化活性研究[J].中国海洋药物,2006,25(4):48-51.
    [151] ZHOU D Y, ZHU B W, QIAO L, et al. In vitro antioxidant activity of enzymatichydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera [J]. Food andBioproducts Processing,2012,90(2):148-154.
    [152] Chen Y, WANG M, ROSEN R, et al.2,2-Diphenyl-1-picrylhydrazyl Radical-ScavengingActive Components from Polygonum multiflorum Thunb [J]. Journal of Agricultural andFood Chemistry,1999,47(6):2226-2228.
    [153] KLOMPONG V, BENJAKUL S, KANTACHOTE D, et al. Antioxidative activity andfunctional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis)as influenced by the degree of hydrolysis and enzyme type [J]. Food Chemistry,2007,102(4):1317-1327.
    [154] BOUGATEF A, HAJJI M, BALTI R, et al. Antioxidant and free radical-scavengingactivities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained bygastrointestinal proteases [J]. Food Chemistry,2009,114(4):1198-1205.
    [155] JE J Y, KIM S Y, KIM S K. Preparation and antioxidative activity of hoki frame proteinhydrolysate using ultrafiltration membranes [J]. European Food Research and Technology,2005,221(1-2):157-162.
    [156]粟桂娇,阎欲晓,申柯,等.酶法制取罗非鱼水解动物蛋白的工艺研究[J].食品科学,2005,26(4):177-182.
    [157] JE J Y, KIM S Y, KIM S K. Preparation and antioxidative activity of hoki frame proteinhydrolysate using ultrafiltration membranes [J]. European Food Research and Technology,2005,221(1-2):157-162.
    [158] KIM S Y, JE J Y, KIM S. K. Purification and characterization of antioxidant peptide fromhoki (Johnius belengerii) frame protein by gastrointestinal digestion [J]. The Journal ofNutritional Biochemistry,2007,18(1):31-38.
    [159] YOU L, ZHAO M, LIU R H, et al. Antioxidant and antiproliferative activities of loach(Misgurnus anguillicaudatus) peptides prepared by papain digestion [J]. Journal ofAgricultural and Food Chemistry,2011,59(14):7948-7953.
    [160] YILDIRIM A, MAVI A, KARA A A. Determination of antioxidant and antimicrobialactivities of Rumex crispus L. extracts [J]. Journal of Agricultural and Food Chemistry,2001,49(8):4083-4089.
    [161] SUETSUNA K, UKEDA H, OCHI H. Isolation and characterization of free radicalscavenging activities peptides derived from casein [J]. Journal of Nutritional Biochemistry,2000,11(3):128-131.
    [162] PARK P J, JUNG W K, KIM S K, et al. Purification and characterization of an antioxidativepeptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein [J].European Food Research and Technology,2004,219(1):20-26.
    [163] YOU L, ZHAO M, REGENSTEIN J M, et al. Purification and identification ofantioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate byconsecutive chromatography and electrospray ionization-mass spectrometry [J]. FoodResearch International,2010,43(4):1167-1173.
    [164] GEIGERT J. Overview of the stability and handling of recombinant protein drugs [J]. PDAJournal of Pharmaceutical Science and Technology,1989,43(5):220-224.
    [165] NICOLI M C, ANESE M, PARPINEL M T, et al. Loss and/or formation of antioxidantsduring food processing and storage. Cancer Letters,1997,114(1):71-74.
    [166]沈同,王镜岩,赵邦悌.生物化学第二版[M].北京:高等教育出版社:1990.
    [167] SRUKET P, BENJAKUL S, VISESSANGUAN W, et al. Comparative studies on the effectof the freeze-thawing process on the physicochemical properties and microstructures of blacktiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle [J]. FoodChemistry,2007,104(1):113-121.
    [168] THANONKAEW A, BENJAKUL S, VISESSANGUAN W, et al. The effect of metal ionson lipid oxidation, colour and physicochemical properties of cuttlefish (Sepia pharaonis)subjected to multiple freeze-thaw cycles [J]. Food Chemistry,2006,95(4):591-599.
    [169] GANDEVIA S C. Spinal and supraspinal factors in human muscle fatigue [J]. PhysiologyReviews,2001,81(4):1725-1789.
    [170] LOGAN A C, WONG C. Chronic fatigue syndrome: oxidative stress and dietarymodifications [J]. Alternative Medicine Review: A Journal of Clinical Therapeutic,2001,6(5):450-459.
    [171] KENNEDY G, SPENCE V A, MCLAREN M, et al. Oxidative stress levels are raised inchronic fatigue syndrome and are associated with clinical symptoms [J]. Free RadicalBiology and Medicine,2005,39(5):584-589.
    [172] GLAISTER M. Multiple sprint work-Physiological responses, mechanisms of fatigue andthe influence of aerobic fitness [J]. Sports Medicine,2005,35(9):757-777.
    [173] QIANG X G, CHUN L H. Effects of Inhalation of Oxygen on Free Radical Metabolism andOxidative, Antioxidative Capabilities of the Erythrocyte After Intensive Exercise [J].Research in Sports Medicine,2006,14(2):107-115.
    [174] YU F R, LU S Q, YU F H, et al. Protective effects of polysaccharide from Euphorbia kansui(Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice [J]. CanadianJournal of Physiology Pharmacology,2006,84(10):1071-1079.
    [175] YOU L, REN J, YANG B, et al. Antifatigue activities of loach protein hydrolysates withdifferent antioxidant activities [J]. Journal of Agricultural and Food Chemistry,2012,60(50):12324-12331.
    [176]严卫星,何来英.保健食品功能学评价程序和检验方法[J].中国食品卫生杂志,1999,11:17-21.
    [177] NISHIKIMI M, APPAJI R N, YAGI K. The occurrence of superoxide anion in the reactionof reduced phenazine methosulfate and molecular oxygen [J]. Biochemical and BiophysicalResearch Communications,1972,46(2):849-854.
    [178] SAMARANAYAKA A G P, LI-CHAN C E C Y. Food-derived peptidic antioxidants: Areview of their production, assessment, and potential applications [J]. Journal of FunctionalFoods,2011,3(4):229-254.
    [179] JUNG K, KIM I H, HAN D. Effect of medicinal plant extracts on forced swimming capacityin mice [J]. Journal of Ethnopharmacology,2004,93(1):75-81.
    [180] CAIRNS S. Lactic Acid and Exercise Performance [J]. Sports Medicine,2006,36(4):279-291.
    [181] TSOPANAKIS C, TSOPANAKIS A. Stress hormonal factors, fatigue, and antioxidantresponses to prolonged speed driving [J]. Pharmacology Biochemistry and Behavior,1998,60(3):747-751.
    [182] INAL M E, KANBAK G, SUNAL E. Antioxidant enzyme activities and malondialdehydelevels related to aging [J]. Clinica Chimica Acta,2001,305(1-2):75-80.
    [183] MATES J M, PEREZ G C, DE C I N. Antioxidant enzymes and human diseases [J]. ClinicalBiochemistry,1999,32(8):595-603.
    [184]刘铁民,陈雪梅,王传名.过度训练对大鼠心肌线粒体膜和基质游离钙的影响[J].聊城大学学报:自然科学版,2006,19(3):75-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700