用户名: 密码: 验证码:
油页岩原位开采地下冷冻墙联合制冷系统的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界油页岩资源丰富,全世界已有37个国家发现油页岩矿床100多个,将储量折算成页岩油可达4100亿吨以上,是目前世界天然原油探明可采储量的3倍,油页岩开发前景广阔,作为一种重要的替代能源引起各国家的高度重视。我国油页岩资源丰富,已查明的储量折算成页岩油达500.49亿吨,在常规油气资源供给不足时,非常规油气资源——油页岩将会成为重要的油气补充,并且有望成为常规油气的替代品。
     油页岩原位加热开采时,需要在开采区域周围建立地下冷冻墙,以隔绝地下水对开采区域的影响并防止开采油气的泄露。常规的人工冻结方法是使用制冷机组制冷盐水溶液冻结,这需要消耗大量的电能,而我国东北地区油页岩储量丰富,且冬季温度低、时间长,自然低温冷源丰富。针对这些情况,本文建立了油页岩原位开采地下冷冻墙联合制冷系统实验平台,通过利用冬季自然风冷制冷冻结,联合制冷冻结以及单独利用制冷机组制冷冻结三种运行模式的实验,研究地下冷冻墙的制冷效果以及联合制冷的经济性,主要包括以下方面:
     首先,分析地层热物性对地下冻结传热的影响,建立单排冻结管地下冻结传热的数值模型,利用ANSYS分析软件,对不同制冷工况下冻结温度场进行了理论分析,得出低温冷冻液的温度和流量对地下温度场的影响规律。模拟结果表明,越低的冷冻液温度和越高的流量将使冻结圈的交圈时间越短,但是交圈时间与冷冻液温度和流量之间存在最优组合,采用最优组合不仅可以有效减少冻结交圈时间,还能大幅降低运行和设备投资成本,本文给出了合理的冷冻液温度及冷冻液流量。
     其次,针对东北地区的气候特点,结合模拟分析结果,建立了能同时满足单独利用风冷机组冻结、制冷机组和风冷机组联合制冷冻结、制冷机组制冷冻结的多功能油页岩原位开采地下冷冻墙实验平台。单独利用风冷机组制冷时间为720h,冻结管影响半径1m范围内地下土层平均降温幅度为4℃,降温前期温度下降较快,随着环境温度的逐步升高,降温速率逐渐放缓;从风冷机组运行数据分析,当环境温度低于-10℃时,风冷机组制冷效果较好,其出口温度可达-5℃左右,随着环境温度的降低,制冷功率将进一步加大,当环境温度为-20℃时,其制冷功率为-10℃时的两倍。利用联合制冷系统进行制冷时间为360h,采用交替制冷运行模式,当环境温度为-10℃以下时利用风冷机组制冷,当环境温度升高到-10℃以上时利用制冷机组制冷,实验表明,当环境温度低于-10°C时,风冷机组的制冷功率达20kW左右,基本满足冻结孔的冷冻需求;地下温度场的降温速率较为稳定,整体降温速率与单独使用风冷机组冻结时基本一致。单独利用制冷机组进行制冷时间为1980h,制冷机组制冷功率随环境温度的升高而有所下降,气温每升高10℃,制冷功率下降10%左右,同时制冷液温度也有所上升,制冷液平均温度由-18.5℃升高到-13.5℃,制冷功率平均为42.5kW;地下温度下降曲线整体呈下凹状,相邻冻结孔中间土体温度下降最快,冻结圈内侧土体温度下降速度略快于冻结圈外侧相应位置,土体进入冻结前温度下降较快,进入冻结后温度下降趋势放缓,至冻结结束,已冻土体直径达1.0m以上,相邻冻结孔中间土体也已下降至0℃以下,进入冻结状态。
     通过实验得出的地下温度场变化与模拟结果进行对比分析,现场实测的温度下降随时间的变化曲线与数值模拟曲线发展趋势完全一致,数值差别较小;风冷和联合制冷期间,模拟与实验温差最大不超过15%,平均温差为8.2%;制冷机组冻结期间,模拟与实验温差最大不超过10%,平均温差为6.4%;验证了数值模拟结果的可靠性。
     最后,以本实验台为例,对采用联合制冷系统冻结与常规人工冻结进行了经济性对比分析,结果表明在寒冷地区采用联合制冷系统进行冻结比常规人工冻结方法每年可以节省运行成本20%以上,风冷机组的成本投资可在3~4年甚至更短时间内收回。通过HDPE同轴套管换热器与钢质套管换热器进行成本分析对比,结果表明:在相同冻结情况下,HDPE同轴套管换热器成本约为钢质套管换热器成本的30.9%,且HDPE同轴套管换热器在施工成本、施工速度及施工便捷性上更具优势。
     综上可知,在油页岩原位开采中,可充分利用自然界低温冷源,采用联合制冷方案以减少电能消耗,降低制冷成本;同时也减少了氨、氟利昂等制冷机组的使用,从而保护了环境,推动油页岩原位开采技术的进一步发展。
Oil shale resources of the world are rich, the Oil shale deposits more than100have beendiscovered by37countries around the world. If they are converted into reserves of shale oil,the weight of shale oil could reach more than410billion tons, and it’s three times thanrecoverable reserves of the world natural crude oil. Many countries have paid close attentionto develop the oil shale because of the broad development prospects and important alternativeenergy. China is rich in oil shale resources, if the identified reserves are converted into shaleoil, the weight could reach50.049billion tons, oil shale and gas will be an importantcomplement and be expected to be a substitute, when the supply of conventional oil and gasresources are insufficient.
     The underground water sealing and frozen wall need to be build in the mining area, whencarried out in situ heating of oil shale mining. The method of conventional artificial freezingis to use refrigeration brine solution and refrigeration units, it need to consume a lot ofelectrical energy. But, the northeast of China have rich oil shale reserves, and cold naturalsource because of low temperature in long winter. For these cases, the experimental platformof underground mining of oil shale in situ freeze wall joint refrigeration system wasestablished in this paper. By using three kinds of experimental operation mode including thenatural air-cooled refrigeration in winter, joint freezing and separate refrigeration unit coolingto study the effects of the frozen underground wall and the economic analysis of the jointfreezing, including the following aspects:
     First of all, the numerical model of underground freezing and heat transfer using singlerow frozen pipes was established based on the analysis of the impact of the underground heaton underground freezing and heat transfer. Freezing temperature fields under different coolingconditions were analyzed using ANSYS analysis software, and the influence law of cryogeniccoolant temperature and flow rate on underground temperature field was obtained. The simulation results show that the lower coolant temperature and the higher traffic would resultin the shorter cross lap time of freeze lap, but there are optimal combination between the crosslap time and the coolant temperature and flow. The cross lap time of freeze lap and theinvestment costs of operation and equipment could be both effectively reduced. The rationalcoolant temperature and coolant flow were provided in this paper.
     Secondly, considering northeast climate characteristics of China and combined withsimulation results, the multifunctional experimental platform of the underground frozen wallfor mining of oil shale in situ, it could meet separate refrigeration unit, the joint freeze ofrefrigeration units and air-cooled refrigeration unit, and refrigeration unit cooling freeze,simultaneously. The freezing time of separate refrigeration unit was720h, the averagecooling extent in1m radius range of soil under the mainland was4℃effected by the frozenpipes, the temperature drop rapidly in the pre-cooling, the cooling rate was slow graduallywith the gradual increase in ambient temperature. By analysis on the operating data ofair-cooled refrigeration unit, it showed that the cooling effect was better when the ambienttemperature was below-10℃, and its outlet temperature was about-5℃. The coolingpower would further increased with the decrease of the ambient temperature. Cooling powerwas twice than it was at-10℃when the ambient temperature was-20℃. The freezing timeof joint refrigeration system was360h, the results of alternate cooling operation mode thatusing air-cooled refrigeration unit to freeze when the ambient temperature was below-10℃and using refrigeration unit to freeze when the ambient temperature risen to above-10℃showed that the cooling power of air-cooled refrigeration unit was about20kW, it couldbasically meet the needs of frozen for freeze holes, when the ambient temperature was below-10℃. The cooling rate of underground temperature field was relatively stable, and the overallcooling rate was consistent with using alone air-cooled unit to freeze.The freezing time ofseparate refrigeration units was1980h, the cooling power of refrigeration units decreasedwith the rise of ambient temperature. The temperature increased by10℃, the cooling powerwould be down about10%, at the same time,the cooling fluid temperature also increasedfrom-18.5℃to-13.5℃and the average cooling power was42.5kW. The drop curve ofunderground temperature was concave, the soil temperature between adjacent intermediate freeze hole declined fastest and the soil temperature inside the freeze ring decreased slightlyfaster outside the corresponding position. The soil temperature before frozen decreasedrapidly and the temperature declined slowly after frozen until the frozen end. The diameterof permafrost body was above1.0m, and the soil temperature between adjacent intermediatefreeze hole has dropped to below0℃and reached frozen state.
     The curve which showed the decline of temperature measured in field dropped changedwith time was consistent with the curve of numerical simulation, by comparative analysis onthe changes in ground temperature field and the simulation results. When using air-cooledrefrigeration and Joint refrigeration, the maximum temperature difference between simulationand experiment didn’t exceed15%and the average temperature difference was8.2%. Whenusing refrigeration units, the maximum temperature difference between simulation andexperiment didn’t exceed10%and the average temperature difference was6.4%, these dataverified the reliability of numerical simulation.
     Finally, the results showed that in cold areas, using joint refrigeration system to freezecompared with conventional and artificial freezing could save operating costs more than20%yearly and the cost of investment in air-cooled units would be available to recover in3to4years or shorter time, by comparative analysis of economic on Joint refrigeration system andconventional and artificial freezing. The result showed that the cost of the HDPE coaxial tubeheat exchanger was30.9percent of the cost of steel tube heat exchanger in the same frozen,and the HDPE coaxial tube heat exchanger had advantages in construction costs, constructionspeed and construction.convenience, by the cost comparison analysis on HDPE and steelcoaxial tube heat exchanger and steel tube heat exchanger.
     TO sum up, the cold natural source could be underutilized in high temperature in-situ oilshale mining. The energy consumption, ammonia and freon released by refrigeration unitswas reduced by using joint refrigeration system. Not only reduces the cost, but also to protectthe environment, so as to promote technology in situ oil shale mining for further development.
引文
[1] AlAN E I. Western oil shale: past, present and future[J]. Utah Economics and BusinessReview,2006,66(1/2):339-372.
    [2] BURGER J W, Crawford P M, Johnson H R. Hussert revisited.5: Is oil shale America'sanswer to peak-oil challenge[J]. Oil&Gas Journal,2004,102(30):16-24.
    [3] BREAOW K. Global oil shale issues and perspectives [J]. Oil Shale,2003,20(1):81-92.
    [4] DYNI J R. Geology and resources of some world oil shale deposits[J]. Oil Shale,2003,20(1):193-252.
    [5]宫占全.辽西地区油页岩矿急待勘查开发[J].中国矿业.2011,20(2):67-70.
    [6]钱家麟,王剑秋,李术元.世界油页岩开发利用动态——记美国第27届国际油页岩会议[J].中外能源,2008,13(1):11-15.
    [7]衣犀,张昕,曲泽源,等.全球油页岩资源及其开采技术进展[J].石油科技论坛,2010,(03):62-65.
    [8] AdamR. Brandt.Converting Green River oil shale to liquid fuels with the Shell in-situconversion process: energy input sand greenhouse gas emissions[M]. Energy andResources Group University of California, Berkeley,2007.
    [9]钱家嶙,王剑秋.世界油页岩[J].中国能源,2006,28(8):16-19.
    [10]黄志新,袁万明,黄文辉,等.油页岩开采技术现状[J].资源与产业,2008,10(06):22-26.
    [11]牛继辉,陈殿义.国外油页岩的地下转化开采方法[J].吉林大学学报(地球科学版),2006,36(6):1027-1030.
    [12]James Thurman. Overview of in-situ conversion technology[M]. shellexploration&production,2007.
    [13]Office of DeputyAssistant Secretary for Petroleum Reserves, et al. Strategic SignificanceofAmerica’s Oil Shale Resource[M]. Washington, D.C.2004.
    [14]方朝合,郑德温,葛稚新.壳牌ICP技术现场试验[J].科技创新导报,2010,36:110-111.
    [15]刘胜英,王世辉,陈春瑞,等.壳牌公司页岩油开采技术与进展[J].大庆石油学院学报,2007,31(03):53-55.
    [16]刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.
    [17]冯雪威,陈晨,陈大勇.油页岩原位开采技术研究新进展[J].中国矿业,2011,20(6):84-87.
    [18]Shell Frontier Oil and Gas Inc. E-ICP project plan of operation-oil shale research anddevelopment project[R]. Houston: Bureau of Land Management U. S.A,2006.2-15.
    [19]何永光,宋岩.油页岩的综合利用[J].煤炭加工与综合利用,2005,1:53-56.
    [20]Shell Frontier Oil and Gas Inc. Technology to secure our energy future-mahoganyresearch project [EB/OL][2007-02-15].
    [21]James W Bunger, Peter M Crawford, Harry R Johnson. Is oil shale America’s answer topeak-oil challenge [J]. Oil&Gas Journal,2004,8:16-24.
    [22]李丹,汤达祯,杨玉凤.油页岩资源的研究、开发与利用进展[J].石油勘探与开发,2006,33(6):657-670.
    [23]薛华庆,杜发平,徐文林.油页岩电加热原位开采技术研究进展[J].2010,4(1):18-20.
    [24]刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.
    [25]陈瑞杰,程国栋,李述训,等.人工地层冻结应用研究进展和展望.岩土工程学报,2000,22(01):40-44.
    [26]木下诚一著.冻土物理学[M].王异,张志权译.长春:吉林科学技术出版社,1985.
    [27]Jessberger H L. Theory and application of ground freezing in civil engineering[J]. ColdRegions Science and Technology,1980,3(1):3-27.
    [28]陶龙光,巴肇伦.城市地下工程[M].北京:科学出版社,1996.
    [29]雷成祥,马芹永.冻结法凿井冻结岩土掘进方法的研究[C].全国矿山建设学术会议论文集---矿山建设工程新进展,2005:40-47.
    [30]Frivik P E, Thorbergsen E. Thermal design of artificial soil freezing systems[J].Engineering Geology,1981,18(1):189-201.
    [31]P. E. Frivik, G. Comini. Seepage and Heat Flow in Soil Freezing[J]. Heat Transfer,1982,104(2):323-328.
    [32]汪仁和.对冻结法研究中几个问题的探讨[J].淮南工业学院学报,2000,(增刊):70-73.
    [33]郭兰波.竖井冻结壁温度场的有限元分析[J].中国矿业学院学报,1981(3):37-55.
    [34]丁德文.冻结壁变化的数学模型及其计算[J].科学通报,1982(14):1471-1473.
    [35]吴紫汪,马巍,张长庆等.人工冻结壁变形的模拟试验研究[J].冰川冻土,1993,15(1):121-124.
    [36]李功洲.深井冻结壁位移实测研究[J].煤炭学报,1995,20(1):99-104.
    [37]李述训.立井冻结法凿井工程中的热工计算[J].冰川冻土,1994,16(1):21-30.
    [38]崔广心.深厚冲积层中冻结壁厚度的研究[J].冰川冻土,1995,17(增刊):26-34.
    [39]汪仁和.粘土冻结壁的变形特性与计算[J].冰川冻土,1996,18(1):47-52.
    [40]陈湘生.深冻结壁时空设计理论[J].岩土工程学报,1998,20(5):13-16.
    [41]马芹永.冻结孔布置圈径的统计回归计算[J].见井技术,1999,20(3):30-33.
    [42]郭瑞平,霍雷声.冻结壁位移计算及其冻结施工优化设计[J].矿冶工程,1999,19(4):6-8.
    [43]汪仁和,曹荣斌.双排管冻结下冻结壁温度场形成特征的数值分析[J].冰川冻土,2002,24(2):181-185.
    [44]程宜康.冻结凿井时冻结壁的非线性数值分析[J].苏州职业大学学报,2003,14(4):87-88.
    [45]张向东,张树光,李永靖,等.冻土三轴流变特性试验研究与冻结壁厚度的确定[J].岩土力学与工程学报,2004,23(3):395-400.
    [46]乾增珍,鲁先龙,陈湘生.人工冻土蠕变的数值计算及其模拟[J].中国矿业大学学报,2004,33(3):273-276.
    [47]汪仁和,李栋伟,王秀喜.井筒开挖下非线性冻结壁的应力场和位移场计算[J].上海交通大学学报,2005,39(11):1862-1865.
    [48]汪仁和,李栋伟,王秀喜.摩尔-库仑强度准则计算冻结壁应力场和位移场[J].工业建筑,2005,35(10):40-42.
    [49]李栋伟,张世银,汪仁和,等.粘弹塑性冻结壁计算理论研究[J].煤炭工程,2006,(1):60-62.
    [50]徐学燕,吉植强,张晨熙.季节冻土层影响下冻土墙温度场模型试验研究[J].中国矿业大学学报,2009,38(5):629-633.
    [51]Derek Maishman, Powers J P, Lunardini V J. Freezing a temporatory roadway fortransport o f a3000ton dragline[R].5th Int Sympon Ground Freezing,1988.
    [52]Rebhan D. New experience and problems with LIN ground freezing[R]. In: GroundFreezing91. Rotterdam:Balkema,1991.
    [53]Buinger A. Application of artificial ground-freezing with liquid nitrogen (LIN)/newcontrol hardware[R]. Ground freezing, Proc of8th ISGF,1996.
    [54]陈瑞杰,程国栋,李述训,等.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(01):40-44.
    [55]中国矿业学院主编.特殊凿井[M].北京:煤炭工业出版社,1980.
    [56]Zhang Wen, Pang Rongqing. Application of ground freezing technique in Lianghui coalmine area of China[R]. In: Ground Freezing97. Rotterdam, Sweden: Balkema,1997.
    [57]Kjell Skogsberg, Bo Nordell. The Sundsvall Hospital Snow Storage[J]. Cold RegionsScience and Technology,2001,32(1):63-70.
    [58]中国科学院兰州冰川冻土研究所冷能研究组.自然冷源及其应用[J].高科技与产业化,1998,(2):20-22.
    [59]王世清,宋庆武,张岩,等.基于热管的自然冷源制冰技术方案的初步试验[J].农业工程学报.2008,24(11):230-232.
    [60]高丽馥,王春许.天然冰储存技术及其应用研究[J].应用能源技术.2001,(6):14-15.
    [61]王世清,宋庆武,张岩等.基于热管的自然冷源制冰技术方案的初步试验[J].农业工程学报.2008,24(11):230-232.
    [62]马丽.利用自然冷源保鲜贮藏果蔬的技术[J].农产品加工,2003(02):46-47.
    [63]王世清,朱英莲,张晶,等.新型自然冷源冷库与应用前景[J].农业工程技术(农产品加工业).2008(07):37-38.
    [64]周福君,刘健,乔颖,等.利用自然冷资源贮藏保鲜的应用研究[J].农机化研究,2001,01:93-94.
    [65]李里特.利用自然冷源果蔬保鲜贮藏技术[J].农机安全监理.1998(07):12.
    [66]李里特,王颉,丹阳,等.果蔬贮藏保鲜新技术[J].农产品加工,2003(04):20-21.
    [67]王世清,朱英莲,张晶,等.新型自然冷源冷库与应用前景[J].农业工程技术(农产品加工业),2008(07):37-38.
    [68]杨涛.严寒地区季节性自然冷源土壤蓄冷应用基础研究[D].哈尔滨:哈尔滨工业大学,2009.
    [69]Yang T, Zheng M Y. An improvement to the simulation of phase-change heat-transferduring soil freezing and thawing[J]. Mining Science and Technology (China),2009,19(2):262-268.
    [70]李红阳.矿井降温系统技术经济分析[J].煤矿安全,2009,03:93-96,
    [71]程知言.浅表隧道工程多冷源冻结温度场、应力、水分场耦合研究:[D].长沙:中南大学,2003.
    [72]肖忠华.上海软土二次冻融土工程性质试验研究[D].上海:同济大学,2007.
    [73]徐学祖.冻土物理学[M].北京:科学出版社,1985.
    [74]国家林业局.冻土工程地质勘察规范(GB50324—2001).北京:中国计划出版社,2001.
    [75]Johansen. Thermal properties of foils and rock minerals. Proe.2nd ISGF. Trondheim,(01):427-453.
    [76]康凯,刘晓燕,刘扬,等.严寒地区土壤导温系数对土壤温度场的影响分析[J].油气田地面工程,2010,29(3):8-10.
    [77]吴建良,汤文,孙立军.基于傅立叶级数解的导温系数现场测定[J].同济大学学报(自然科学版),2011,39(10):1495-1499.
    [78]蔡海兵,荣传新.考虑相变潜热的冻结温度场非线性分析[J].低温建筑技术,2009,(02):43-45.
    [79]Sanger F J, Sayles F H. Thermal and rheological computations for artificially frozenground construction[J]. Engineering geology,1979,13(1):311-337.
    [80]肖朝昀.人工地层冻结冻土帷幕形成与解冻规律研究[D].上海:同济大学,2007.
    [81]胡向东,黄峰,白楠.考虑土层冻结温度时人工冻结温度场模型[J].中国矿业大学学报,2008,37(04):550-555.
    [82]胡传鹏,胡向东,朱合华.单排管冻结巴霍尔金温度场控制参数敏感度分析[J].煤炭学报,2011,36(06):938-944.
    [83]胡向东,赵俊杰.人工冻结温度场巴霍尔金模型准确性研究[J].地下空间与工程学报,2010,6(1):96-101.
    [84]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报(自然科学报),2003,23(1):25-29.
    [85]于磊.油页岩原位开采地下冷冻墙制冷系统的实验研究[D].长春:吉林大学,2011.
    [86]赵大军,张金宝,于磊,等.地区自然冷源用于冷冻墙制冷系统.吉林大学学报(地球科学版).2012,42(Sup.3):329-336.
    [87]M. piechowski. Heat and mass transfer model of a ground heat exchanger: validation andsensitivity analysis[J]. International Journal of Energy Research,1998,22:965-969.
    [88]赵研.太阳能地下混凝土存取热试验研究与数值模拟[D].长春:吉林大学,2011.
    [89]张朝晖. ANSYS12.0热分析工程应用实战手册[M].北京:中国铁道出版社,2010.
    [90]李守圣.地下混凝土储热桩热能存储试验与研究[D].长春:吉林大学,2010.
    [91]崔广心.厚表土层湿土结冰温度与冻结壁厚度确定的研究[J].中国矿业大学学报,1997,26(3):1-4.
    [92]杨林,赵大军,张金宝,等.油页岩原位高温开采地下冷冻墙的研究[J].探矿工程(岩土钻掘工程),2013,40(增刊):247-252.
    [93]吉植强.季节冻土地区圆形基坑冻结壁模型试验研究[D].哈尔滨:哈尔滨工业大学,2010.
    [94]刘冬生.地源热泵实验台及同轴套管换热器传热模型研究[D].长春:吉林大学建设工程学院,2005.
    [95]中华人民共和国行业标准编写组.埋地聚乙烯给水管道工程技术规程(CJJ101-2004)[S].北京:中国建筑工业出版社出版,2004.
    [96]M.piechowski. Heat and mass transfer model of a ground heat exchanger:validation andsensitivity analysis[J]. International Journal of Energy Research,1998,22:965-969.
    [97]GB/T20674.2-2006,塑料管材和管件——聚乙烯系统熔接设备[S].北京:中国标准出版社,2007.
    [98]章熙民.高等学校试用教材——传热学[M].北京:中国建筑工业出版社,1984.
    [99]陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1991.
    [100]雷军,白明洲,徐兆义,等.地铁隧道施工期冻结法穿越断层破碎带施工效果[J].岩石力学与工程学报,2008,27(7):1492-1498.
    [101]吉植强,徐学燕.季节冻土地区人工冻土墙的冻结特性研究[J].岩土力学,2009,30(4):971-975.
    [102]汪仁和,李栋伟.人工多圈管冻结水热耦合数值模拟研究[J].岩石力学与工程学报,2007,26(2):355-359.
    [103]张早校,冯霄,郁永章.制冷与热泵[M].北京:化学工业出版社,2000.
    [104]柴彦,刘朝晖,高胡成.最小费用法在方案优选中的应用[J].华北水利水电学院学报,2002,23(02):74-76.
    [105]高志. NPV法在风险投资项目评价中的应用[J].大连铁道学院学报,2005,26(3):81-85.
    [106]王晶香,张雪梅.建设项目财务评价指标——投资回收期浅析[J].建筑管理现代化,2004,(02):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700