用户名: 密码: 验证码:
具有管中管结构复合神经导管的制备及材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着神经损伤发生率的大幅度上升,神经移植已不能很好地满足需要,新方向的探索变得尤为重要,神经导管作为一种新的治疗方法应运而生。神经导管组织工程支架可以为神经的生长提供良好的微环境,理想的神经导管还能促进受损神经的愈合或为神经的生长提供导向作用。本文设计了一种管中管新构型的神经导管,详细讨论了各部分材料的基本性能,对管中管结构神经导管的可行性进行初步探索,期望复合结构的神经导管会对神经再生起到积极作用。
     通过静电纺丝法制备得到的纳米纤维,由于具有较高的孔隙率、较大的比表面积及高表面能等优势,能够从纳米尺度来模仿天然细胞外基质,被广泛地应用于组织工程支架材料、伤口敷料及药物载体等方面。因此本文首先采用静电纺丝技术制备神经导管的外管支架,通过旋转接收装置、优化纺丝参数,制备得到仿细胞外基质的有序纳米纤维支架,作为细胞生长的支撑,促进细胞的迁移及增殖。另外,湿法中空纤维成型是一步法连续制备中空纤维导管的有效途径,在制备管内部纤维导管时采用湿法纺丝技术。
     本文选用脂肪族聚碳酸丁二脂(PBC)、甲壳素纳米晶须(ChW)、高密度壳聚糖(HCS)及表面功能化的多壁碳纳米管(f-MWNTs)作为基本支架材料,通过静电纺丝接收装置的改进、材料组合、表面改性等,系统地研究评价了这类材料用作神经修复组织工程材料的力学性能、细胞相容性及降解性能等。主要研究工作如下:
     1.通过静电纺丝法制备无规和有序PBC纳米纤维,研究了接收线速度对纳米纤维基本性能的影响。之后研究了低温等离子表面改性技术对纤维表面亲水性的影响,并通过等离子改性方法诱导纤维表面接枝明胶,以增强纤维表面的生物相容性。研究表明,PBC可以均匀地溶解于甲酸、DMF、六氟异丙醇及氯仿等有机溶剂中,但仅溶解于甲酸能够得到表面光滑、粗细均匀的纳米级纤维;通过转轴法可以成功制备得到PBC有序纳米纤维,随着旋转线速度的增大,纤维的排列有序度、晶区及分子链的取向度、结晶度以及力学性能都有所增大。
     2.为了进一步提高外管有序纳米纤维的力学性能。首先通过酸解法制备得到纳米级甲壳素晶须,然后将其与PBC进行共混复合,通过静电纺丝法制备得到纳米级复合纤维,研究发现利用酸解法制得的甲壳素晶须的长度范围为180-680nm,直径分布范围为15-30nm,平均长径比为14.7,且将晶须分散到甲酸中24h后对表面形貌的观察发现,在短时间内甲酸并不会影响到晶须形貌,为下一步实验提供了依据;对将不同含量的晶须添到PBC中制得复合纳米纤维的研究表明,当晶须含量为5.0wt%时,制得的纳米纤维表面光滑、直径分布均匀且随着晶须的加入结晶度、热稳定性及力学性能得到显著提高。之后采用低温等离子技术对表面进行改性处理并用明胶接枝以赋予纤维表面新的生物相容性,使其亲水性得到了很大的提高,且更有利于神经细胞RSC96的黏附与增殖。
     3.采用高密度壳聚糖(HCS)来制备导管内部的中空纤维。首先研究了HCS质量分数以及温度等对纺丝浆液稳定性的影响;而后进行湿法纺丝制备了中空纤维,并对HCS中空纤维的化学结构、晶体结构和热性能进行了研究。结果表明,HCS的固含量为5wt%时,纺丝过程顺利进行,挤出的浆液在凝固浴中形成的初生纤维结构均匀,不会出现断丝情况。纺丝温度应控制在20-30℃;凝固浴浓度为3wt%时所得的中空纤维热力学及结构性能较好。因此,在后续的实验研究中,将采用质量分数为5wt%HCS纺丝浆液,以质量分数为3wt%的NaOH-乙醇溶液作为凝固浴制备中空纤维。
     4.采用碳纳米管来增强HCS中空纤维的力学和电学性能。为了提高碳管在HCS溶液中的分散性及与HCS基体之间的相容性,通过表面沉积交联法对碳管进行表面修饰得到f-MWNTs。然后与HCS进行混合制得复合中空纤维,并对其性能进行了研究分析。研究发现,经过表面修饰得到的f-MWNTs的管身变得平直,缠结状态也有所缓解,且在水中的分散性就明显优于MWNTs;对复合中空纤维的研究发现当f-MWNTs的含量达到0.5wt%时,f-MWNTs在HCS基体中的分布最为均匀,中空纤维的断面形貌也最为致密;且复合纤维的拉伸强度和弹性模量均达到最大值,分别为9.33MPa和2.34GPa;在含水率相同的条件下,随着碳管含量的增加复合纤维的电导率也增加。经过等离子预处理和明胶接枝改性后,复合膜在各个压力下的水通量都有了明显的提高,且更有利于细胞的黏附与增殖。
     5.管中管结构的神经导管外层通过将静电纺有序纳米纤维沿一定直径的芯棒卷绕成管状结构,内部填充中空纤维,得到内部通道不同的导管。对导管的压缩性能的研究表明,5-通道神经导管在形变量为25%时,负荷力高达201cN,完全能够满足神经导管径向支撑力的要求;管中管结构的神经导管在受到外界压力时,形状发生变化后能够自然恢复,即形变后也能承担一定的支撑作用,符合神经导管力学性能的要求。
     因此本文所制备的管中管复合型神经导管在亲水性、降解性及细胞相容性上都有所提高,同时具有良好的机械性能,有望成为新一代的神经修复组织工程支架。
In recent years, with the increasing in the incidence of nerve injury, nerve graft could not satisfied the nerve regeneration for the restrictions of distance and defect in donor's functions. So the restoration, regeneration and functional recovery in nerve injury have become a primary research direction in neuroscience and the nerve conduit is put forward. The nerve conduit is the connection of fracture nerves to provide suitable microenvironment for nerve growth and the idea conduit can also provide orientation for proliferation of nerve cells. In this paper, a novel nerve conduit with a tube in tube structure was designed and detailed experimental studies of fundamental properties were made. In addition, technical feasibility and reasonableness of the method were also discussed based on the results, and expected to bring the nerve conduit closer to being a realistic possibility.
     Nanofibrous scaffolds, prepared by electrospinning with high porosity and large surface area, could imitate the natural extracellular matrix in the nano-scale, so it can be used as a porous scaffold to promote cell migration and proliferation in tissue engineering, wound dressing and pharmaceutical carriers. In this paper, the outward scaffolds were prepared by electrospinning and aligned nano-fibers that obtained by optimizing the spinning parameters and receiving apparatus could promote the cells'migration and proliferation. What's more, wet spinning was an effective method to prepare continuous hollow fibers, so inside hollow fibers were gained by this method.
     Poly(butylene carbonate)(PBC), chitin nano-whiskers (ChW), high-density chitosan (HCS) and functionalized multi-walled carbon nanotubes (f-MWNTs) were chosen as the basic materials for scaffolds. Through the improvement of electrospinning technology, materials composition and surface modification, the mechanical properties, cell compatibility and degradation rate were also deeply studied. Main researches are listed as follows:
     1. Random nano-fibers and aligned nano-fibers were prepared by electrospinning and the relationship of rotating speed of the receiving instrument and the basic performance of nano-fibers were discussed in detail. After plasma pretreatment and gelatin graft, hydrophilicity and biocompatibility of the aligned fiber mats could be improved significantly. Studies show that PBC could dissolve in some organic solvent such as formic acid (FA), dimethylformamide (DMF), hexafluoroisopropanol (HFIP) and chloroform, but the uniform and smooth fibers could only obtain from the FA solution; During the process of preparing aligned PBC nano-fibers, the order degree of fibers, the crystallinity and the orientation of crystalline region including mechanical strength are all increased correspondingly with the increment of rotating speed.
     2. Chitin nano-whiskers made by acid decomposition method were added into PBC solutions to obtain compound nano-fibers in order to improve mechanical properties. The studies found that, the length and diameter of ChW were in the range of180-680nm and15-30nm respectively and the average length diameter ratio was14.7. In addition, the morphology of ChW in FA solvent was not changed and this has provided basis for the further experiment. The nano-fibers with uniform diameter distribution and smooth surface could be prepared with the addition of ChW up to5.0wt%; the crystallinity, thermal stability and mechanical properties are increased correspondingly with the increasing of ChW contents. After plasma pretreatment, hydrophilicity of the aligned fiber mats was improved significantly, and the fiber mats was then immersed into gelatin solution for grafting. The aligned nano-fibers after gelatin grafting could stimulate the adhesion and proliferation of RSC96cells.
     3. In the paper, the spinning solutions were prepared by using acetic acid as solvent; the rheology of the solutions were studied to investigate the effect of the solid content and the spinning temperature on the stability of the spinning solutions and the spinning process. Then hollow fibers were obtained by the method of wet spinning and chemical structures, crystal structures, thermal properties including mechanical property were researched. The results showed that:we could obtain hollow fibers smoothly with the concentration of the spinning solution in5wt%at20-30℃the fibers had excellent properties that regenerated within the coagulation bath of3wt%sodium hydroxide-ethanol (mass ratio of1:1).
     4. The dispersivity and compatibility with HCS of f-MWNTs that obtained via a controlled surface deposition and crosslinking process have been improved a lot; most of the tube body spread out that close to single dispersion, and the tangle also was eased after deposition and crosslinking process. The hollow fibers with the f-MWNTs content of0.5wt%exhibit the optimal tensile property with the maximum tensile strength and elasticity modulus of9.33MPa and2.34GPa, respectively. The fiber was then immersed into gelatin solution for grafting after pretreatment. Under the condition of same moisture content, the conductivity of composite hollow fibers was also improved with the increase of the content of f-MWNTs. XPS results also showed that some oxygen element was introduced to the surface of the pretreated samples for subsequently exposing to air (atomic fraction rising from29.07%to38.28%); in following grafting reaction, the active groups from gelatin introduce a large amount of nitrogen (from1.73%to7.54%) and the C-C bond broke down to form C=O and C=N bonds or other polar groups to realize the grafting reaction. Form biological characterization such as cell attachment, cell morphology and proliferation, these results demonstrate following two aspects. First, the addition of a small amount of f-MWNTs in fibers with the cell adhesion rate of77.44%which equal to HCS fibers (78.29%) after24h have no affect on cell behavior; second, cells seeded in fibers grafted with gelatin have higher adhesion rate and cells can proliferate faster in the same time which proved that the superior ability of fibers after surface modification with gelatin can well support Schwann cells (RSC96) growth and proliferation.
     5. The aligned nano-fibers prepared from electrospinning was rolled on the core bar with right diameter to form the outer tube of nerve conduit, and then hollow fibers were filled into the tube to receive the nerve conduit with a tube in tube structure. The results of compression properties of nerve conduit indicated that the load force of5-channel conduit could reach up to210cN with the deformation of25%, so the conduit could meet the requirements of the supporting force of nerve regeneration.
引文
[1]Lin M Y, Manzano G, Gupta R. Nerve Allografts and Conduits in Peripheral Nerve Repair[J]. Hand Clinics.2013,29(3):331-348.
    [2]Rivlin M, Sheikh E, Isaac R, et al. The Role of Nerve Allografts and Conduits for Nerve Injuries[J]. Hand Clinics.2010,26(3):435-446.
    [3]Hsu S, Chan S, Chiang C, et al. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model[J]. Biomaterials.2011,32(15):3764-3775.
    [4]Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering[J]. Biomaterials.2010,31(17):4639-4656.
    [5]Jiang B, Akar B, Waller T M, et al. Design of a composite biomaterial system for tissue engineering applications[J]. Acta Biomaterialia.2014,10(3):1177-1186.
    [6]Santo V E, Duarte A R C, Gomes M E, et al. Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering[J]. The Journal of Supercritical Fluids.2010,54(3):320-327.
    [7]Langer R, Vacanti J P. Tissue engineering [J]. Science.1993,260 (5110): 920-926.
    [8]Cunha C, Panseri S, Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration[J]. Nanomedicine:Nano-technology, Biology, and Medicine.2011,7(1):50-59.
    [9]Huang W, Begum R, Barber T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J]. Biomaterials.2012,33(1):59-71.
    [10]Reid A J, de Luca A C, Faroni A, et al. Long term peripheral nerve regeneration using a novel PCL nerve conduit[J]. Neuroscience Letters.2013,544(0): 125-130.
    [11]Li M, Liu F, Shi S, et al. Bridging Gaps Between the Recurrent Laryngeal Nerve and Ansa Cervicalis Using Autologous Nerve Grafts[J]. Journal of Voice.2013, 27(3):381-387.
    [12]Zhang Y, Luo H, Zhang Z, et al. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells[J]. Biomaterials.2010,31(20):5312-5324.
    [13]Jiang X, Lim S H, Mao H, et al. Current applications and future perspectives of artificial nerve conduits[J]. Experimental NeurologyRegeneration in the Peripheral Nervous System.2010,223(1):86-101.
    [14]东星,王伟.应用组织工程技术构建人工神经修复周围神经损伤的研究现状[J].中国组织工程研究与临床康复.2008,13(27):5317-5320.
    [15]Tan A, Rajadas J, Seifalian A M. Biochemical engineering nerve conduits using peptide amphiphiles[J]. Journal of Controlled Release.2012,163(3):342-352.
    [16]Daly W T, Knight A M, Wang H, et al. Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair[J]. Biomaterials.2013, 34(34):8630-8639.
    [17]李晓强,莫秀梅,范存义.神经导管研究与进展[J].中国生物工程杂志.2007,21(7):112-116.
    [18]P W. The technology of nerve regeneration, Sutureless tabulation and related methods of repair[J]. Neurosurg.1944,46(1):400-413.
    [19]Wang S, Yaszemski M J, Knight A M, et al. Photo-crosslinked poly(s-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations[J]. Acta Biomaterialia. 2009,5(5):1531-1542.
    [20]Lundborg G, Kanje M. Bioartificial nerve grafts[J].Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery.1996,30(2):105-110.
    [21]赵立国,姚康德,凌锋.神经导管修复周围神经损伤的研究进展[J].生物医学工程与临床.2003,7(2):120-123.
    [22]Mazzitelli S, Capretto L, Tosi A, et al. Living matrixes for peripheral nerve regeneration:Effect of process parameters on conduit characteristics[J]. Journal of Controlled Release.2008,132(3):58-60.
    [23]Shin H. Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions[J]. Biomaterials.2007,28(2):126-133.
    [24]王永红,戴红莲,李世普.神经导管生物材料的研究[J].武汉理工大学学报.2009,31(12):62-67.
    [25]Sjollema J, Sharma P K, Dijkstra R J B, et al. The potential for bio-optical imaging of biomaterial-associated infection in vivo[J]. Biomaterials.2010,31(8): 1984-1995.
    [26]Zhang Y. Applications of natural silk protein sericin in biomaterials[J]. Biotechnology Advances.2002,20(2):91-100.
    [27]Puppi D, Chiellini F, Piras A M, et al. Polymeric materials for bone and cartilage repair[J]. Progress in Polymer Science.2010,35(4):403-440.
    [28]Ao Q, Wang A, Cao W, et al. Fabrication and Characterization of Chitosan Nerve Conduits with Microtubular Architectures[J]. Tsinghua Science & Technology. 2005,10(4):435-438.
    [29]Firdous S, Ahmed A, Nawaz M, et al. Optical characterization of Chitosan for application as an engineered biomaterial[J]. Optik-International Journal for Light and Electron Optics.2013,124(12):1297-1302.
    [30]Jiao H, Yao J, Yang Y, et al. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments[J]. Biomaterials.2009,30(28):5004-5018.
    [31]Hsueh Y, Chang Y, Huang T, et al. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells[J]. Biomaterials.2014,35(7):2234-2244.
    [32]Liao C, Huang J, Sun S, et al. Multi-channel chitosan-polycaprolactone conduits embedded with microspheres for controlled release of nerve growth factor[J]. Reactive and Functional Polymers.2013,73(1):149-159.
    [33]张万里,王伟.甲壳素类神经导管修复周围神经的研究与进展[]].中国组织工程研究与临床康复.2009,15(47):9321-9324.
    [34]Rosales C M, Peregrina S J. Immunological Study of a Chitosan Prosthesis in the Sciatic Nerve Regeneration of the Axotomized Dog[J]. Biomaterials.2003, 18(25):15-23.
    [35]Freier T, Montenegro R, Shan Koh H, et al. Chitin-based tubes for tissue engineering in the nervous system[J]. Biomaterials.2005,26(22):4624-4632.
    [36]Wang W, Itoh S, Yamamoto N, et al. Enhancement of nerve regeneration along a chitosan nanofiber mesh tube on which electrically polarized β-tricalcium phosphate particles are immobilized [J]. Acta Biomaterialia.2010,6(10):4027-4033.
    [37]Wang W, Itoh S, Matsuda A, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regen-eration[J]. Journal of Biomedical Materials Research-Part A.2008,84(2):557-566.
    [38]Dienstknecht T, Klein S, Vykoukal J, et al. Type I Collagen Nerve Conduits for Median Nerve Repairs in the Forearm[J]. The Journal of Hand Surgery.2013, 38(6):1119-1124.
    [39]Torricelli P, Gioffr? M, Fiorani A, et al. Co-electrospun gelatin-poly(l-lactic acid) scaffolds:Modulation of mechanical properties and chondrocyte response as a function of composition[J]. Materials Science and Engineering:C.2014,36(0): 130-138.
    [40]Daniele M A, Adams A A, Naciri J, et al. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds[J]. Biomaterials.2014,35(6):1845-1856.
    [41]赵红斌,马敬,杨银书.胶原神经导管对外周神经缺损修复的实验研究[J].生物医学工程与临床.2010,14(2):100-104.
    [42]Goto E, Mukozawa M, Mori H, et al. A rolled sheet of collagen gel with cultured Schwann cells:Model of nerve conduit to enhance neurite growth[J]. Journal of Bioscience and Bioengineering.2010,109(5):512-518.
    [43]Huang C, Chen R, Ke Q, et al. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts[J].Colloids and Surfaces B: Biointerfaces.2011,82(2):307-315.
    [44]Mohammadi R, Mahmoodi H. Improvement of peripheral nerve regener-ation following nerve repair by silicone tube filled with curcumin:A preliminary study in the rat model[J]. International Journal of Surgery.2013,11(9):819-825.
    [45]王相如,钱济先.神经导管在周围神经修复中的临床应用[J].中国临床康复.2002,6(24):3704-3705.
    [46]Puente A C, FolgueraP J, Sanchez F R, et al. Repair of nerve injuries in the forearm using a silicone tube. Long-term clinical results[J]. Revista Espanola de Cirugia Ortopedica y Traumatologia (English Edition).2011,55(2):79-84.
    [47]Stanec S, Stanec Z. Ulnar nerve reconstruction with an expanded polytetra-fluoroethylene conduit[J]. British Journal of Plastic Surgery.1998,51(8):637-639.
    [48]魏欣,劳杰,顾玉东.神经导管的研究进展[J].复旦学报(医学科学版).2001,28(1):89-91.
    [49]刁云锋,商崇智.神经导管生物材料在神经修复中的应用[J].中国组织工程研究与临床康复.2011(34):6424-6427.
    [50]Kehoe S, Zhang X F, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury:A review of materials and efficacy[J]. Injury.2012,43(5): 553-572.
    [51]Tan L, Yu X, Wan P, et al. Biodegradable Materials for Bone Repairs:A Review[J]. Journal of Materials Science & Technology.2013,29(6):503-513.
    [52]Bender M D, Bennett J M, Waddell R L, et al. Multi-channeled biodegradable polymer/CultiSpher composite nerve guides[J]. Biomaterials.2004, 25(7-8):1269-1278.
    [53]Ghasemi M L, Prabhakaran M P, Morshed M, et al. Electrospun poly([var epsilon]-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering[J]. Biomaterials.2008,29(34):4532-4539.
    [54]Ghasemi M L, Prabhakaran M P, Morshed M, et al. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering[J]. Materials Science and Engineering:C.2010,30(8):1129-1136.
    [55]蒋青锋,陈志良,陈建海.聚己内酯理化性质的研究[J].中国医院药学杂志.2006,26(3):235-242.
    [56]Xuemei W, Yugang Z, Lisong D. Study of biodegradable polylactide/poly-(butylene carbonate) blend[J]. Journal of Applied Polymer Science.2013,127(1): 471-477.
    [57]Ekdahl K N, Lambris J D, Elwing H, et al. Innate immunity activation on biomaterial surfaces:A mechanistic model and coping strategies[J]. Advanced Drug Delivery Reviews.2011,63(12):1042-1050.
    [58]Wang C, Zhang K, Fan C, et al. Aligned natural-synthetic polyblend nano-fibers for peripheral nerve regeneration[J].Acta Biomaterialia.2011,7(2):634-643.
    [59]Catrina S, Gander B, Madduri S. Nerve conduit scaffolds for discrete delivery of two neurotrophic factors[J]. European Journal of Pharmaceutics and Biopharmaceutics.2013,85(1):139-142.
    [60]Koshy S T, Ferrante T C, Lewin S A, et al. Injectable, porous, and cell-responsive gelatin cryogels[J]. Biomaterials.2014,35(8):2477-2487.
    [61]Kokai L E, Ghaznavi A M, Marra K G. Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor[J].Biomaterials.2010,31(8):2313-2322.
    [62]李纯清,张裕刚,龚兴厚等.粒子沥滤法制备组织工程用多孔支架的研究进展[J].高分子通报.2012,21(11):92-96.
    [63]王身国,侯建伟,贝建中等.聚d,1-乳酸及其对20毫米断缺神经诱导修复的研究[J].高技术通讯.2000,17(8):15-18.
    [64]曾敏峰,孙旭东,姚献东等.壳聚糖基多孔膜的制备方法进展[J].高分子材料科学与工程.2005,43(02):52-55.
    [65]Chang C, Hsu S. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration[J]. Biomaterials.2006,27(7):1035-1042.
    [66]Widmer M S, Gupta P K, Lu L, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration[J]. Biomaterials.1998,19(21):1945-1955.
    [67]徐海星,闫玉华,梅玉峰等.修复周围神经损伤的静电自组装PDLLA/CS/CHS复合材料[J].华中科技大学学报(自然科学版).2007,35(12):121-124.
    [68]Xu H, Yan Y, Li S.PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration[J].Biomaterials.2011,32(20):4506-4516.
    [69]何晨光,赵莉.静电纺丝壳聚糖-明胶复合纤维的制备和体外生物相容性评价[J].组织工程与重建外科杂志.2012,33(06):316-322.
    [70]Reneker D H, Yarin A L, Fong H, et al.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics.2000,87(91):4531-4547.
    [71]Daming Z, Jiang C. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures[J].Nano Letters.2008,8(10):3283-3287.
    [72]井手文雄,关桂荷.低温等离子体处理在高分子材料中的应用(上)[J].国外纺织技术(化纤、染整、环境保护分册).1986,47(01):1-7.
    [73]王宏,黄传军,李来风.等离子体表面有机聚合在纳米材料改性中的应用[J].云南冶金.2010,30(1):64-72.
    [74]Alves P, Pinto S, De Sousa H C, et al. Surface modification of a thermoplastic polyurethane by low-pressure plasma treatment to improve hydrophilicity[J].Journal of Applied Polymer Science.2011,122(4):2302-2308.
    [75]周灵君,汤建新,何农跃.聚四氟乙烯表面等离子体修饰氨基及XPS分析[J].化工时刊.2004,18(10):27-29.
    [76]Xu Z X, Li T, Zhong Z M, et al. Amide-linkage formed between ammonia plasma treated poly(D,L-lactide acid) scaffolds and bio-peptides:Enhancement of cell adhesion and osteogenic differentiation in vitro[J].Biopolymers.2011,95(10): 682-694.
    [77]黄锋林,魏取福,陈磊.等离子体引发PVDF纳米纤维薄膜丙烯酸的研究[J].天津工业大学学报.2008,27(5):33-35.
    [78]Tongna S, Meiling S, Hongrui Z, et al. Surface modification of porous poly(tetrafluoroethylene) film via cold plasma treatment[J].Applied Surface Science. 2011,258(4):1474-1479.
    [79]Fahmy T M, Samstein R M, Harness C C, et al. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting[J]. Biomaterials.2005,26(28):5727-5736.
    [80]Chang S, Chian C.Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films[J].Applied Surface Science.2013, 282(0):735-740.
    [81]Baek H S, Park Y H, Ki C S, et al. Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma[J]. Surface and Coatings Technology.2008,202 (22-23):5794-5797.
    [82]He W, Yong T, Ma Z W, et al. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells[J]. Tissue Engineering.2006,12(9): 2457-2466.
    [83]He W, Ma Z, Yong T, et al. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth[J].Biomaterials. 2005,26(36):7606-7615.
    [84]Lee H U, Park S Y, Kang Y H, et al. Physicochemical properties and enhanced cellullar responses of biocompatible polymeric scaffolds treated with atmospheric pressure plasma using O2 gas[J]. Materials Science and Engineering C. 2011,31(3):688-696.
    [85]李红.湿化学法制备准一维纳米材料的研究进展[J].日用化学工业.2008,38(6):395-399.
    [86]邱建华,张延武,张亚涛等.表面化学法改性醋酸纤维素微滤膜[J].广西师范大学学报(自然科学版).2011,29(2):65-70.
    [87]Croll T I, O'Connor A J, Stevens G W, et al. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects[J]. Biomacromolecules.2004,5(2): 463-473.
    [88]Chen F, Lee C N, Teoh S H. Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning[J]. Materials Science and Engineering C.2007,27(2):325-332.
    [89]Ma Z, Kotaki M, Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane[J].Journal of Membrane Science.2005,265(1-2):115-123.
    [90]Seeram Ramakrishna, Fujihara K, Teo W. An Introduction to Electrospinning and Nanofibers[M].World Scientific Publishing Co. Pte. Ltd.,2005.
    [91]Hu S G, Jou C H, Yang M C. Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)[J]. Carbohydrate Polymers.2004,58(2):173-179.
    [92]Agnew S P, Dumanian G A. Technical Use of Synthetic Conduits for Nerve Repair[J]. Journal of Hand Surgery.2010,35(5):838-841.
    [93]Daud M F B, Pawar K C, Claeyssens F, et al. An aligned 3D neuronal-glial co-culture model for peripheral nerve studies[J]. Biomaterials.2012,33(25): 5901-5913.
    [94]Chunzheng G, Shengzhong M, Yinglian J, et al. Siatic nerve regeneration in rats stimulated by fibrin glue containing nerve growth factor:An experimental study[J].Injury.2008,39(12):1414-1420.
    [95]Yucel D, Kose G T, Hasirci V. Polyester based nerve guidance conduit design[J]. Biomaterials.2010,31(7):1596-1603.
    [96]Tsujimoto H, Nakamura T, Miki T, et al. Regeneration and Functional Recovery of Intrapelvic Nerves Removed During Extensive Surgery by a New Artificial Nerve Conduit:A Breakthrough to Radical Operation for Locally Advanced and Recurrent Rectal Cancers[J]. Journal of Gastrointestinal Surgery.2011,15(6): 1035-1042.
    [97]Li X, Yang Z, Zhang A, et al. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats[J].Biomaterials.2009,30(6):1121-1132
    [98]Yao L, de Ruiter G C W, Wang H, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit[J]. Biomaterials.2010, 31(22):5789-5797.
    [99]Li J, Shi R. Fabrication of patterned multi-walled poly-1-lactic acid conduits for nerve regeneration[J]. Journal of Neuroscience Methods.2007,165(2):257-264.
    [100]赵维彦,路来金,梁丽荣.周围神经再生研究方法的进展[J].中国矫形外科杂志.2008,16(14):1081-1083.
    [101]Wang A, Ao Q, Cao W, et al.Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering[J].Journal of Biomedical Materials Research-Part A.2006,79(1):36-46.
    [102]Lietz M, Dreesmann L, Hoss M, et al. Neuro tissue engineering of glial nerve guides and the impact of different cell types[J]. Biomaterials.2006,27(8): 1425-1436.
    [103]Unezaki S, Yoshii S, Mabuchi T, et al. Effects of neurotrophic factors on nerve regeneration monitored by in vivo imaging in thyl-YFP transgenic mice[J]. Journal of Neuroscience Methods.2009,178(2):308-315.
    [1]Xuemei W, Yugang Z, Lisong D. Study of biodegradable polylactide /poly(butylene carbonate) blend[J]. Journal of Applied Polymer Science.2013,127(1): 471-477.
    [2]Daly W T, Knight A M, Wang H, et al.Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair[J].Biomaterials.2013, 34(34):8630-8639.
    [3]Kijenska E, Prabhakaran M P, Swieszkowski W, et al. Interaction of Schwann cells with laminin encapsulated PLCL core-shell nanofibers for nerve tissue engineering[J]. European Polymer Journal.2014,50(0):30-38.
    [4]Jha B S, Colello R J, Bowman J R, et al. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction[J]. Acta Biomaterialia.2011,7(1):203-215.
    [5]Kenar H, Kose G T, Hasirci V. Design of a 3D aligned myocardial tissue construct from biodegradable polyesters[J].Journal of Materials Science:Materials in Medicine.2009:1-9.
    [6]Yang D, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning[J].Advanced Materials.2007,19(21):3702-3706.
    [7]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films[J]. Advanced Materials.2004,16(4): 361-366.
    [8]Zhang D, Chang J. Patterning of Electrospun fibers using electro-conductive templates[J]. Advanced Materials.2007,19(21):3664-3667.
    [9]Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J].Polymer.2004,45(12):4217-4225.
    [10]Courtney T, Sacks M S, Stankus J, et al. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy[J]. Biomaterials. 2006,27(19):3631-3638.
    [11]Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. I. Stability theory[J]. Physics of Fluids.2001,13(8):2201-2220.
    [12]Zhang C, Yuan X, Wu L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats[J]. European Polymer Journal.2005,41(3):423-432.
    [13]Lee K H, Kim H Y, Bang H J, et al. The change of bead morphology formed on electrospun polystyrene fibers[J]. Polymer.2003,44(14):4029-4034.
    [14]Baumgarten P K. Electrostatic spinning of acrylic microfibers[J].Journal of Colloid and Interface Science.1971,36(1):71-79.
    [15]Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer.2001,42(1): 261-272.
    [16]Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers[J]. Polymer.2002,43(11):3303-3309.
    [17]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics.1995,35(2-3):151-160.
    [18]Chew S Y, Mi R, Hoke A, et al. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation [J]. Biomaterials.2008,29(6):653-661.
    [19]Vaz C M, van Tuijl S, Bouten C V C, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J]. Acta Biomaterialia.2005,1(5):575-582.
    [20]Lee K H, Kim H Y, Khil M S, et al.Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning[J]. Polymer.2003,44(4): 1287-1294.
    [21]Lee J Y, Bashur C A, Goldstein A S, et al.Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications[J]. Biomaterials.2009,30(26): 4325-4335.
    [22]章成峰,刘毓海,刘少轩等.细旦尼龙6纤维加工过程中的晶型转化行为[J].中国科学B辑:化学.1989,39(11):1378-1385.
    [23]Penel P L, Depecker C, Seguela R, et al. Structural and mechanical behavior of nylon 6 films part Ⅰ. Identification and stability of the crystalline phases[J]. Journal of Polymer Science Part B-Polymer Physics.2001,39(5):484-495.
    [24]Ramesh C, Gowd E B. High-temperature X-ray diffraction studies on the crystalline transitions in the alpha-and gamma-forms of nylon-6[J].Macromolecules. 2001,34(10):3308-3313.
    [25]Qiu Z, Miao L, Yang W. Crystallization and melting behavior of biodegradable poly(butylene succinate-co-butylene carbonate)[J].Journal of Polymer Science, Part B:Polymer Physics.2006,44(11):1556-1561.
    [26]Thakur R A, Florek C A, Kohn J, et al.Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing[J].International Journal of Pharmaceutics.2008,364(1):87-93.
    [27]Kim C H, Khil M S, Kim H Y, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation[J]. Journal of Biomedical Materials Research-Part B Applied Biomaterials.2006,78(2):283-290.
    [28]Messina G M L, Satriano C, Marletta G. A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces[J]. Colloids and Surfaces B:Biointerfaces.2009,70(1):76-83.
    [29]Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes[J]. Journal of Membrane Science.2005,246(2):203-215.
    [30]王春莲,陈浩,赵丽娜.低温等离子体在高分子材料表面改性中的应用[J].辽宁化工.2011,40(10):1067-1069.
    [31]Ferreira B M P, Pinheiro L M P, Nascente P A P, et al. Plasma surface treatments of poly(1-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyl-valerate) (PHBV)[J].Materials Science and Engineering:C.2009,29(3):806-813.
    [32]He W, Ma Z, Yong T, et al. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth[J].Biomaterials. 2005,26(36):7606-7615.
    [1]Michel P, Alain D. Chitin whisker reinforced thermoplastic nanocomposites. macromolecules,2011,34(19):6527-6530.
    [2]Jianbing Z, Yisong H, Shaolong L, et al. Chitin whiskers:an overview. biomacromolecules,2012,13(1):1-11.
    [3]Ji Y, Wolfe P S, Rodriguez I A, et al. Preparation of chitin nanofibril /polycaprolactone nanocomposite from a nonaqueous medium suspension[J]. Carbohydrate Polymers.2012,87(3):2313-2319.
    [4]龚安华,孙岳玲.纳米晶须材料的研究概述[J].化学工程师.2008,24(05):41-43.
    [5]陈锐,罗康碧,李沪萍等.晶须在材料中的应用[J].化工科技.2007,19(06):58-61.
    [6]Mathew A P, Laborie M G, Oksman K. Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability[J]. Biomacromolecules.2009,10(6):1627-1632.
    [7]Junkasem J, Rujiravanit R, Supaphol P. Fabrication of alpha-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electro-spinning[J].Nanotechnology.2006,17(17):4519-4528.
    [8]杨建红,杜予民,覃彩芹.红外光谱与核磁共振波谱在甲壳素结构研究中的应用[J].分析科学学报.2003,23(03):282-287.
    [9]孔祥平.红外光谱法测定壳聚糖脱乙酰度[J].应用化工.2012,16(08):1458-1461.
    [10]Brugnerotto J, Lizardi J, Goycoolea F M, et al.An infrared investigation in relation with chitin and chitosan characterization [J]. Polymer.2001,42(8): 3569-3580.
    [11]Duarte M L, Ferreira M C, Marvao M R, et al. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy[J]. International Journal of Biological Macromolecules.2002,31(1-3):1-8.
    [12]Dash M, Chiellini F, Fernandez E G, et al. Statistical approach to the spectroscopic determination of the deacetylation degree of chitins and chitosans[J]. Carbohydrate Polymers.2011,86(1):65-71.
    [13]Zhang Y, Xue C, Xue Y, et al. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction[J].Carbohydrate Research.2005, 340(11):1914-1917.
    [14]Wang C, Esker A R. Nanocrystalline chitin thin films[J].Carbohydrate Polymers.2014,102(0):151-158.
    [15]Nagahama H, Higuchi T, Jayakumar R, et al.XRD studies of (3-chitin from squid pen with calcium solvent[J]. International Journal of Biological Macromolecules.2008,42(4):309-313.
    [16]Shuqiang W, Jihuan H, Lan X. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers[J]. Polymer International.2008,57(9):24-27.
    [17]Chandure A S, Umare S S, Pandey R A. Synthesis and biodegradation studies of 1,3-propanediol based aliphatic poly(ester carbonate)s[J]. European Polymer Journal.2008,44(7):2068-2086.
    [18]Xuemei W, Yugang Z, Lisong D. Study of biodegradable polylactide /poly(butylene carbonate) blend[J].Journal of Applied Polymer Science.2013,127(1): 471-477.
    [19]Van S H, Van Petegem S. In-situ mechanical testing during X-ray diffraction[J].Materials Characterization.2013,78(0):47-59.
    [20]Choudhury N R, Chaki T K, Dutta A, et al. Thermal, X-ray and dynamic mechanical properties of thermoplastic elastomeric natural rubber-polyethylene blends[J].Polymer.1989,30(11):2047-2053.
    [21]Kasaai M R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers.2008,71(4):497-508.
    [22]Ji Y, Liang K, Shen X, et al. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats[J]. Carbohydrate Polymers. 2014,101(0):68-74.
    [23]Cipitria A, Skelton A, Dargaville T R, et al. Design, fabrication and characterization of PCL electrospun scaffolds-A review[J]. Journal of Materials Chemistry.2011,21(3):9419-9453.
    [24]Chen J, Su C. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering[J].Acta Biomaterialia.2011,7(1):234-243.
    [25]Wolter S D, Piascik J R, Stoner B R. Characterization of plasma fluorinated zirconia for dental applications by X-ray photoelectron spectroscopy[J].Applied Surface Science.2011,257(23):10177-10182.
    [1]Nair L S, Laurencin C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science.2007,32(8-9):762-798.
    [2]Moura L I F, Dias A M A, Leal E C, et al. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing[J]. Acta Biomaterialia.2014,10(2):843-857.
    [3]Liu F, Qin B, He L, et al. Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties[J]. Carbohydrate Polymers.2009, 78(1):146-150.
    [4]Jayakumar R, Prabaharan M, Sudheesh Kumar P T, et al.Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnology Advances. 2011,29(3):322-337.
    [5]Li J, Pan L, Zhang L, et al. Culture of hepatocytes on fructose modified chitosan scaffolds[J]. Biomaterials.2010,24(3):2317-2322.
    [6]Molina R, Jovancic P, Vilchez S, et al. In situ chitosan gelation initiated by atmospheric plasma treatment[J].Carbohydrate Polymers.2014,103(0):472-479.
    [7]Huang Y, Jiang S, Li G, et al. Effect of fillers on the phase stability of binary polymer blends:A dynamic shear rheology study[J]. Acta Materialia.2005,53(19): 5117-5124.
    [8]Li J, Huang Q. Rheological properties of chitosan-tripolyphosphate complexes:From suspensions to microgels[J]. Carbohydrate Polymers.2012,87(2): 1670-1677.
    [9]Hou Z, Zhang M, Liu B, et al. Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides[J]. Food Hydrocolloids.2012,26(1):205-211.
    [10]Zamora M V, Fernandez-Gutierrez M, Roman J S, et al. Magnetic core-shell chitosan nanoparticles:Rheological characterization and hyperthermia application[J]. Carbohydrate Polymers.2014,102(0):691-698.
    [11]林春梅.壳聚糖黏均分子量的测定[J].山东农业科学.2011,18(07):105-106.
    [12]覃容贵,吴建伟,国果等.蝇蛆壳聚糖黏均分子量的测定[J].贵阳医学院学报.2009,34(03):276-278.
    [13]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006:256-281.
    [14]何平笙.新编高聚物的结构与性能[M].北京:科学出版社,2009:311-315.
    [15]金日光.高分子物理[M].北京:化学工业出版社,2002:157-201.
    [16]董纪震,赵耀明,陈雪英等.合成纤维生产工艺学(下册)[M].北京:中国纺织出版社,1994:334-489.
    [17]蒋挺大.壳聚糖[M].北京:化学工业出版社,2006:21-29.
    [18]Pillai C K S, Paul W, Sharma C P. Chitin and chitosan polymers:Chemistry, solubility and fiber formation[J]. Progress in Polymer Science.2009,34(7):641-678.
    [19]Ludwig N, Cabrini R, Faoro F, et al. Reduction of evaporative flux in bean leaves due to chitosan treatment assessed by infrared thermography[J]. Infrared Physics & Technology.2010,53(1):65-70.
    [20]Nosal W H, Thompson D W, Yan L, et al. UV-vis-infrared optical and AFM study of spin-cast chitosan films[J]. Colloids and Surfaces B:Biointerfaces.2005, 43(3-4):131-137.
    [21]Fernandes S C M, Freire C S R, Silvestre A J D, et al. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose[J]. Carbohydrate Polymers.2010,81(2):394-401.
    [22]Kim C H, Khil M S, Kim H Y, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation[J]. Journal of Biomedical Materials Research-Part B Applied Biomaterials.2006,78(2):283-290.
    [23]Bhattarai S R, Bhattarai N, Viswanathamurthi P, et al. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity[J]. Journal of Biomedical Materials Research-Part A.2006,78(2):247-257.
    [1]孔祥烨,郑静,王晓军等.壳聚糖在组织工程中的应用[J].中国医学工程.2009,17(3):185-187.
    [2]李青峰,徐靖宏.不同通透性壳聚糖生物膜复合导管修复周围神经缺损的实验研究[J].上海医学.2000,23(7):390-392.
    [3]匡勇,侯春林,苟三怀.几丁质及几丁糖与雪旺氏细胞相容性的实验研究[J].中国修复重建外科杂志.1998,14(2):90-93.
    [4]Haipeng G, Yinghui Z, Jianchun L. Studies on nerve cell affinity of chitosan-derived materials[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials.2000,52(2):285-295.
    [5]Place E S, George J H, Williams C K. Synthetic polymer scaffolds for tissue engineering[J]. Chemical Society Reviews.2009,38(4):1139-1151.
    [6]Mattson M P, Haddon R C, Rao A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J]. Journal of Molecular Neuroscience.2000,14(3):173-182.
    [7]Webster T J, Waid M C, Mckenzie J L. Nano-biotechnology:carbon nanofibers as improved neural and orthopaedic implants[J]. Nanotechnology.2013, 15(0):48-54.
    [8]Hui H, Yingchun N, Montana V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth[J].Nano Letters.2004,4(3):507-511.
    [9]Chiang Y, Lin W, Chang Y. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation[J]. Applied Surface Science.2011,257(6):2401-2410.
    [10]Li C, Yang K, Zhang Y, et al. Highly biocompatible multi-walled carbon nanotube-chitosan nanoparticle hybrids as protein carriers[J].Acta Biomaterialia. 2011,7(8):3070-3077.
    [11]王帅,马彦龙,卫英慧.碳纳米管的分散性研究及其对复合电纺纤维的影响[J].化工新材料.2010,38(4):152-155.
    [12]吴小利,岳涛,陆荣荣等.碳纳米管的表面修饰剂FTIR, Raman和XPS光谱表征[J].光谱学与光谱分析.2005,25(10):1595-1598.
    [13]Bahr J L, Tour J M. Covalent chemistry of single-wall carbon nanotubes[J]. Journal of Materials Chemistry.2002,12(7):1952-1958.
    [14]Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. Journal of Physical Chemistry B.2003,107(16): 3712-3718.
    [15]徐吉勇,范旭,董伟等.碳纳米管的纯化及其在聚乙烯醇中的分散[J].光谱实验室.2008,25(6):1035-1039.
    [16]Kasaai M R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers.2008,71(4):497-508.
    [17]鲁江,简益辉,张慧慧等.Lyocell/多壁碳纳米管复合纤维的制备及性能[J].新型碳材料.2004,19(3):172-178.
    [18]Kaneto K, Suruta M T, Sakai G, et al. Electrical conductivities of multiwall carbon nanotubes[J]. Synthetic Metals.1999,103(1-3):2543-2546.
    [19]曹伟,宋雪梅,王波,等.碳纳米管的研究进展[J].材料导报.2007,5(21):77-82.
    [20]Ferris C J, Panhuis M. Bio-Materials Based on Gellan Gum Hydrogels[J]. Soft Matter.2009,5(32):3430-3436.
    [21]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001:293-312.
    [22]Kwon O, Myung S, Lee C, et al. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma[J]. Journal of Colloid and Interface Science.2006,295(2):409-416.
    [23]Kim E, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling[J]. Applied Surface Science.2011,257(23):9863-9871.
    [24]Li X, Zhu L, Xu Y, et al. A novel positively charged nanofiltration membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization cross-linking[J].Journal of Membrane Science.2011,374(1-2):33-42.
    [25]高振,王华,罗晓婷.神经导管生物材料的研究与进展[J].中国组织工程研究与临床康复.2007,11(31):6239-6243.
    [1]Lin M Y, Manzano G, Gupta R. Nerve Allografts and Conduits in Peripheral Nerve Repair[J].Hand Clinics.2013,29(3):331-348.
    [2]Catrina S, Gander B, Madduri S.Nerve conduit scaffolds for discrete delivery of two neurotrophic factors[J]. European Journal of Pharmaceutics and Biopharmaceutics.2013,85(1):139-142.
    [3]Tang S, Zhu J, Xu Y, et al.The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats[J].Biomaterials.2013,34(29):7086-7096.
    [4]Jiang X, Lim S H, Mao H, et al.Current applications and future perspectives of artificial nerve conduits[J].Experimental Neurology.2010,223(1):86-101.
    [5]高振,王华,罗晓婷.神经导管生物材料的研究与进展[J].中国组织工程研究与临床康复.2007,11(31):6239-6243.
    [6]Hsu S, Kuo W, Chen Y, et al. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy[J].Acta Biomaterialia.2013, 9(5):6606-6615.
    [7]Daud M F B, Pawar K C, Claeyssens F, et al. An aligned 3D neuronal-glial co-culture model for peripheral nerve studies[J].Biomaterials.2012,33(25): 5901-5913.
    [8]Yucel D, Kose G T, Hasirci V. Polyester based nerve guidance conduit design[J].Biomaterials.2010,31(7):1596-1603.
    [9]Lin M Y, Manzano G, Gupta R. Nerve allografts and conduits in peripheral nerve repair[J].Hand Clinics.2013,29(3):331-348.
    [10]Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering[J]. Biomaterials.2008,29(34):4532-4539.
    [11]Daly W T, Knight A M, Wang H, et al. Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair[J].Biomaterials.2013, 34(34):8630-8639.
    [12]Martino S, D'Angelo F, Armentano I, et al.Stem cell-biomaterial interactions for regenerative medicine[J].Biotechnology Advances.2012,30(1): 338-351.
    [13]Chew S Y, Mi R, Hoke A, et al. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation[J].Biomaterials.2008,29(6):653-661.
    [14]Kang X, Xie Y, Powell H M, et al.Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds[J]. Biomaterials.2007,28(3):450-458.
    [15]曹凯,范伟,安洪等.脱骨蛋白为支架材料的体外细胞相容性特点[J].中国组织工程研究与临床康复.2007,11(35):6938-6941.
    [16]Bian Y, Wang Y, Aibaidoula G, et al.Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration[J]. Biomaterials. 2009,30(2):217-225.
    [17]熊建文,肖化,张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较[J].激光生物学报.2007,16(5):559-562.
    [18]侯春梅,李新颖,叶伟亮等.MTT法和CCK-8法检测悬浮细胞增殖的 比较[J].军事医学科学院院刊.2009,33(4):400-401.
    [19]Lee J Y, Bashur C A, Goldstein A S, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications[J]. Biomaterials.2009,30(26): 4325-4335.
    [20]Chen Y, Liu C, Cheng C, et al. Effect of bilobalide on peripheral nerve regeneration[J].Biomaterials.2004,25(3):509-514.
    [21]Ni H C, Lin Z Y, Hsu S H, et al. The use of air plasma in surface modification of peripheral nerve conduits[J]. Acta Biomaterialia.2010,6(6): 2066-2076.
    [22]Schmalenberg K E, Uhrich K E. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration[J]. Biomaterials.2005,26(12):1423-1430.
    [23]Lee D, Choi B, Park J, et al. Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel[J]. Journal of Cranio-Maxillofacial Surgery.2006,34(1):50-56.
    [24]Dhiman H K, Ray A R, Panda A K. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen[J].Biomaterials.2005,26(9):979-986.
    [25]Lee J Y, Bashur C A, Goldstein A S, et al.Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications[J].Biomaterials.2009,30(26): 4325-4335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700