用户名: 密码: 验证码:
射流式水力振荡器理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球范围内油气资源勘探开发程度日益加剧,钻井技术朝着水平井、大斜度井、大位移井等定向钻井领域发展,常规成熟的滑动导向钻井方法基本满足了勘探开发的需求。但是定向钻井过程中会遇到大量钻进难题,如摩阻扭矩大、钻压传递困难、钻进效率低等,减摩降扭技术一直是钻井界和学术界非常关注的问题,研究重点集中在井眼轨迹控制、钻井泥浆润滑性、井眼清洁方法、专用减摩降扭工具研制、高强度钻具研发等方面。
     国内外研制了很多种专用的减摩降扭工具,经过相关技术调研,文中介绍了几种机械式的减摩降扭工具,如威德福滚子减阻器、降摩阻短节、连续管减摩器、轴向振荡减阻器等,有的工具已经系列化生产并在很多钻井工程中得到了成功应用,有的工具则还处在理论研究阶段或试验阶段,不同的定向钻井类型,有不同的专用工具,种类层出不穷。但已经得到推广应用的产品都是国外钻井公司研发生产的,如Agitator轴向振荡减阻器,国内钻井工程使用该工具就要购置、租赁或者雇佣其技术服务,费用极其昂贵,大大增加了钻井成本,因此国内各大钻井研究机构都在加大力度进行专用减摩降扭工具的自主研发。而射流式冲击回转技术是我国具有自主知识产权的独特技术,本文从射流式冲击器的工作性能、模拟仿真技术、测试技术、试验应用等方面对该技术进行了全面调研。
     针对定向钻井中的减摩降扭问题,结合振动减摩阻技术和射流式冲击回转技术,研制了一种专用的减摩降扭工具射流式水力振荡器,其结构由上部的轴向振动短节和下部的射流式压力脉冲短节组成,基本原理是利用脉冲压力产生轴向振动力,加入井底钻具组合,改善井内钻柱与井壁或套筒之间的摩擦条件,起到减摩降扭的作用,提高钻进效率,增强钻压传递能力,促进井眼轨迹的延伸,加大井眼的资源开发能力。本文的研究重点主要围绕射流式水力振荡器的设计理论分析、数值模拟计算和试验研究,具体的研究内容与结论如下:
     1.调研了减摩降扭技术和射流式冲击回转技术的发展现状和应用前景,以及研发射流式水力振荡器的必要性和关键技术问题,完成了射流式水力振荡器的图纸设计、工作原理分析、CFD数值模拟计算、样机加工及两次地面试验。
     2.对射流式水力振荡器进行CFD数值模拟计算,尤其是对压力脉冲短节进行了流体参数的分析,详细描述了数值模拟计算步骤,包括湍流模型选择、算法选择、计算域网格模型的建立、初始条件和边界条件的定义、动网格技术、滑移网格技术、用户自定义函数(UDF)、时间步设置等。通过CFD数值模拟计算,监测到了工作中射流元件的附壁切换的过程、活塞的往复运动过程以及活塞杆在节流盘锥形孔中的往复运动过程,得到了不同输入流量条件下射流式水力振荡器的工作参数变化情况,并着重研究分析了射流式压力脉冲短节的压力参数变化情况。
     3.通过两次地面试验,在不同输入流量条件下射流式水力振荡器均能稳定可靠的工作,利用数据采集系统采集记录了射流式压力脉冲短节上4个测点的压力数据和轴向振动短节上1个测点的位移数据,重要的是验证了该技术的原理可行性。
     4.射流式水力振荡器的振动位移和工作频率已经达到了该工具的设计要求,但是工作压力降参数偏高。
     5.有无节流盘结构对射流式水力振荡器的正常工作没有影响,但是节流盘的存在与否会影响射流式水力振荡器的工作参数,其中无节流盘结构的射流式水力振荡器的工作压力降较低。
     6.工作压力降和工作频率与输入流量基本呈线性关系。而振动位移与输入流量则不是简单的变化关系,在输入流量小于14L/s时,振动位移值较小,小于3.2mm,而当输入流量大于等于14L/s时,振动位移值较大,大于5.5mm,但是输入流量为16L/s时,振动位移值却小于14L/s的位移值。综合分析可知,14L/s应该接近于Φ120mm射流式水力振荡器工作的最佳输入流量,振动位移最大,工作压力降适中。
     本文的主要创新点包括:
     1.设计研制了一种用于水平井、大斜度井、大位移井等各种定向钻井中专用的减摩降扭工具射流式水力振荡器,将振动减摩技术和射流式冲击回转技术结合在一起,起到改善钻压传递,提高钻进效率的作用。
     2.以往射流式液动冲击器工作参数的研究重点是冲击末速度、冲击功、冲击频率及射流元件的参数,而射流式水力振荡器工作参数的研究重点是工作压力降、工作频率及活塞运动在射流元件入口处产生的脉冲压力值。
     3.在CFD数值模拟计算方面,引入FLUENT软件中的滑移网格技术中的Interface设置,这一功能主要用来处理动态流体区域与静止流体区域之间存在的交界面,用该技术来模拟活塞杆下端在节流盘锥形孔中的往复运动。
     4.采用数据采集系统记录射流式水力振荡器的压力和振动位移数据,深入分析研究得到了该工具的工作压力降、工作频率及振动位移等参数随流量的变化规律。
     目前,射流式水力振荡器技术只是在地面试验中验证了其原理可行性,该技术的推广应用还需要在很多方面进行深入的研究,其工作参数如工作压力降、工作频率、振动位移等都具有很大的改善和优化空间,有待于日后进一步深入全面的研究。
While the exploration and development level of oil and gas resource isever-increasing throughout the world, the development of drilling technology istowards to the directional drilling like horizontal wells, highly-deviated wells andextended reach wells. Simultaneously, the conventional and mature slide steeringdrilling can almost meet the requirements of exploration and development.However, abundant drilling issues would be encountered in the process ofdirectional drilling, such as large frictional torque, difficulties in transmitting thebit weight and low drilling efficiency or rate of penetration, etc. The technologyof anti-friction and reducing torque is always the focus of drillers and researchers,and researches are emphasized on the control of borehole trajectory, the lubricityof drilling mud, flushing method of the borehole, the research and developmentof specialized tools for reducing friction and torque, the development of drillingtools with high strength, etc.
     Various drilling tools for specially reducing friction and torque had beendeveloped throughout the world and domestic. After the relevant survey andinvestigation, several mechanical drilling tools for reducing friction and torquehave been introduced in previous research literature, such as Weatherford rollertools, friction-reduction pup joint, anti-friction device with coiled tubing andaxial oscillation absorber, etc. Some tools have been serially manufactured and successfully applied to many drilling operations, yet some tools have just been intheoretical research period or field test period. Different types of directional wellhave different specialized drilling tool, and the tool types are rich. However, theextensive applied products are all researched and developed by foreign company,such as Agitator axial oscillation absorber, and domestic drilling engineeringneed to purchase, rent or employ their technical services if we want to use thosetools. Nevertheless, this increase the drilling cost due to the extremely expensivefee. In hence, the drilling research institution in domestic are automaticallystudying and developing the tools for reducing friction and torque.Simultaneously, the liquid jet percussive rotary drilling technology are of specialtechnology that China has the proprietary intellectual property rights, and thisdissertation has conducted an entire survey on this technology about the workingperformance of liquid hammer, simulation technology, test method and fieldapplication, etc.
     In this dissertation, a specialized tool for reducing friction and torque hasbeen researched and developed according to the problem on reducing friction andtorque in directional well drilling with the combination of liquid jet percussiverotary drilling technology, and tools for reducing friction, which is termed asliquid jet oscillation tool. The structure of the oscillation tool consists of upperaxial oscillation joint and lower liquid jet with pressure pulse joint. The basictheory of the oscillation tool is that the pressure pulse could induce an axialdisplacement, and acting on the drilling assembly in the bottom of the borehole,this could improve the frictional condition between drilling string in the hole andwell wall or the bearing sleeve, which could reduce the friction and torque,improve the drilling efficiency or rate of penetration (ROP), enhance the abilityof transmitting the bit weight, promoting the extension of hole trajectory, enlargethe resource exploration ability of the borehole. The research emphasis of thisdissertation is enclosed by the theoretical analysis, numerical simulationcomputation and field test research of liquid jet oscillation tool, the detailedresearch contents and conclusions are as follows:
     1. Current development status and application prospect of friction andtorque reduction technology and liquid jet percussive rotary technology has beensurveyed, meanwhile the key technology and the necessity of researching anddeveloping the liquid jet oscillation tool has been conducted. Furthermore, thedrawing design of Φ120mm liquid jet oscillation tool, analysis on workingmechanism, CFD numerical simulation computation, prototype manufacture andtwo ground tests have been completed.
     2. The working mechanism of the liquid jet oscillation tool was computed byCFD numerical simulation, especially the fluidic parameter analysis of thepressure pulse joint, and the computational procedure of the numerical simulationwas detailedly described, including the options of turbulence model andalgorithm, the establishment of the grid model in computational domain, thedefinition of initial boundary conditions, the dynamic grid technology, slidinggrid technology, the user defined function and the settings of time step, etc.According to the CFD numerical simulation computation results, the workingprocess of fluidic device with water jet switch was monitored. At the meantime,the reciprocating motion of the piston and the reciprocating motion of the pistonrod in the taper hole of the throttle plate are also monitored, and the variation ofworking parameter of the liquid jet oscillation tool in various pumped fluxconditions are obtained. In addition, the pressure variation of the liquid jetoscillation tool is eminently analyzed.
     3. The liquid jet oscillation tool could stably working with different pumpedflux in both two ground tests, and the pressure on4diverse gauging points at thepressure pulse joint, and the displacement on1gauging point at the axialoscillation joint are recorded and stored by the data acquisition system. Moreover,the working theory of the oscillation tool was proved to be feasible through twoground tests.
     4. The oscillating displacement and oscillating frequency of the liquid jetoscillation tool are qualified to meet the requirement of the previous design. However, the working pressure loss of this toll is slightly high.
     5. The existence of throttle plate can’t be the key influence factor on thenormal working of liquid jet oscillation tool, but it could have an influence on theworking parameter of the liquid jet oscillation tool, and the working pressure lossof the liquid jet oscillation tool with no throttle plate is relatively low.
     6. The working pressure loss and oscillating frequency have a linearrelationship with the pumped flux, and the variation relationship betweenoscillating displacement and pumped flux is not linear. While the pumped flux isless than14L/s, the oscillating displacement is small, which is less than3.2mm.Nevertheless, when the pumped flux is more than14L/s, the oscillatingdisplacement is big, which is more than5.5mm. However, while the pumped fluxis more than16L/s, the oscillating displacement of the tool is reversely smallerthan the displacement of14L/s. It can be concluded from comprehensive analysisthat the pumped flux with14L/s is the most optimal flux for the Φ120mm liquidjet oscillation tool. At the moment, the oscillating displacement is the maximumvalue, and the working pressure loss is reasonable.
     The innovations of this dissertation are as follows:
     1. A specialized drilling tool for reducing friction and torque while beingemployed in various directional drilling wells like horizontal wells,highly-deviated wells and extended reach wells was designed and developed,which is termed as liquid jet oscillation tool. In addition, the friction reductiontechnology with oscillation and liquid jet percussive rotary drilling technologyare integrated to improve the transfer of bit weight and drilling efficiency.
     2. The research emphasis of liquid jet oscillation tool is on working pressureloss, oscillating frequency and the pressure pulse value generated in the inlet ofthe fluidic device while the piston is working, this differs from the previousresearches of working parameters of liquid jet hammer on the impact velocity,energy, frequency and the parameter of fluidic device, etc.
     3. The “Interface” settings of sliding grids technology in FLUENT softwarewas applied to the CFD numerical simulation, which could handle the interfaceexisted between the dynamic fluids domain and the static fluids domain, and thereciprocating motion process of the piston rod in the taper hole of the throttleplate could be simulated by this technology.
     4. The working pressure and oscillating displacement of the liquid jetoscillation tool could be obtained by the data acquisition system (DAS), and thevariation law of the working pressure loss, oscillating frequency anddisplacement of this tool on the pumped flux could be obtained through thissystem.
     At present the theoretical feasibility of liquid jet oscillation tool was justverified by the ground test, the extensive application of this tool need to bedeeply researched in various aspects, and the working parameter like pressureloss, oscillating frequency and displacement of this tool had an extendedimprovement and optimization scope, and it was deserved further comprehensiveresearches in the future.
引文
[1]马孝春,王贵和,李国民.钻井工程[M].地质出版社,2010.
    [2]郭永峰,白云程.国内外钻井摩阻力研究的现状与趋势[J].国外油田工程,2001,17(8):31—33.
    [3]刘巨保等.石油钻采管柱力学[M].黑龙江大学出版社,2012.
    [4] ERIC M, MARC H, SCOTT J, et al. Field proof of the new slidingtechnology for directional drilling [J]. SPE/IADC Drilling Conference,Amsterdam, February23-25,2005[C]. Netherlands: SPE,2005.
    [5]郭元恒,何世明,刘忠飞,等.长水平段水平井钻井技术难点分析及对策[J].石油钻采工艺,2013,35(1):14—18.
    [6]王秀亭,汪海阁,陈祖锡,等.大位移井摩阻和扭矩分析及其对钻深的影响[J].石油机械,2005,33(12):6—9.
    [7] JOHN EM, TZUFANG C. The practice and evolution of torque and dragreduction: theory and field results [J]. SPE Annual Technical Conferenceand Exhibition, Denver, October30-31,2011[C]. USA: SPE,2011.
    [8]陈勇,蒋祖军,练章华,等.水平井钻井摩阻影响因素分析及减摩技术[J].石油机械,2013,41(9):29—32.
    [9]杨恒昌,翟文涛,刘永旺.水平井水平段轨迹控制技术探讨[J].科学技术与工程,2011,11(35):8872—8875.
    [10]谷玉堂.大位移井轨迹设计方法优选研究[D].大庆:大庆石油学院硕士学位论文,2008.
    [11]于建民,彭万勇,杨红艳,等.塔河油田“S”型井眼优快钻进技术[J].新疆石油科技,2013,23(1):5—7.
    [12] AGBAJI, ARMSTRONG L, et al. Optimizing the planning, design anddrilling of extended reach and complex wells [J]. Abu Dhabi InternationalPetroleum Conference, Abu Dhabi, November1-4,2010[C]. UAE,2010.
    [13]魏学敬,赵相泽.定向钻井技术与作业指南[M].石油工业出版社,2012.
    [14]张绍槐,狄勤丰.用旋转导向钻井系统钻大位移井[J].石油学报,21(1),2000.
    [15] NEWMAN KR. Vibration and rotation considerations in extendingcoiled-tubing reach [J]. SPE/ICOTA Coiled Tubing and Well InterventionConference and Exhibition. Woodlands,2007[C]. USA,2007.
    [16]苏义脑,窦修荣,王家进.减摩工具及其应用[J].石油钻采工艺,27(2),2005.
    [17]陈朝伟,周英操,申瑞臣,等.连续管钻井减摩技术综述[J].石油钻探技术,38(1),2010.
    [18] Weatherford. Mechanical friction reduction tools. http://www.weatherford.com/Products/Drilling/DrillingToolsRentals/TorqueandDragReduction/.
    [19]余志清.降摩阻短节在定向钻井及水平钻井中的应用[J].钻采工艺,22(1),1999.
    [20] KJELL-INGE S, BJORNAR L. New downhole tool for coiled tubingextended reach [J]. SPE/ICoTA Coiled Tubing Roundtable, Houston,2000[C]. USA, SPE60701,2000.
    [21] RASHEED W. Extending the reach and capability of non rotating BHAs byreducing axial friction [J]. SPE/ICoTA Coiled Tubing Roundtable, Houston,2001[C]. USA, SPE68505,2001.
    [22] MAIDLA E. Understanding torque: the key to slide-drilling directionalwells [J]. IADC/SPE Drilling Conference, Dallas,2004[C]. USA,SPE87162,2004.
    [23] AL-BUALI MH. Maximizing coiled tubing reach during logging extendedhorizontal wells using e-line agitator [J]. Kuwait International PetroleumConference and Exhibition, Kuwait City,2009[C]. USA, SPE127399,2009.
    [24]张绍东.国内外石油技术进展(十一五)—钻井与测井[M].中国石化出版社,2012.
    [25]付加胜,李根生,史怀忠,等.井下振动减摩技术研究进展[J].石油机械,40(10),2012.
    [26]黄文君.滑动钻进过程中振动减摩研究[D].中国石油大学硕士论文,2012.
    [27] National Oilwell Varco Company. AGITATOR TOOL HANDBOOK [M].http://www.nov.com/downholelocations.
    [28]边培明.水力振荡器在大位移延伸井中的应用. http://www.docin.com/p-405694812.html.
    [29] BARTON S, BAEZ F, ALALI A. Drilling performance improvements ingas shale plays using a novel drilling agitator device [J]. AADE NationalTechnical Conference and Exhibition, Houston,2011[C]. USA, AmericanAssociation of Drilling Engineers,2011.
    [30] BAEZ F, BARTON S. Delivering performance in shale gas plays:innovative technology solutions [J]. SPE/IADC Drilling Conference andExhibition, Amsterdam,2011[C]. Netherlands, SPE,2011.
    [31]渤钻四公司首次应用水力振荡器[2013-7-23]. http://news.cnpc.com. cn/system/2013/07/23/001438967.shtml.
    [32]渤海钻探钻井四公司承钻塔里木多口7000米超深井[2013-9-9].http://www.pbnews.com.cn/system/2013/09/06/001446460.shtml.
    [33]川庆长庆钻井总公司科技助推水平井提速[2011-12-13]. http://news.cnpc.com.cn/system/2011/12/13/001359069.shtml.
    [34]四川钻井公司川西会战提速提效业绩斐然[2012-5-25]. http://www.sinopecnews.com.cn/b2b/content/2012-05/25/content_1175975.shtml.
    [35]西部钻探国际钻井公司提速鸭儿峡[2013-4-22]. http://news.cnpc.com.cn/system/2013/04/22/001423820.shtml.
    [36] WALTER B, Acoustic flow pulsing apparatus and method for drillingstring:US,7059426[P].2006-06-14.
    [37] ZHENG SF,JEFFRYES BP, THOMEER HV, et al. Method and apparatusto vibrate a downhole component: US,6907927[P].2005-06-21.
    [38]郑灵先.连续油管钻井力学特性分析及水力振动减摩加压器结构设计[D].中国石油大学硕士学位论文,2008.
    [39]殷琨,王茂森,彭枧明,等.冲击回转钻进[M].地质出版社,2010.
    [40]沈建中,贺庆,韦忠良,等.YSC-178型液动射流冲击器在旋冲钻井中的应用[J].石油机械,39(6),2011.
    [41]陶兴华.提高深井钻井速度的有效方法[J].石油钻采工艺,5,2001.
    [42]菅志军,张文华,刘国辉,等.石油钻井用液动冲击器研究现状及发展趋势[J].石油机械,29(11),2001.
    [43]李广国,索忠伟,王甲昌,等.射流冲击器配合PDC钻头在超深井中的应用[J].石油机械,41(4),2013.
    [44] LIU H, YIN K, PENG JM, et al. Fracture failure analysis of baseplates in afluidic amplifier made of WC-11Co cemented carbide [J]. Frattura edIntegrita Strutturale,27(8),2014.
    [45]杨顺辉.液动射流式冲击器的研究现状与发展方向[J].石油机械,37(2),2009.
    [46]菅志军,殷琨,蒋荣庆,等.增大液动射流式冲击器单次冲击功的试验研究[J].长春科技大学学报,30(3),2000.
    [47]菅志军.石油钻井液动射流式冲击器的研究[D].长春科技大学博士论文,1999.
    [48]彭枧明.射流式液动锤增设蓄能装置的数值分析与实验研究[D].吉林大学博士学位论文,2004.
    [49] PENG JM, YIN QL, LI GL, et al. The effect of actuator parameters on thecritical flow velocity of a fluidic amplifier. Applied MathematicalModelling,37,2013.
    [50]李国琳,彭枧明,柳鹤,等.液动锤射流元件喷嘴临界流速预测与验证.吉林大学学报(地球科学版),40(1),2010.
    [51]彭枧明,殷其雷,赵志强,等.低速射流元件控制的高能液动锤研究.石油机械,38(3),2010.
    [52] PENG JM, ZHANG Q, LI GL, et al. Effect of geometric parameters of thebistable fluidic amplifier in the liquid-jet hammer on its threshold flowvelocity. Computers&Fluids,82,2013.
    [53]丁代坡.石油钻井冲击器关键零部件工作寿命的研究.吉林大学硕士学位论文,2008.
    [54]李伟涛.液动锤射流元件工作寿命试验研究.吉林大学硕士学位论文,2004.
    [55]彭枧明,王维,殷其雷,等.分流孔直径对射流式液动锤性能的影响.北京工业大学学报,37(4),2011.
    [56] LIU H, PENG JM, YIN K, et al. Effects of different diameters of diffluencehole on the performance of a liquid-jet hammer. International Journal ofEarth Sciences and Engineering,6(6),2013.
    [57]吉林大学.863计划子专题项目成果报告——高效破岩冲击器的研制[R].长春,2009.
    [58]彭枧明,殷琨,王清岩,等.射流式液动锤高压腔内流体压力的数学模型[J].中国石油大学学报(自然科学版),29(6),2005.
    [59]陶兴华.液动射流式冲击器工作数学模型建立[J].石油钻探技术,33(1),2005.
    [60]王清岩,殷琨,彭枧明,等.液动射流冲击器计算机仿真技术的发展与应用[J].中国石油大学学报(自然科学版),36(1),2008.
    [61]索忠伟.射流式液动锤内部动力过程的数学模型及仿真分析[J].吉林大学学报(地球科学版),37(1),2007.
    [62]陈家旺,殷琨,谭凡教.基于Matlab语言的射流式冲击器元件内部流场仿真计算[J].露天采矿技术,6,2006.
    [63]谭凡教.射流式冲击器改型设计及MATLAB仿真计算[D].吉林大学博士学位论文,2005.
    [64]索忠伟.油气井液动锤使用蓄能器增大冲击功理论分析及试验研究[D].吉林大学博士学位论文,2006.
    [65]陈家旺.射流液动冲击器仿真计算与实验研究[D].吉林大学博士学位论文,2007.
    [66]王克雄,翟应虎,蔡镜仑.冲击力法测试液动冲击器单次冲击功的研究[J].振动与冲击,15(3),1995.
    [67]吴忠杰,林君,彭枧明,等.液动射流式冲击器冲击功测量方法及仪器研究[J].仪器仪表学报,27(9),2006.
    [68]李占彬.革命性的突破—四川油气田应用气体钻井技术综述[J/OL].中国石油报[2006-6-20].http://www.cnpc.com.cn/Paper/2006/06/20/plate2/006.
    [69]水平井业务怎样实现高水平发展[J/OL].中国石油科技新闻.http://news.cnpc.com.cn/system/2011/03/28/001328206.shtml.
    [70]王福军.计算流体动力学分析CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [71]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [72]隋洪涛,李鹏飞,马世虎,等.精通CFD动网格工程仿真与案例实战[M].北京:人民邮电出版社,2013.
    [73] SELIN A. CFD for high speed flows in engineering [M]. VDM Verlag,2008.
    [74]于勇,张俊明,姜连田.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [75] CHEN JW, YIN K, PENG JM, et al. Numerical simulation of theperformance of the SC-89jet impact system [J]. Proceedings of the ASMEDynamic Systems and Control Conference, Hollywood,2009[C].USA:2009.
    [76] KHELFAOUI R,COLIN S,CAEN R, et al. Numerical and experimentalanalysis of monostable mini-and micro-oscillators [J]. Heat TransferEngineering,30(1),2009.
    [77] VACLAV TESAR, HUNG CH, WILLIAM B, et al. No-moving-parthybrid-synthetic jet actuator [J]. Sensors and Actuators A,125(2),2006.
    [78] WANG CY, ZOU J, FU X, et al. Study on hydrodynamic vibration influidic flowmeter [J]. Journal of Zhejiang University (Science A),8(9),2007.
    [79] Fluent User’s Guide, release6.3.26, ANSYS Inc., USA,2006.
    [80] NAGANO, YASUTAKA, ITAZU, et al. Renormalization group theory forturbulence: eddy-viscosity type model based on an iterative averagingmethod [J], Physics of Fluids,9(1),1997.
    [81] YAKHOT V, ORSZAG SA. Renormalization group analysis of turbulence:I. basic theory [J]. Journal on Scientific Computing,1(1),1986.
    [82] HINZE JO. Turbulence [M]. USA:McGraw-Hill Publishing Co.,1975.
    [83]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2013.
    [84]韩占忠.FLUENT流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700